Florida State University Libraries

Electronic Theses, Treatises and Dissertations The Graduate School

2007

Computational Transformation Between
Different Symbolic Representations of BK
Products of Fuzzy Relations

Ha V. (Ha Viet) Hoang

Follow this and additional works at tR&U Digital Library For more information, please contébtir@fsu.edu

http://fsu.digital.flvc.org/
mailto:lib-ir@fsu.edu

THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

COMPUTATIONAL TRANSFORMATION BETWEEN DIFFERENT
SYMBOLIC REPRESENTATIONS OF BK PRODUCTS OF FUZZY
RELATIONS

By

HA V. HOANG

A Dissertation submitted to the
Department of Computer Science
in partial ful llment of the
requirements for the degree of
Doctor of Philosophy

Degree Awarded:
Summer Semester, 2007

The members of the Committee approve the Dissertation of Ha V. Hoang defended on
April 25, 2007.

Ladislav J. Kohout
Professor Directing Dissertation

Mika Seppala
Outside Committee Member

Lois W. Hawkes
Committee Member

Hilbert Levitz
Committee Member

Robert van Engelen
Committee Member

The O ce of Graduate Studies has veri ed and approved the above hamed ommittee members.

To my family

ACKNOWLEDGEMENTS

This dissertation is the result of my research that | have done in the past ve year |
am very grateful that | have been accompanied and supported by many people.

| have a great honor working with Professor Ladislav J. Kohout, who has inspired
my interests in fuzzy relational representations and computations with his entisiasm and
expertise of the eld. His guidance and support in preparing my dissertation are invaluable
I have learned from him priceless experiences in doing research and in making it ealbg
and fruitful.

| would like to express a special gratitude to Professor Lois Hawkes for lercouragement
and guidance as my co-major professor, particularly when professor Kohout is amsence.

| would like to thank my doctoral committee members Professor Lois Hawkesrd?essor
Mika Seppala, Professor Robert van Engelen, Professor Hilbert Levitz, watways supported
and took great e ort in reading and providing me with valuable comments on earlier veions
of this dissertation.

Last, but most importantly, | wish to thank my parents, Dr. Hoang Van Suu and Pha
Thi Chinh, my husband Dr. Le Van Tri and our precious daughter Le Hoang Dieu Minh,
for their unconditional love and wonderful support. This dissertation is especially dedital
to them.

TABLE OF CONTENTS

Listof Tables Vi
Listof Figures e iX
Abstract e e e Xi
1. Introduction 1
1.1 OVerview o e e e e e 1
1.2 Chapter Synopsis of the Dissertation. 2
2. Relational Products 5
2.1 Introduction: The Enriched Theory of Relations. 5
2.2 WhatisaRelation? 5
2.3 Relations and Operations oBB(X YY) 8
2.4 Relational Products e 9
2.5 Special Properties, Closures and Interiors of Relations 15
3. Semiotic Descriptors. e e e e e 23
3.1 Basic Notions. e 23
3.2 Glossary: Basic Kinds of Semiotic Descriptors 24
3.3 Semiotic Descriptors as General System Constructs. 25
4. Survey of Relational Products Applications 31
4.1 Applications in Medical Data Analysis 31
4.2 Applications in Information Retrieval 34
4.3 Other Applications 35
5. Relational Products Representations. 37
5.1 BK Products of Relations. 37
5.2 BK Products in Predicate Calculus Form. 41
5.3 Enriched Calculus of Fuzzy Relations 44
6. Symbolic Relational Transformations. 46
6.1 Introduction. 46
6.2 Symbolic Transformations of BK Relational Products. 47
6.3 System Description. 49

6.4 Data Representation and Transformation Algorithms. 57

7. Symbolic Relational Transformations System Testing 68
7.1 Testinggoals 69
7.2 Direct transformations 70
7.3 Indirect or Loop Transformations. 77

8. Theorem Prover / Checker for Enriched Fuzzy BK Relational Calculi. 81
8.1 Design Motivation of a Term Rewriting System as Theorem Prover /

Checker for Generalized Morphisms and Relational Inequalities 82
8.2 Theorem Prover/Checker's Formal Description 90
8.3 Optimizer e 94

9. Theorem Prover / Checker Experiments. 100
9.1 Implementations: Ciao-Prolog and SWil-prolog 100
9.2 Experiments with Generalized Morphisms. 102
9.3 Special property of relations. 111
9.4 Theorems of classivalence of heterogeneous relations. 112
9.5 Theorem of the last of fuzzi ed Tarskis axioms in BL logic. 113

10.CoNCIUSIONS. o e e e 115
10.1 Summary of Dissertation Objectives. 115
10.2 Contributions 119
10.3 Further Research. 120

REFERENCES. e e 121

BIOGRAPHICAL SKETCH

Vi

2.1
2.2
3.1
3.2
3.3

5.1
6.1
6.2
7.1
7.2
7.3
7.4
7.5
7.6
8.1
8.2
8.3
8.4
8.5
9.1

LIST OF TABLES

Fuzzy Implications e 13
Classi cation of Properties of Crisp and Fuzzy RelationsI[,[7]. 17
Correspondence of Semiotic Descriptors of Sets across Knowledge Domains28

Correspondence of Semiotic Descriptors of Relations across Knowledge Dosa9

Correspondence of Computations of Relations (in selection algorithms) acos

Knowledge Domains 30
De nitions of Relational Products 38
Index converting 55
Symbol converting 55
Single-step transformations: from BK-algebra to Predicate 71
Single-step transformations: from BK-algebra to Typedset. 72
Single-step transformations: from BK-algebra to MVL closed formulas. . . 73
Single-step transformations: from Typed set to MVL closed formulas . . . 74
Single-step transformations: from MVL closed formulas to Predicate. . . . 75
Single-step transformations: from Predicate to Typedset. 76
| -theorem prover / checker constructor. 87
Input theorem representations. 92
Rewrite rule representations. 0 e 92
Output representations. e e 93
Distance of Reference Rules Elements. 96
Ciao-Prolog versus SWI-Prolog implementations 102

Vil

9.2 Experimental Results: Performance Comparisons

viii

2.1
2.2
2.3
2.4
2.5
6.1
6.2
6.3
7.1
7.2
7.3
7.4
7.5
7.6
7.7
8.1
8.2
8.3
9.1
9.2

LIST OF FIGURES

Arrow Diagram Representation of a Relation 7
Circle ProductR S of RelationsRandS 10
Sub-triangle ProductR C S of RelationsRandS 11
Super-triangle ProductR B S of RelationsRandS 11
Square ProductR S of RelationsRandS. 12
BK Relational Products Transformations. 47
System Model. 48
System Structure L e e e 49
Relational Products Transformations. 68
BK-PSM-BK 78
BK-PMS-BK e 78
BK-MPS-BK e 79
BK-MSP-BK 79
BK-SMP-BK e 80
BK-SPM-BK e 80
Structure of our Theorem Prover / Checker 83
Tree derivationT, of a BK-productterm A. 88
FIFO queueS of sources. i i it it i e 90
Structure preserving mappings..o e e 103

The commutativity of diagrams for homomorphisms of structures with binary
operations.. e e e e e e 103

9.3 A diagram for forward and backward compatibility. 104
9.4 Forward Compatibility, 105
9.5 Backward Compatibility 105
9.6 Solution: Forward Compatibility 107
9.7 Solution: Backward Compatibility 107
9.8 Solution in F for FRG:S Forward Compatibility 108
9.9 Solution in G for FRG:S Forward Compatibility 108
9.10 Generalized Homomorphism in Collaborative Diagnosis of Two Agents . . 109
9.11 Results of Proof Checker for General Morphisms. 111
9.12 Classivalent Relation. 113

ABSTRACT

Fuzzy relational calculi based on BK products of relations have representatidnand
computational means for handling both concrete numerical representations of retats and
symbolic manipulation of relations. BK calculus of relations together with fast fuzz
relational algorithms allows concrete numerical representations of relation® toe used
extensively in applications. On the other hand, when enriched by relational inequalities like
BK Bootstrap or combined with other theories such as generalized morphisnmsgh level
symbolic forms of relations can be used for symbolic manipulation of relations thiaave been
abstracted from numerical representations. Furthermore, symbolic foutas of relations can
be handled equationally. Equations over BK-products can characterize relationaloperties
in a universal way.

The research in this dissertation focuses on symbolic manipulations of BK products o
fuzzy relations. We have developed as a proof-of-concept an automated|ttdwat works
with various representational forms of relations and facilitates transfornmi@ns among them.
Major contribution that this system brings into the eld is that, it provides a link bet ween
numerical and symbolic representations of relations, which can substantially terd the
applicability of fuzzy relations.

The pilot implementation of the tool consists of two systems. At a high level of geral
fuzzy logic systems, the rst system transforms BK-product formulas syntdically between
three notational forms: matrix form, set form and predicate form. We have de nedor
each kind of BK-product representations a tree-type data structure, caliiea notational tree.
All transformations are then carried out by set of transformational algorttms among the
notational trees of BK representational forms.

Xi

At a lower level of t-norm based residuated logic systems (BL logic), we leadeveloped a
second system which is a term rewriting theorem prover/checker that valitiess and generates
proofs for theorems of BK relational calculi. For each given theorem, a dertian tree will
rst be generated. A matching of any node in that tree with the theorem's conclusion i
validate it. We proposed a generate-and-match algorithm based on a breadth-strsearch
navigation process through theorems' derivation trees which guarantees apofree result for
any derivable theorem (in a given theory). The original version of this algorithnmas been
improved further by applying a human-like proof strategy, which we calledlistance- rst-
searchand optimized distance- rst-searchalgorithms. These optimized versions improve the
performance of our system signi cantly, reducing both number of logical infenees and the
CPUr's time required. The experiments also showed that proofs in BK calculi are signaatly
shorter than in predicate calculus of BL logic. Interestingly enough, proofs gea¢ed by the
tool are the same as those done by hand. This illustrates the successfulness ohaaran-like

strategy.

Xil

CHAPTER 1

Introduction

1.1 Overview

Relational representation of knowledge makes it possible to perform all themputation
and decision making by means of relational operations in a unied way. The relational
calculus enriched withspecial relational compositionscalled triangle and square products
[3],[4] extends and increases substantially the applicability of fuzzy relations. These non-
associative products were rst introduced by Bandler and Kohout in 19772],[5],[6] and
are referred to as the BK-products in the literature {],[2],[9],[1(],[11]. In this dissertation,
relational calculus enriched with BK-products will be referred to as BK-relatioal calculus.
BK calculus of relations together with fast fuzzy relational algorithms and thegr
of generalized morphisms1],[1Z] have been applied to various practical problems in a
number of scienti ¢ elds: computer protection and Al [L3], medicine, information retrieval,
handwriting classi cation, architecture and urban studies, investment and control &ds
[14], generating e cient search strategies for resolution-based theorem piiog. There is
a complete survey in §] with a list of 50 selected references on the theory and applications.
BK products have several mathematical/notational variants, including matrix form, Igic
form, set form, tensor and algebraic/symbolic form. Di erent applications may us di erent
forms. Even though they are algebraically equivalent, each of these repmséions has its
own advantages when it comes to constructing fast and e cient computational atgithms
(e.g. the set and many-valued logicrepresentations) or to symbolically manipulating the
strings of BK products (e.g. thepredicate formg. As the applicable elds of BK relational
products evolve, the need for a means to transform among these forms has becoeoessary
and desired. Such a scenario would be: the symbolic formulas of BK relations extead from
one set of data in one system can be further symbolically manipulated by anotherstem,

1

and perhaps, later on, it will need to be translated into a suitable form for compations.

For this reason, this dissertation focuses on developing an automated tool thgerforms
manipulations and translations between these di erent mathematical forms and validage
and proves theorems of BK relational calculi.

1.2 Chapter Synopsis of the Dissertation

Chapter 2. Relational Products In this chapter, we present a review on the theoretical
background of the circle and BK relational products'. De nition of each product
is given in both crisp (boolean values of true or false) and fuzzy forms. Wésa
summarize special properties of BK relations, including properties of heterogenso
and homogeneous relations, the closure and interior of relations and how to compute
those in applications.

Chapter 3. Semiotic Descriptors Computing with words is one of the many facets of
fuzzy relational computations. With fuzzy relations, one can handle not only the
mathematical semantics of the logic of relations, but also the semantic informatidinat
is carried by the linguistic labels. Semiotic descriptors were introduced by Kohout in
1987 [L5] as a means to capture the ontology and epistemology of the relational model
in which the knowledge is represented. This chapter includes basic notions of semiotic
descriptors as well as a glossary of its various categories. It highlights timportant
roles of semiotic descriptors, both in stand-alone and cross-domain applications.

Chapter 4. Survey of Relational Products Applications This chapter reviews a large
number of BK relational products' applications that have appeared in the literature
One of their largest applications, CLINAID, a medical data analysis system that ais$s
physicians in diagnosing diseases and suggesting treatments, is reviewed here aldb
discuss other applications, either nished or on-going, such as information retrieval,

mobile agents, etc.

Chapter 5. Relational Product Representations After surveying the theoretical back-
ground and the applicable elds of BK relational products, we focus on the topic of

LIn this dissertation, we use BK-products system to refer to bothcircle and BK products, unless stated
otherwise

BK products representations. Among several mathematical/notational varianighere
are three distinct kinds of notations for BK products that have broadly been used in
various applications. Each of these notations has its unique advantages when it @m
to either symbolically manipulating the BK products or mathematically computing
actual values of relations. In light of the richness of various representationd BK
products, this chapter discusses a factor that has been hindering the applications of
BK products, which is the possibility of simultaneously using more than one kind of
products representations. In the literature, there is no existing research ¢rmow these
inter-transformations can be done.

Chapter 6. Symbolic Relational Transformations The work presented in this chapter
addresses the matter raised in chapter 5. It focuses on the construction ofautomated
tool that allows the inter-transformation among BK products representatins. A
detailed description of such a system is given, including it's overall structure, rfoal
language de nition and data representation. Modules designs and implementations are
also described here.

Chapter 7. Symbolic Relational Transformations System Testing This chapter de-
scribes the set of tests that have been performed in the above tool.

Chapter 8. Theorem Prover / Checker for Enriched BK Relational Calculi This
chapter presents how we have built a theorem prover / checker for BK relationaélculi
in t-norm based residuated logic systems (BL) using a term rewriting mechanism. This
theorem prover / checker is the second layer of our automated tool. We deba a
detailed design of our theorem prover / checker, from its knowledge base tavréing
engine. The brain of our prover / checker is agenerate-and-matchalgorithm. It
generates a derivation tree of a given theorem using the system's rewritingle and
looks for a matching of the theorem's conclusion with any node in that tree. To improve
the system's performance, we explore a human-like proof strategy and invéwb new
algorithms for our system which we callistance- rst-search and improved distance-
rst-search. The last section in this chapter is dedicated to these optimization strategies
and implementations.

Chapter 9. Theorem Prover / Checker Experiments We describe various experiments

3

that we have carried out with the prover / checker in both aspects: it's implemeations
and it's performance in various applications. Even though the nal system was
implemented in SWI-Prolog, we also discuss our experiments with Ciao-Prolog in the
process of developing this system. We present how the system is used to provelttens
of various types, e.g. special properties of relations, classivalence oundtionality of
relations, generalized morphisms etc., with an emphasis put on the theory of genertiz
morphisms and relational inequalities. We provide the basic theory of and motivation
to generalized morphisms which were rst introduced by Bandler and Kohout in
1977). Various theorems proved in 6] are those that our theorem prover / checker
should be able to check and prove.

Chapter 10. Conclusions This nal chapter concludes the works that have been accom-
plished in the dissertation. We summarize the dissertation objectives as well as the
research results according to those objectives. We also discuss and suggesurther
research topics that might have been bene ted and/or developed from thesesults.

CHAPTER 2

Relational Products

2.1 Introduction: The Enriched Theory of Relations

BK-products of relations are used within the Enriched Theory of Relations as de ned in
[11]. For this reason the transformation tool developed in this work has to complyith this
theory. The theory makes some subtle distinctions that are not common in the standard
literature on relations. For this reason we follow closely the presentatidorm as introduced
by Bandler and Kohout in 1977 §]. This applies particularly to expressing the meaning of
relational data types and predicates in English. It will become obvious later (chagt 3) that
these distinctions are essential for transformations between various forroErelations and
for introducing semiotic descriptors by means of predicate forfRp of a relation R. This is

important for two reasons:

1. It allows us to have an unied theory of crisp and fuzzy relations as introducedyb
Bandler and Kohout in 1977.

2. It makes enriched theory of relations applicable to computing with words that was
introduced by Lofti Zadeh

2.2 What is a Relation?

Given two setsX and Y, one can de ne a relation between the two sets. A crisp binary
relation from X to Y is given by an open predicate__P___ with two empty slots. When the
rst slot is lled with the name x of an element ofX and the second slot is lled with the
namey of an element ofY, the result will be aproposition, which is either true or false. If the
proposition x P y is true, then we can say thatx is Rp-related to y or that R, holds between
x andy. In this case, we can writexR,y or simply xRy. Similarly, if the proposition x P y

5

is false, we can say thak is not R,-related to y or that R, does not hold betweerx andy,
and we can writex: Rpy or simply x: Ry. This is called theintensional form of relation.
Example 1 Let X be the setf2;4;7g and Y be the setf1; 3;8g. Let P be the predicate
\ __greater than ___". Then we will have a relationRp from X to Y, in which \ 2 is greater
than 1, 4 is greater than 1, 7 is greater than 3, ett.and \ 4 is not greater than 8, etc.
The lattice of all binary relations from X to Y is written as B(X Y).
The satisfaction set or representative sebr extension sePs of a relationRp 2 B (X
Y) is the set of all those pairsX;y) 2 X Y for which it holds that:

Rs=f(xjy) 2 X YjxRyg

It should be noted that the conventional mathematical theory of relations dealsnty with
satisfaction sets. Hence it deals only relations given by their extension. Namegpuoddicates
are, however, used in Zadeh's \computing with words" (CWW) and also when we deal with
semiotic descriptors.

In example 1, the satisfaction set oR is:

Rs = 1(2;1);(4,1);(7;1); (4, 3); (7;3)9

Clearly, Rs is a subset of the Cartesian producX Y. Knowing Rp, we know Rs;
knowing Rs, we know everything aboutRp except the wording of its "name"__P___. This
issue is important when introducing semiotic descriptorsLi],[14],[17],[1]], see also Chapter
3 below.

Instead of listing all the pairs in a satisfaction set of a relation, which is rarelgonvenient
or observable, there are several conventional ways to represent fatien.

Notational Convention: Following Bandler and Kohout [],[4],[Z] we drop the sub-
scripts in Rs and Rp when the meaning is obvious from the context. We shall write
R2R(X Y)andR2P(X Y)orR X Y when convenient.

Arrow diagram . An arrow picture of arelationR 2 R (X Y) lists all the elements

of X andY in two columns and draw an arrow fromx 2 X toy 2 Y if xRy.

The arrow picture of example 1 is shown in gure2.1

Incidence matrix . This is a very important representation of relations computation-
ally and conceptually. In this representation type, elements of set are listed in the

6

Figure 2.1: Arrow Diagram Representation of a Relation

row-headings of a table, and elements of s&tare listed in the column-headings. Each
cell in the table will represent an element inrX Y. The (x;y) cell will be marked 1
if XRy, and O otherwise.

The matrix representation of example 1 is:

0 1

o0 100

or @1 1 0A

411 1 O 110
711 1 O

Foreset and afterset . Given arelationR 2B (X Y).

The afterset of an elementx 2 X is the subset ofY consisting of all elements inY
that x is related to in R. We have:

xR =fy2 Y jxRyg:

The foreset of an elemeny 2 Y is the subset ofX consisting of all elements inX
which are related toy by R. We have:

Ry = fx 2 X j XRyag:

In example 1, R = f1;3g; R3 = f4;79.

2.3 Relations and Operations on B(X YY)

1. Subrelation . Given two relationsR and S. R is asubrelationof S, i for all x 2 X
and for ally 2 Y, wheneverxRy then alsoxSy. We can also say thatR is contained
inS,orRv S.

8a2 X;8y 2 Y(xXRy) xSy)

The result of thev relation is a single-value predicate that can be either true or false.

Example 2 Let relation R be as in example 1. LeS be a relation fromX to Y with
the predicate P%is ___is greater of equal to___. Then for the two relation R and S, it
is true that Rv S.

2. Intersection . Given two relations R and S. The intersection of R and S, written
R u S is a new relation, de ned by

x(RuS)y (both xRy and xSy

Let R and S be two relations as de ned in example 2. The intersection of these two
relations is a new relation___is equal to___.

3. Union . Given two relationsR and S. The union of R and S, written Rt S is a new
relation, de ned by

x(Ru S)y (XRy or xSy
Let R be the relation de ned in example 1. LetS be a relation___is equal to___. The
union of R and S is a new relation___is greater of equal to __.

There is an important distinction of the v relation from the u and t relations. v is
a predicate that yields valuedrue or false u andt result in a new relation from the
argument relations.

4. Negation . Given a relationR. The negation ofR is another relation, de ned by

X: Ry (: (XRy)

The negation of a relation is a type of unary operation, that satis es the folloing:

GCGCR)=R

5. Transpose . Given a relationR 2 B(X Y). lIts transpose (also called inverse or
converse)R" is the relation RT 2B(Y X) de ned by

yR™x (0 xRy
2.4 Relational Products

Given two relations, sayR and S, one can create a new relatioR ? S by applying a binary
operation, taking R and S as its arguments. The? operation is called arelational product,
and the result product of R ? S is called acomposed relatioror a composition

De nition Let R and S be two relations:R2B(X Y)andS2B(Y Z). Let ?be
a two argument operation that takes as its argument relation® and S that when applied
to its argument yields a new composed relatioR ? S 2 B(X Z). ?is then called a
relational product and the result of the application of this operation is called a congsition
of relations.

There are four important types of relational products. Thecircle productis the usual
associative composition of relations . The other products are the triangle productC , the
triangle super productB and the square product . These products were rst introduced
by Bandler and Kohout in 1977 §]. They are usually calledBK (Bandler { Kohout) products
[L9,[71,[8].[9] in the literature.

2.4.1 The Standard Associative Product of Relation

Given two relationsR 2B(X Y)and S2B(Y Z). The circle product that yields the
composed relatiolR S2B(X Z) is de ned by either of the two equivalent de nitions:

1. xi(R S)z« i there exists a path in arrow picture fromx; to z; or

2. xi(R 9z 0 (9y; 2 Y such that x;Ry; and y; Sz).

Figure 2.2: Circle ProductR S of RelationsR and S

Figure 2.2 above and Figures 2.3, 2.4, 2.5 in the sequel introduce ttene diagramsof
relational products. This convenient graphical form rst appeared in the conte of using BK-
products in fuzzy information retrieval and in representation of medical knowlept P0],[21].
It has been very useful in communicating the meaning of relational semiotic descriptdos
non-mathematicians, medical experts’[],[23] and engineers.

2.4.2 Triangle Sub-product

Given two relationsR 2 B(X Y)and S 2 B(Y Z). The triangle sub-product (or
subtriangle product) R C S is de ned by:

xi(RCS)z (XiR Sz:

2.4.3 Triangle Super-product

Given two relationsR 2 B(X Y)and S 2 B(Y Z). The triangle super-product (or
supertriangle product)R B S is de ned by:

Xi(RB S)z (XiR Sz:

10

Figure 2.4: Super-triangle ProductiR B S of RelationsR and S

2.4.4 Square Product

Given two relations R 2 B(X Y)and S 2 B(Y Z). The square productR S is
de ned by:

Xi(R S)z¢ (XiR = Sz:

2.4.5 Fuzzy BK Products

For fuzzy relations, thedegree to whiclx; stands in the product-relation toz is given by the
degree to whiclthe de ning relation holds true. For overlapping, this is the degree to which
the intersection of the two sets is non-empty, which is the greatest degreemoémbership of

anyy; in it. for subsetness and supersetness, it is the least degree to which the mershig

11

Figure 2.5: Square ProducR S of RelationsR and S

in one setimplies the membership in the other, and depends crucially on the choice foizzy
implication operator (Bandler and Kohout [24]). For set equality it depends on the least
degree to which membership in one set implies the membership in the other and vice vdrsa
a mutual implication operator or equivalence operator. The resultant formulas are as follows.

For nite sets sup; and inf; can be replaced by mgxand min;.

(R S)ik = sup (min(Rj ; Sk))-

(R C S)ik = inf j (Rij ! Sjk)-

(R B S)ik inf i (Rij Sjk).

(R Sk =infj(Rj Sk)= min((RC S)i;(RB S)i).

Product Type Many-Valued Logic Formula
Circle (R Sk = _j(Rj " Sik)
Sub-triangle (RC99k = Aj(Rij ! Sjk)
Sup-triangle (R B S)ik = Aj (Rij Sjk)
Square (R Sk ="j(Rj Sk)

Using other many-valued logic connectives fof and ! , a wide variety of dierent
relational products can be de ned. We have the following de nitions represent the fuzzy
degrees to which the respective statemenisRy;;y; Sz are true.

By choosing appropriate many-valued logic (MVL) operations for the logic connecés
in the above de nitions of products, the Boolean (crisp) case extends to a wider vety

of many-valued logic based (fuzzy) relational systems (Bandler and Kohout], [2€], [3]).

12

Table 2.1: Fuzzy Implications

No. | Opr. | Name De nition
1. | S# Standard Sharp al’ b= L1 a6 1 orb=1
0 otherwise
2. |S Standard Strict al” b= L1 a b
0 otherwise
3. |S Standard Star al® p= L1 a b
b otherwise
4. | G43 | Gaines 43 a!* b= min(1;®
4. | G43' | Modied Gaines 43| a!* b= min(1: b, 13
5 |L Lukasiewicz al® b= min(1;1 a+ b
5.5 | KDL | Reichenbach al®b=min(L;1 a+ ab
6. | KD | Kleene-Dienes al® b=(1 a_b
7. |Ez | Early Zadeh al” b=(a”b_(1 a=(a!®p~ a
a=(1 a)_a
8. | W Willmott al® p= (1 a_br@_(1 b_(bra a)

=(a" h~ b
=(a’®phrarb

13

Using either inf or min operator for the outer connective” in the square and triangle
products yields theharsh family of products. Using thesum for the outer connective and
normalizing the sum appropriately yields themeanfamily of products. The details of choice
of appropriate many-valued connectives are discussed in (Bandler and Kohouf][[4], [26],
[3], Kohout and Kallala [27]).

Table 2.1 lists di erent many-valued logic implications.

2.4.6 Representation of Conceptual Structures by Products

The BK-products can be used to compare relational structures. R is a relation fromX to
Y, we callRT the transposedrelation (from Y to X)), in which y is related to x if and only
if x is related toy by R. In this case, if we are taking the products betweeR and S, the
result relation will be a new relation fromX to X itself. This special kind of relations is
called homogeneouselations.

Let X be a set ofobjects and let Y be a set ofproperties [2],[29). Given a relation R
from X to Y then if xRy, we shall say thatobject x possesses property &nd if x: Ry then
object x does not possess property kets consider the semantic meaning of relatiol@ ? R .

xi(R RT)x; | objectx; shares at least one property with objeck;

xi(R C RT)x; | objectx;'s properties are among those of objeat

xi(RB RT)x; | objectx;'s properties include all those of objeck;

xi(R RT)x; | objectx;'s properties are exactly the same as objest

In comparison of relational structures, special properties of relations plan important
role. For example, the composed relations given in the table above may contaim@dering
of objects according to the properties that they possess, or an orderioigproperties P5. The

-product may reveal, for example, some equivalence between objects or lsewproperties
[5].
The exact meaning ofobjects and properties can vary among di erent applications:

engineering 14,[3(], medical [31]; theorem proving B7].

14

2.5 Special Properties, Closures and Interiors of
Relations

These mathematical notions are important in computing orderings of relations as well
as tolerances, similarities and equivalences. The standard mathematical literatuasd
textbooks talk about relations with properties, such as re exive relationstolerances and
equivalences. To be precise, these meagkbal re exivities, global tolerances, global
equivalences. Global properties are not always adequate when we compute retetio
properties of relations given by incomplete or corrupted data, or where not albgects of
our experimental sample have the same properties. In order to get corraeisults, local
properties, e.g. local re exivity, local tolerance, local equivalenceéhave to be introduced.
Local properties have been rst introduced for fuzzy relations by Bandler an&ohout in
1982 [],[17].

2.5.1 Homogeneous and Heterogeneous Relations

De nition 1 Any relation between two di erent setsR 2 R (X Y) is called heteroge-
neous relation Any relation on a single set, e.g. from a seX to itself, is calledhomogeneous
relation or a relation \on X".

2.5.2 Special Properties of Heterogeneous Relations

De nition 2 Given a heterogeneous relatioR from X to Y.
(1) R is coveringif and only if (8x 2 X);9y 2 Y such thatxRy.
(2) R is onto if and only if (8y 2 Y);9x 2 X such thatxRy.
(3) R is univalent if and only if (8x 2 X), if xRy and xRy°theny = y°
(4) R is separatingif and only if (8y 2 Y), if xRy and xRy then x = x°

Combining these four basic properties, one can obtain other composed propextié-or
example, the well-known propertyfunctional is a combination ofcoveringand univalent

The self-inverse circle product is very useful in the characterization of sp&lcproperties
of relations between two distinct sets. The following proposition con rms this:

Proposition [6] Propos.1.4.3; see alsd J].

Special properties of a heterogeneous relatigh2 R (X Y).

(1) R is covering if and only ifEx v R R 1.

15

(2) R is univalent ifand onlyifR * Rv Ey.

(3) Ris onto if and only if (foral) Ey v R * R.

(4) R is separating if and only ifR R 'v Ex.

Here,Ex and Ey are the left and right identities, respectively.

2.5.3 Special Properties of Homogeneous Relations

It is very often that not all of the elements of the universeX patrticipate in a relation of
interest. This fact, however, should not eliminate the properties which the relatiomay have
on its e ective domain. Thus, the local properties are important characteristics of relations
[1].

The De nition that follows is adopted from Bandler and Kohout, referencesq] for crisp
relations and [.7] for fuzzy relations. An earlier paper of Bandler and Kohoutl] (on
fuzzy closures and interiors of relations) provides ner distinctions for fuzzy rexavity. It
distinguishes local re exivity, re exivity, local ultrare exivity and ultrare exivit .

De nition 3 [6],[17] Given a homogeneous relatioR on X.

(1) R is covering , everyx; 2 X is related byR to something
, 8 Xi2 X;xiR6 ;
, 8 Xi 2 X;9x; 2 X such thatxjRx; =1

(2) R is locally re exive , if x; is related to anything or if anything

is related tox; then x; is related to itself
, (XiR[Rxi 6 ;) ¥ 2 XiR)

, 8 Xi 2 X;x;Rx; = J.(xinj _ XjRxj)
(3) R is re exive , If R is covering and locally re exive
,8 X2 X;xiRx; =1
, Ex VR
(4) R is transitive , R2v R.
(5) R is symmetric , RT=R
, R=RtRT
, R=RuRT
(6) R is antisymmetric , RuURTv Ex

(7) R is strictly antisymmetric , RuRT =0x.

The above de nitions of special properties equally apply to crispS], and fuzzy [L]]
relations. Each di erent fuzzy system of connectives will de ne a di erent fuzg theory of
relations. This is determined by the choice of a t-norm and a t-conorm that are usddr
de ning the intersection u and uniont of relations. Special properties and their closures
and interiors using connectivesnin and max are treated in considerable detail in[,[2].

16

Table 2.5.3shows the complete properties combined by the properties de ned above.

Table 2.2: Classi cation of Properties of Crisp and Fuzzy Relationsl],[Z].

Locally Anti- Strictly anti-
Covering reexive Transitive Symm. symm. symm.
Local tolerance + +
Tolerance + + +
Local preorder + +
Preorder + + +
Local equivalence + + +
Equivalence + + + +
Local order + + +
Order + + + +
Strict order + +

It is very often that not all of the elements of the universeX participate in a relation of
interest. This fact, however, should not eliminate the properties which the relattomay have
on its e ective domain. Thus, the local properties are important characteristics of relations.
For fuzzy relations, the distinction between local and global properties wasst introduced
by Bandler and Kohout in [1]. In this paper Bandler and Kohout also demonstrated the
importance of distinguishing three basic kinds of re exivity: local re exivity, local ultra-

re exivity and global re exivity for de ning local properties.

Special properties of fuzzy relations The special properties of crisp relations can be
generalized to fuzzy relations. Unfortunately, with exception of Bandler and Kolu, and
also Hehle, references treat only global properties of relations. There amany references
dealing with global fuzzy properties. A very useful introduction is provided in the fowing
papers: on fuzzy equivalences, with some discussion of fuzzy partitions (Klir andan [33],
Bezdek and Harris $4], Ovchinikov [35]), tolerances (Hehle 6], Rundensteiner et al. $7]. In
the literature on fuzzy sets, fuzzy equivalences are often callsihilarities. This terminology
stems from the rst paper on fuzzy relational properties, published by Zadeh in T2 [3]).

17

2.5.4 Closure and Interior of Relations

There are several importaniclosureand interior operators on relations, endowing them with
desirable properties they may lack to begin with. This is succinctly formulated by &dler
and Kohout [17]:

Verbally, where P is any property which a relation R on X may have or fail to
have, theP closureof R is de ned to be theleast inclusive relationS containing
R and possessin@. Dually, the P interior of R is the most inclusive relation
Q which possesseB and is contained inR.

De nition 4 [17] Given P is any property which a fuzzy relation R on X may have or fail
to have, S is the P-closure of R, i S satis es all of the following

(1) S has property P

2)Rv S

(3) If RvT and T has property P, then S T.

It is clear that a P-closure, if it exists, must be unique. We then have:
Corollary 5 A relation R possesses property P if and only if R is equal to its own P-closure.
The following meta-theorem was proved by Bandler and Kohoutl.P].

Theorem 6 A P-closure exists for all R on X if and only if both

(1) The universal relation Uy possesses property P, and

(2) The intersection of every non-empty family of relations, each of which possesses P,
also possesses P.

De nition 7 [17] Given P is any property which a relation R on X may have or fail to
have, Q is the P-interior of R, if and only if Q satis es all of the following
(1) Q has property P

(2)Qv R
(3) If Mv R and M has property P, then M Q.

It is clear that a P-interior, if it exists, must be unique. We then have:

Corollary 8 A relation R possesses property P if and only if R is equal to its own P-interior.

18

The following meta-theorem was proved by Bandler and Kohout.P].

Theorem 9 [17] A P-interior exists for all R on X if and only if both

(1) The null relation Oy possesses property P, and

(2) The union of every non-empty family of relations, each of which possesses P, also
possesses P.

Now that we have the de nitions of closure and interior, and the necessary su cient
conditions for those closure and interior that exist for every relatiorR on X, we need
another pair of de nitions before we can state the theorem that gives explicit exgssions for
closure and interior operators on special properties of relations.

De nition 10 [17] Given any relation R on X,
(1) The row-solipsismof R is the relation given by
8i;] 2 J;xi(rowsol R)x; = X;RX;.
(2) The col-solipsismof R is the relation given by
8i;) 2 J;xi(colsol R)x; = x;RX;.

Theorem 11 [17]
(1) The local re exive closure of R is
locref cloR = Rt Eg.
(1) The local re exive interior of R is
locref int R = Ru rowsol Ru colsolR.
(2) The symmetric closure of R is
symcloR= Rt RT.
(2) The symmetric interior of R is
symintR=RuR".
(3) The local tolerance closure of R is
loctol clo R = locref clo(sym cloR) = sym clo(locref cloR).
(3") The local tolerance interior of R is
loctol int R = locref int(sym int R) = sym int(locref int R).
(4) The transitive closure of R is
tacloR= Rt R’t R®t =1 R

(5) The local preorder closure of R is

locpre cloR = locref clo(tra clo R) = traclo(locref cloR).
(6) The local equivalence closure of R is

locequ cloR = tra clo(sym clo (locref cloR)) = tra clo(locref clo (sym clo(R))

= locref clo (tra clo(sym clo R)) = tra clo(sym clo R).

(7) The re exive closure of R is

refcloR=Rt Ex.
(8) The tolerance closure of R is

tol clo R =ref clo(sym cloR)=sym clo(ref cloR).
(9) The preorder closure of R is

pre clo R =ref clo(tra cloR)=tra clo(ref clo R).
(10) The equivalence closure of R is

equ cloR =tra clo(tol clo R)=tra clo(sym clo(ref clo R))

= tra clo(ref clo(sym clo R)) = ref clo(tra clo(sym clo R)).

Alpha-cuts of Fuzzy relations It is often convenient to study fuzzy relations through
their cuts. Forany 2 [0,1), the cuts of a fuzzy relationR is the crisp relationR given

by

(R)y = é gtr:{e”:rwise

Cutworthiness (Bandler and Kohout B9, [4() is an useful criterion in choosing appro-
priate fuzzy extensions of crisp de nitions of properties. It guarantees the swatibility of
families of crisp relations with their counterpart (the original relation on which he cut

have been performed). Let consider the following de nition:

De nition 12 A property P is cutworthy i it is true that a fuzzy relation R possesses P
if and only if every -cut of R possesses P.

Cutworthiness in particular singles outmax-min transitivity as the appropriate extension
of crisp transitivity in contrast to max-producttransitivity.

For relations with special properties (e.g. transitivity, re exivity, symmetry etc.) cuts
commute with closures (Bandler and Kohout9). We have:

refclo(R) = (refcloR)

20

traclo(R) = (tracloR)
symclo(R) = (symcloR)
This follows from the general theorem (Bandler and Kohoutd[]):

Theorem 13 Cuts commute with closures.
If P is cutworthy and closeable, then foralR 2 B(X) and all 2 [0,1], the -cut of the P-
closure of R is the same as the P-closure of thecut of R, thatis (P cloR) = P clo(R).

As the consequence of this, a whole family e.g. crisp nested equivalences or presrder
can be represented by a single fuzzy equivalence or preorder, respectivEhe theorems on
commutativity of cutworthiness and closeability provide the theoretical basis thatgarantees
the correctness of fuzzy relational computations.

Other papers (Bandler and Kohout i], [?], Kohout and Bandler [L7]) also contain
a number of interesting formulas specifying the equivalent de nitions of the compits
relational properties. These are very useful in the computations, and forms basker the
fast relational algorithms. A typical example is the following formula for thdocal preorder

closure

locprecloR= locrefclo(tracloR) = traclo(locrefcloR)

It can be seen that this formula gives two ways of computing thical preorder closure
which are equivalent mathematically, but may be dierent from the point of view of
computational complexity. A number of such useful formulas for determining the closwand
interiors for various compound relational properties are given by Kohout andadhdler [17],
[1].

Fuzzy partitions, fuzzy clusters and fuzzy hierarchied/ia their -cuts, fuzzy local and
global equivalences provide precisely the nested families of partitions in and on a séich
are required by the theory and for the applications in taxonomy envisaged by Buoka [41].
Fuzzy local and global tolerances similarly provide families of tolerance classeastfe cluster
type of classi cation which allows overlaps. Fuzzy local and global orders fush nested
families of hierarchies in and on a set, with their accompanying families of Hasse deags
(Kohout [11]).

As said above, it is often that one can not determine an absolute assertion or ddroaa
property of a relation on the universeX . But it is usually very helpful if one can assess a

21

degreeto which the relation possesses the propert¢omparing a relation's property with it
closures or interiors can help determine a degree to which the relation succeedfaits that
property.

Certain computations lead to a relation which can be expected to approximate & local
preorder. Several applications in the elds of medicine, clinical models, and hand writing
classi cation, etc., had used the local preorder closure of a relation insteadtbé original one
if the degree to which a relation is local preorder is high enough. Bandler and Kohout]
give fast algorithms for computing transitive closures, local preorder closureacapreorder
closures.

Fast algorithm for local preorder closure We assume that the cardinality of the universeX
isn.

1. ComputeTy = locref colR = EgRt R.

3. Then locpre cloR = T.

2. Compute T,

Instead ofn computations ofEgxt Rt R?t t R", we need at most log(n) computations.
This algorithm requires signi cantly fewer matrix max-min “multiplications' than the direct
computation.

Fast algorithm for transitive closure
1. Find Ts = locpre clo R using the algorithm above.
2.tracloR=Ts R.

Fast algorithm for prerorder closure Use either one of the above algorithms, and then take
the union of Ex with the result; or changeEr to Ex in the rst algorithm.

22

CHAPTER 3

Semiotic Descriptors

3.1 Basic Notions

The essential facet of the fuzzy approach is the fact that fuzzy relationsmc manipulate
semantic information that is carried by linguistic labels. Conditions imposed on logic
operations applied to fuzzy relational systems are, however, strictly mathextically de ned.
Such mathematically de ned semantics of the logic of relations is necessary, but it is not
su cient to deal satisfactorily with the meaning of linguistic labels that carry the canceptual
meaning of intended applications.

To be able to carry out the three steps of relational modeling requires adopting some
minimal ontology. The ontologytells us what kinds of things, elements or entities we shall
be using in our computational models. This is always required, whether or not we use
linguistic statements or quantized numerical statements in our computational motse In
order to capture the ontology in linguistic terms we use semiotic descriptors as deche
in the methodology of Activity Structures [29,[13,[28] which has been motivated by the
approaches used General Systems studi€s][[43],[44].

The purpose of semiotic descriptors is to capture the ontology and epistemologytioé
relational model in which the knowledge is represented. The basic ontological qmiees
of semiotic descriptors areobjects, qualities and relationshipsEach category may contain
various kinds of semiotic descriptors as we shall see from the Glossary givenha sequel.

The essential facet of the fuzzy approach is the fact that fuzzy relations rcananipulate
semantic information which is carried by linguistic labels. The notion of semiotic desptor
helps in systematizing the kinds of linguistic variables used in fuzzy sets approaches to
modeling.

One may ask why do we need semiotic descriptors in relational models. Indeed, conditions

23

imposed on logic operations applied to fuzzy relational systems are strictly thematically

de ned. Such mathematically given semantics of the logic of relations is necessary, ltut

is not su cient to deal satisfactorily with the meaning of linguistic labels which carry te
conceptual meaning of applications. It has to be supplemented by some semiotic notions
that can be expressed as algebraic restrictions over the basic fuzzy relasl system. The
carrier of these semiotic notions is the system of semiotic descriptors. This leadsto the
following de nition.

Semiotic Fuzzy Knowledge Representation Structusonsists of the pair of structures,
namely < FRS, SD>. FRS is Fuzzy Relational Structure consisting of a family of fuzzy
relations, and SD is collection of semiotic descriptord §],[29. Semiotic descriptors can be
classi ed into the basic kinds. These kinds are brie y characterized in the Glossarhat

follows.
3.2 Glossary: Basic Kinds of Semiotic Descriptors

Element: Any thing that forms a coherent whole capable of potential or actual being. We
shall recognize four important kinds of elements: object, agent, propgrand situation.
Presentation: Element can appear as presentationin form of a symbol in a text (as used
in XML), or a cognitive image by another kind of element (agent) as under ow of seéam of
experience.

Object: An abstract or concrete thing (element) that is characterized by properties
Composed object: An object composed of other elements mutually related (organized in
some structure). Computer science object as it appears in object-orietitprogramming is
a special kind of composed object in our terminology.

Atomic object: Object that is not composed, when viewed at a particular resolution level
(level of granularity).

Property: Basic characteristic, a relationship between properties. De nes objectsy
intension. Composed property is de ned by a logic expression that takes as itsgaments
atomic properties.

Attribute: Property (or a composed property) that is chosen according to a specic
selection criterion.

Agent: A thing (element) that can take actions on objects and properties and is a meta
object with respect to objects and properties/).

24

Subject: A thing (element) of kind objectthat can take actions on other objects4f].
Situation: It is an n-ary relation that connects a class of objects with some other kinats
elements.

Scenario: A sequence or aggregation of situations viewed from the perspective ahata-
agent.

Basic kinds of semiotic descriptors: Object, property, agent, situation are the basic
kinds of semiotic descriptors. They can be used as elements in texts.

Activity: An activity is composed of actions. An activity is determined by thaepertory of
actions, and the classes of participants. Participants may be objects and/or agent
Meta-Agent: A meta-agent forms ascenariousing four basic kinds of semiotic descriptors:
object, property, agent and situation. Meta-Activities are activities & meta-agents.

3.3 Semiotic Descriptors as General System
Constructs

In the course of relational computations, any simple formula such ag(R B S) T))u (1),
could be an input, output, or some intermediate formula of a computing process. In (1),
not only the information about the middle relation, namely the domain and range 08,

is missing, but also we don't have any idea about the rst and third relationsR and T,
either. The given formula is well de ned in term of mathematical computation, but it is
lack of semantic meaning of linguistic labels that carry the conceptual meaning of intended
applications.

Various applications can share the same mathematical formulas like (1), yet the linguis-
tic meaning that each of the formula bears can totally di er among those applications
Because of the similarity in the mathematical computations, dierent applications can
share a common computational algorithm to carry out similar tasks. It is the semimt
descriptors that help to di erentiate / distinguish these computations in di erent conexts
and applications. The idea of multiple systems that serve vastly di erent purposesnd
that each system employs di erent knowledge structures, can share identidaimpty shell”
structure, is formally captured by the notion ofGeneral Systems Constructgl7, 48

Partial work of Chan-Sook Noe49] illustrates the idea of structural transferability across
contexts, environments, knowledge domains, etc.. Three (sub)systems wevaesidered: (1)
Diagnosis Unit, (2) Treatment Recommendation Unit (both are units of CLINAID), and @)

25

Value Analysis model. In each system, the knowledge domain is captured by it's semiotic
descriptors.

3.3.1 Semiotic Descriptors in CLINAID's Diagnosis Unit

In this section, we present as an example the role of semiotic descriptors in de ning and

developing the Diagnosis Unit in CLINAID [0, 51, 49).

Semiotic Descriptors of Basic Sets

All the sets entering into the fuzzy relations of the Diagnosis Unit have the following rdecal
meaning (semiotic descriptors):

ame A set of
.. body systems;

generalized costs;
speci c diseases;
general diseases;
investigations;
investigation results;
patients;
signs and symptoms;
syndromes.

<NTVe—O0O0OmZ2

Semiotic Descriptors of Relations

Name De nition A set of

IC . R(I'? C) Investigations to Generalized costs;
PS . R(P! S) Patients to Signs and symptoms;

SB ::: R(S! B) Signs and symptoms to Body systems;
PB ;. R(P! B) Patients to Body systems;

BY . R(B! Y) Bodysystems to Syndromes;

PY ;. R(P! Y) Patients to Syndromes;

Gl it R(G! 1) General diseases to Investigations;

Pl ;. R(P! 1) Patients to Investigations;

etc. etc. etc.

3.3.2 Semiotic Descriptors in CLINAID's Treatment Recommen-
dation Unit

In this section, we present as an example the role of semiotic descriptors in de ning and
developing the Treatment Recommendation Unit in CLINAID [9).

26

Semiotic Descriptors of Basic Sets

All the sets entering into the fuzzy relations of the Treatment Recommendation Unit hee
the following medical meaning (semiotic descriptors):

Name A set of

C ... generalized cost of the treatments and medications;
P i1 patients;

T .. treatments and medications;

Tk 21 prohibited treatments and medications T T);
Tapplicable - applicable treatments and medications Tappiicanle T);
etc. etc. etc.

Semiotic Descriptors of Relations

Name De nition A set of
PT o R(P!YT) Patients to Treatments and medications;
TC o R(T!Y Cq) Treatments and medications to
Generalized costs;
TTw o R(T!Y Tw) Treatments to Con icting
treatments and medications;
PTappIicabIe T R(P ! Tapplicable) Patients to Appllcable
treatments and medications;
etc. etc. etc. etc.

3.3.3 Semiotic Descriptors in Value Analysis

Semiotic Descriptors of Basic Sets

All the sets entering into the fuzzy relations of the Value Analysis Model5)] have the

following medical meaning (semiotic descriptors):

Name A set of
A ... Artifacts or objects;
B .. Systems of functions;
C .. Generalized,
I Investigations (quality tests, etc.);
P Part or Component;
functional sign;
U ... Usability measure;
Vv .. Variant of a substratum unit/module (e.g. a part);
Y ... Composed attributes, functional characteristics
etc. 11 etc.

27

Semiotic Descriptors of Relations

Name De nition A set of

AB . R(A! B) Artifacts to Systems of functions;

BP o R(B! P) Systems of functions to Parts;

PC o R(P! ©) Parts to Generalized costs;

PY o RP!Y) Parts to Functional characteristics

VYU ::: RV Y U) between Variants of a part,

PVC ::: RP V C) between Parts, Variants of a part,
and cost;

PVY ::: RP V Y) between Parts, Variants of a part,

etc. ... etc. etc.

Table 3.1: Correspondence of Semiotic Descriptors of Sets across Knowledgedhas

[49

General Systems Diagnostic Treatment Value
Constructs: Unit Recommendation Analysis
Meta-constructs [50, 5] Unit [49, 53, 54 [57]
Object Type | P P A
(Patients) (Patients) (Artifacts)
Function G B
(General Diseases) (Functions)
Object type I I T P
(Investigations) (Treatments) (Parts)
Cost C C C
(Generalized Costs) (Generalized Costs)| (Generalized Costs)

Noe showed that despite dierences in their knowledge domains, the three systems
described above can adapt a similar selection algorithm for its own purpos@$e transfer-
ability across knowledge domains is feasible because there is a correspondencenobtse
descriptors of basic sets across the three knowledge domains in term of metasticts (i.e.

28

Table 3.2: Correspondence of Semiotic Descriptors of Relations across KnowdeDgmains

[49

Diagnostic Unit

[50, 51]

Treatment Recommendation Unit

[49, 53, 54

Value Analysis

[59

PG
(Working Diagnoses

AB;
(Required Functions)

Gl
(Available Investigations
for General Disease)

BiP;
(Available parts for)
Required Functions)

Pl

(Applicable Investigations)

fP T; P Tavailable ; P Tpermitted

P Tpotential ; P Tapplicable g
(Applicable Treatments)

AP,

(Applicable Parts)

IC TC P.C
(Generalized cost (Generalized cost (Generalized cost
of Investigations) of Treatments) of Parts)

I TT PiPi

(Hierarchies (Hierarchies (Hierarchies
of Investigations) of Treatments) of Parts)

General Systems Constructs that are relevant to statements that are k@ at higher levels

of abstraction or generality [} 7]). Table 3.1 and table 3.2 [49] show these correspondences.
This similarity yields a general selecting algorithm for all three systems. We havers-

marized this in table 3.3 shown below. Even though the knowledge domains might share no

common and the applications in those domain might share the same computational process.

This is an example of how the same relational computational procedure can be applied to

di erent knowledge domains in di erent systems. What make them distinguishable from one

another in the process of computation is nothing else but thegemiotic descriptors

29

[dor 1('q'g)p|o 84do0T N 'dy

[don _A._.._.wu_o m¥QOO|_ n m_gmo__&m._.n_

[dor - I(110 21d207 N (19 29 d)

(H)('q'd)pjo 81do0T

(H)(1L 1)pjo 8idooT

CH)(1010 84do0]

(W)('g'dojo a1doo

(W)(1 1)pjo 8idooT

CW(11)pjo 81doo

(NH)(1g'g)p[o 21d207

(AH)(1 1)o10 81do07

CaH)(j1)pjo 81do0T

(H)('q'q)o|0 81do07

(H)(L 1)jo 81do07

CH)(J1)pjo 81dooT

(,0'dD2d)="dd

(,0120201)=11

(,L21021)=11

<]

sIsAjeuy anjep

[es vl

NuUN 09y JuswWieal]

[rs ‘osl

uun onsoubelg

surewo abpamouy sse swyiobe uonoslas ul) suone@y Jo suoneindwo) Jo aduspuodsalio)d £°€ a|qeL

30

CHAPTER 4

Survey of Relational Products Applications

The previous chapter was concerned with the symbolic, semiotic level of the useBi-
products. This chapter deals with extracting relational structures from empiridadata. In
this pursuit, the use of BK-products together with the methods for computing closures and
interiors of fuzzy relations is essential. It should be realized, that the relanhal structures
and properties can be correctly identi ed from experimental data, if the algrithms used for
this purpose can deal not only with global but also with local properties of relations

The BK-products and the fast algorithms based on the mathematics of closures and
interiors of fuzzy relations described above in Chapter 2 were applied to a nuertof practical
problems in various scienti ¢ elds. For example, in medical diagnostic inference (Bandler
and Kohout [55], [25], Kohout et al. [5€]), in symptom comparison (Kohout and Kallala P3]),
information retrieval (Kohout et al. [20], Bandler and Kohout [57], Kim [5§]), hand writing
classi cation (Kohout and Kallala [23]), etc..

4.1 Applications in Medical Data Analysis

Medical data analysis is one of the earliest practical elds that the study of BK relanal
products aims at. Kohout and Bandler 5] and [25] emphasize that the asymmetric property
of BK relational products, in contrast to the symmetric property of correl#ions, is essential to
the investigation of hierarchical dependencies among di erent components of the@stigated
data. Particularly, the use of fuzzy possibilistic theory and fuzzy relational pmucts in the
analysis of medical data show that the pro le of an individual patient or a small group of
patients, which might not be enough data for statistics, can be analyzed in a nreagful
way.

The analyzed medical data was taken from Parkinson patients, observed lwa physio-

31

therapists over a period of ten weeks at University College Hospital, London @kout and
Bandler [25]). In this study, the similarities and di erences of mental constructs of two
physiotherapists who were participating in a common situation, e.g. dealing with the same
group of disable Parkinson patients, were successfully detected.

On each session, each of the patients was assessed independently by ddlch therapists,
with respect to 8 attributes. The names of theconstruct ¢ is given to the positive aspect of

these assessments, argymptom: ¢ is given to the negative aspect.

List of symptoms List of constructs
. ¢. disable c:. almost normal ability
. C;: dicult to cope with C,. easy to cope with
. ¢z dependent C3. independent
. ¢4. apathetic and unconcerned c,: interested and exploring
. Cs. rejecting advice Cs. accepting advice
: G very il Cs. almost healthy
: ¢ depressed c;. cheerful
. Cg: anxious and worried Ccs: calm and secure

Then, the degree of each sign is assessed. This assessment in convertedthiet fuzzy
matrices. These matrices give the degree to which patients and constructs aeéated. For
example, the result of the assessment of therapisdsis a relation R® given by a matrix of
which the ij -componentRi(ja) denotesthe degree to which the construe; is attributed to the
patient P;. The inversion relation ofR, R®T is then a relation from patients to constructs,
where Ri(ja)T denotesthe degree to which patien; was considered to exemplify constru€;.

Given two relationsR® and R@T, wherea and a° can be two di erent therapists, two

extremely interesting comparisons can be made using two triangle products of théatens.

u@a = R@)T C R@ js a relation from patients to patients. U,j denotesthe degree to
which the attribution (by therapists a') of constructs td®; implies their attribution (by
therapists a) toP;.

w@a) = R@ ¢ R@)T js a relation from constructs to constructs. W;j denotesthe

degree to which the attribution by of C; implies the attribution bya® of C,.
Computational result of U reveals a fact that a speci c patient is a universal sink, i.e.

32

what therapist a° attributes to anyone, therapist a attributes to her, but what therapists
al attributes to her, therapist a need not attribute to anyone else. Computational result of
W indicated that according to therapist 2, \independence" was independent of the other
constructs, while \ability" implies all the others. The relational analysis even revda that
one of the therapists had better understanding of the problems speci c to Parkinson pants
than the other therapist had.

This study also showed that di erent fuzzy implication operators might have di erem
semantic meanings, and the use of them can lead to di erent views of the analyzedala

Another signi cant application of relational products in the medical eld is the use of
BK-products for diagnostic inference in a medical knowledge-based system callddNAID
(Kohout et al. [56], [5(]). Itis a knowledge-based system for medical diagnosis and treatment
recommendation.

CLINAID uses classi cation knowledge in order to diagnose diseases. The inferehtia
process is performed in a hierarchical or heterarchical manner, involving the foliog seven
levels:

1. Symptoms and Sign Level
2. Risk Factors Level

3. Body System Level

4. Syndrome Level

5. General Disease Level

6. Speci c Disease Level

7. Aetiological Level

At each level of the diagnostic process, di erent fuzzy relations are used p@rform the
inference because the purpose of each fuzzy relation is di erent. Hence intérmdormation
within each relation may also dier. For example, the use of symptoms and signs at the
Body System level and the Syndrome level are not identical. At the Body System level,
\symptoms" and \signs" represent the symptoms and signs of the whole human body, thus
forming a relation which can identify possible body systems. At the Syndrome level, tme

33

other hand, symptoms and signs represent the symptoms and signs a syndrome consists of
thus forming a relation which can identify relevant syndromes. All this can be fornized
and expressed as a stream of relational computations. The conceptual cotgenf the levels
and their mutual interactions are expressed by means of mathematical relatiots which
further structural and dynamic constraints are added by means of semiotic descrip$o

4.2 Applications in Information Retrieval

Studies in fuzzy relational products revealed that they are especially adequate golve the
problem of automatic documentary information retrieval. In one of the beginning papgion
this application of fuzzy relational products (Kohout et al. P(]), the authors discussed the
similar nature between fuzzy sets and relations's characteristics and the infortizan retrieval
systems' needs. First, in information retrieval, users usually want to nd those it@s which
particularly match the request and then select from those a few of the best tohes. This
naturally leads to the need of \fuzzy matching”. Second, the queries in information reaval
are invariably incomplete. Thus, we can only search for relevant documents, nexactly
match ones. Third, one would want to have a polythetic classi cation of documentsn
which each individual in a class possesses only part of the attributes possessg@lbthe
members of that class (Kohout and Bandler7]). What is involved in fuzzy information
retrieval of documents can be expressed by the following four items:

1. A setD of documentsd.
2. A setT of termst; (for example keywords).

3. A document-termrelation R2R (D T). Then R; is the degree to which document

d; treats term t;, i.e. the degree of relevance of terj to documentd,.

4. A setS of search requestsy.

The super-triangle and sub-triangle products of relatiofR and its transposeR" play the

most important role in information retrieval.

RT CR is a relation fromtermsto terms, where RT CR);; denotes the degree to which
the presence of; implies the presence dfj. This also means the degree to which term
t; is more speci c than ternt;.

34

RT B R is also a relation fromterms to terms, where R" B R);; denotes the degree to

which term t; is broader than termt;.

RT R denotes the degree to which the relevance of tertnmatches the relevance of

term tj .

With these products, the thesaurus of terms is established. This thesaurus is used for
processing the relational requests. These relational requests relate to thesaurus. They
return lists of index terms. Given a speci ¢ term, a list of broader terms will be terned and
vice versa. Another type of request in an information retrieval system ishe fuzzy search
request. They relate to documents. The results of this type are lists of docuntenGiven a
speci c terms, a list of documents that treat this terms will be returned.

The fuzzy information retrieval technique described above was applied speci catly the
library information retrieval domain. Similarly, another use of this technique was intrduced
by Youn-Gi Kim [5€] in the theorem prover domain. A fuzzy information retrieval scheme is
used to replace the heuristic weighting strategy, which is dependent on the usdasbwledge
of the theorem or intuition, employed in resolution-based automated reasoning. this case,

the following items are constructed:
1. A setD of clausesd.
2. A setT of descriptorst; (for example terms and literals).

3. A clause-descriptorelation R 2 R (D T). Then R; is the degree to which clause,
is related to descriptort;, i.e. the degree of relevance of feature described by descriptor

tj to claused,.

Then, the BK-products and fast fuzzy relational algorithms are used in a fuzzy infor
mation retrieval (FIR) procedure to build a fuzzy thesaurus, which is a hierarchy athe
properties (terms and literals). Based on this thesaurus, a relevant clausdlwe selected to

feed into the inferential stream of a resolution-style theorem prover.
4.3 Other Applications

More recent applications of relational products include an intelligent collision avoidaac
system for autonomous underwater vehicles (AUVs) (Lee et ab]), teaching principles of

35

fuzzy logic analysis using the BK-products model (Granville5[]), cost estimation of new
technologies in aeronautics industry (Kohout et al.([1], [67]).

BK-triangle products play an important role for the characterization of granality,
knowledge representation and relational computations in fuzzy systems fovmputing with
words (Kohout et al. [63]). They are also used in relational interval computations in
intelligent systems (Kohout et al. bd], [51]). Application of generalized morphisms to
design and implementation of commutating agents in distributed intelligent systemss
practically promising (Muhammad and Kohout [p4], Kohout [45]). Other applications
include diagnosis data and patient management (Bandler and Kohout][[25], [69]), In
symptom comparison (Kohout and Kallala }3]), information retrieval (Kohout et al. [2(],
Bandler and Kohout [57], Kim [5€]), hand writing classi cation (Kohout and Kallala [27]),
natural language understanding (Nagarajan and Kohout[]), cognitive structure analysis,
and in generating e cient search strategies for resolution-based theoremquing (Kohout
and Kim [37]), analysis of protection and security of computing systems (Kohoui f]).

36

CHAPTER 5

Relational Products Representations

This chapter extends further on BK products of relations. As we will see in the next cigon,
there are di erent representational formats of BK products of relations. Bch of them aims
at di erent purposes. Various applications have been utilized the BK products of retians
(chapter 4), but most of them exploit only one of those formats of BK products. EXxisting
theory on BK products suggests that these representations link to one anotherThere
is, however, no existing study as of what links are theoretically and practically dsible
for applications that requires relational computations. The purpose of this chapter i®
introduce the theory that relates to the relational products transformations. Tis will be
a crucial part to the solving of the problem that will be de ned in the next chapter as the
main goal of my dissertation.

5.1 BK Products of Relations

BK-relational products are represented in chapte2 which include certain non associative
compositions of relations called triangle@; B) and square products . The next section
extends the notion of these products.

5.1.1 Enhancing Expressive Power of Calculus of Relations

Bandler and Kohout(1977) introduced non-associative relational compositiols B; that
further extended the crisp relational calculus Kohoutq7], Belohlvek [19, Hajek [7]. The
fuzzy version of these products rst appeared in Bandler and Kohout (1978a) amvdas rst
presented in London, c.f. Bandler and Kohout (1978b), for succinct surveys sear8ler and
Kohout (1987), Kohout (2001a).

The following mixed pseudo-associativities hold fo€ and B:

37

Table 5.1: De nitions of Relational Products

Product Type Set-based Definition Many-Valued Logic DEF. Tensor Notation

Circle X(R S)z, (R S)c= (R &S) (R S)x =Ry Sk
XR intersects Sz

Subtriangle Xx(RCS)z, xR Sz | (RCS)i = Vj (Rij ! Sik) (RCS)k = Rj C Sk

Sup-triangle x(RBS)z, xR Sz | (RBS)i = Vj (Rij Si) (RB S)k = Rj B Sk

Square x(R S)z, xR=Sz |(R S)k= Vj(Rij Sik) (R Sk =Rj Sk

1. QC(RBS)=(QCR)B S, hence writtenQCRB S.
2.QC(RCS)=(Q R)CS; QB(RBS)=QB(R 9).

The interplay of ;C;B that is a orded by relaxing the property of full associativity is
essential for enriching the expressive power of the calculus of relations (Koh¢uif].

5.1.2 Various Representations of BK-Products

Mathematical de nitions.

Let's recall the general de nition of BK-products. LetR be a fuzzy relation fromX to Y
(insymbolsR 2R (X Y)),and S arelation fromY to Z (insymbolsS2 R (Y 2)),
a product relation R@S is a relation from X to Z, determined byR and S. We use e.g.
R2R(X Y))whenRis crisp, etc.

Bandler and Kohout [5€], [5], [Z] discuss several products of relations. Each of these
generic product types performs ali erent logical action on the intermediate sets, as
each logical typeof the product enforces alistinct speci ¢ meaningon the resulting product-
relation R@S. In the following de nitions of the products, Rj ;S represent the fuzzy
degrees to which the respective statemenisRy;, y; Sz are true.

The table of de nitions given above contains three di erent notational forms for &-

products:

38

1. the notation using the concept of set inclusion and equality, c.f. Bandler and
Kohout [68], [24], [5].

\
2. many-valued logic(MVL) based notation, which uses the logic connectives &, ! or
, see Bandler and Kohout4d], [24], [5].

3. the tensor notation, c.f. Bandler and Kohout (.

The notational forms (1) and (2) of these relational compositions are algebraity
equivalent, producing the same mathematical results. Distinguishing these forms is, hoegv
important when constructing fast and e cient computational algorithms, c.f. Bandlerand
Kohout [1], [17], Kohout and Bandler [3].

The tensor notation preserves in addition the inner structure of the composition hven
the left hand side of the form (3) is used in the formulas. This is given by the fachat
the left member of the composition (e.gRjj) uses the indexes as subscripts, while the right
member of the composition uses the superscripts instead (e §¥). This is similar to the
way the subscripts and superscripts operate in the tensor calculus.

The logical symbols for the logic connective&NDboth implications and the equivalencen
the above formulas represent the connectives of some many-valued logigsen according
to the properties of the products required. An important special case is when th&ND
connective & is represented semantically by a t-norm *. If the logics are idsated, then the
implications are residua of the t-norm, and the equivalence is a biresiduum of the t-norm.

The general formula R@8)ik := j(Rjj # Si) yields two generic formulas, each of which
de nes a di erent family of fuzzy relational products, depending on whether we repladbe

L
outer connective with (de ned above) or with normalized arithmetic suijij ;

N
(R@)i = (Rjj # Si): Harsh product,
j
1 X
(R@B)i = jJ_J (Rjj # Sik): Mean product.
j
By choosing appropriate many-valued logic operations for the logic connecti@andler and
Kohout [26], Kohout [71], [77], the crisp case extends to a wide variety of many-valued logic

based (fuzzy) relational systems Kohout and Bandler], Bandler and Kohout [25], [4], [7],

39

Kohout and Kallala [27], [23]. While users often used in our applications the classicain and

max for t-norm and t-conorm, respectively, they applied various MVL implication operators
for the computation of BK-products. The details of choice of the appropriate manyalued

connectives are discussed in Bandler and Kohoutf], [4], Kohout and Kallala [27], [23],

Kohout and Bandler [3].

5.1.3 Foresets and Aftersets of Crisp and Fuzzy Relations

The afterset of x 2 X is the subset of Yconsisting of the elementy 2 Y to which x is
related by R (where ,x = fxRyg, the degree to whichx andy are R-related):

xR = fy=fxRygjy2 Y and fxRyg> Og:

The foreset of y 2 Y is the subset of Xconsisting of all the elementsx 2 X which are
related by R to y (where Ay = fxRyg, the degree to whichx andy are R-related):

Ry = fx= fxRygjx 2 X and fxRyg> 0Og:

When we take the matrix representation of a relatiorR, aftersets are given by the rows,
while the foresets are given by the columns of the matriRy, . (Here, of course, we assume
that the satisfaction setRg corresponds under the axiom of extensionality to the relation
given by its predicate formRp).

The notions of afterset and foreset of an element can be extended to et and foreset of
a set in (at least) two distinct but equally important ways: aninclusive or exclusiveafterset
/ foreset (see Bandler and Kohout4], [73]).

The inclusive after- and foresets are given by

AR=A%2 R; RB°=R B
The exclusive after- and foresets are given by
AR=A%CR; RB°=RBB}

whereR2Re(X Y)and A® A,
To understand how this composition can be computed, one has to look at its component-
wise de nition that involves indexed elements A is the membership (characteristic function)

40

giving the degree to which the predicatey 2 A°is TRUE; and R; is the degree to which
the predicateR; 2 R is TRUE, whereR; is an element ofR.

Cc = (A° R)= " (A% Ry)

|
N

Ck=(A°CR)= (A%l Ry)

1
N

Ck=(A°BR)= (AY Ry)

5.2 BK Products in Predicate Calculus Form

This section will summarize some notions of Basic Logic (BL) predicate calculus ofjel [74]

which axiomatizes all logics in the in nite family of fuzzy logics based on continuous t-nos.

That will provide us with the necessary technical tools for proving the basic BK-prodtic
inequalities that are called theResiduation Bootstrapof BK-products (Kohout [69]). These
inequalities are essential for the development of fuzzy relational calculus basea logics
using residuated t-norms.

5.2.1 The Usefulness of Di erent Notations for Computing with
Relational Products

The triangle and square BK-products signi cantly extend the expressive products oéla-
tional calculi. The foreset-afterset notation and the many-valued logic basedMVL-
notation are advantageous when relations are manipulated by a computer, applying fuzzy
relational computations to large sets of empirical data. They are semantic in themature
and computations with these are done numerically.

For abstract proofs, on the other hand, it is often advantageous to use the tdinotational
form of the BK-products, namely its predicate form expressed symbolically within an
appropriate system of formal logic using the universal quanti er. Manipulation of rek&onal
formulas expressed this way is syntactic/symbolic, using appropriate (syrdfic) inference
rules. These two dierent approaches, the semantic (computing numerically) and the
syntactic/symbolic (computing with syntactic forms - manipulating strings symbolially)
mutually complement each other.

The next de nition expresses the relational products in a rst order predicate logic fon.

41

De nition 14 BK-Products of Relations C;B; . For arbitrary fuzzy relations in [O,
1], R from the setX to Y, S from Y to Z de ne:

1. x(R S)z=(9y)(xRy & yS2);
2. x(RCS)z=(8y)(xRy ! yS2z);
3. X(RB S)z=(8y)(xRy YyS2);

4. x(R S)z=(8y)(xRy yS2);

For crisp relations the logic connectives are Boolean, ar®t 9 are quanti ers of the
standard (2-valued) predicate calculus. For fuzzy logics the above formulas eothe in nite
spectrum of many di erent fuzzy relational calculi. Indeed, taking thesupremumto interpret
9 and thein mum to interpret 8, any continuous t-norm to interpret & and the residuum of
& to interpret ! vyields such a relational calculus. The fuzzy predicate calculus of this form
is called Basic Logic (BL). It has been axiomatized by Hajek [7/4]. BL predicate calculus
has been used by Kohout to axiomatize the Basic Algebra of BK-products of relati®in t-
norm fuzzy logics, c.f. Kohout §7], [75]. BL predicate calculus subsumes classical predicate
calculus as a special case.

5.2.2 Basic Logic BL of Hajek

The uni cation and extension of the technical apparatus of relations from crisp toukzy,
including a substantial generalization of BK-products, is supported by Hajek's Bipredicate
calculusP C(). This axiomatization puts on a rm logical footing the whole family of the
t-norm based fuzzy logics. In the sequd? C() will denote a predicate calculus where *
is an arbitrary t-norm of this family which represents theANDconnective, from which the
implication operator is produced by residuation.

Some formulas that are 1-tautologies of everly C() for any continuous t-norm () are
chosen as the axioms of Basic Logic (BLBL forms a common base of all the logid3C().
De nition 2: The following formulas are axioms of the basic logic BL:

Apc et et)t et

(A2) (&)!

42

A3) ("&) (&)

A& ot &)

Asa) ("t (ot (&)Y)
(Asb) (" &)!)t ¢t (o))
CON(C D R R (G D R R R A
(A7) 0!

The deduction ruleof BL is modus ponens. Given this, the notions of proof and of a
provable formulain BL are de ned in the obvious way (cf. Hajek [74]).
The following arelogical axioms on quanti ers:

(81) (8x)' (x) ! ' (t) (t substitutable for x in ' (x))
(91)' (1) ! (9x)' (x) (t substitutable for x in ' (x))
(82) (8x)(! ')! (! (8x)')(x notfreein)
(92) (8x)(" !)1 ((9x)' !) (x notfreein)
(83) (8x)(" _)! ((8x)' _) (x notfreein)

Let C be a schematic extension of the basic propositional logic BL as given by Hjek
(1998). We associate witlC the corresponding predicate calculu€8 (over a given predicate
languaged) by taking as logical axioms

all formulas resulting from the axioms ofC by substituting arbitrary formulas of J for
propositional variables, and

the axioms @1); (82); (83); (91); (92) for quanti ers

taking as deduction rules modus ponens (from"' ! inhfer) and generalization
(from ' infer (8x)").

Given this, the notions of proof, provability, theory, proof/provability in a theory over
C8are obvious.

43

5.3 Enriched Calculus of Fuzzy Relations

There are six distinguishing features of the BK-product systems of relations thatdgitate
the uni cation of di erent many-valued systems of fuzzy relations and enhance thepractical
applicability (Kohout [11]):

1. Non-associative BK-products are introduced and used both in de nitions of relanal
properties and in computations. These products are de ned not only for homogeneous

but also for heterogeneous relations.

2. Homomorphisms between relations are extended from mappings used in the literature
to general relations. This yieldggeneralized morphismgmportant for practical solving
of relational inequalities and equations.

3. Relational properties are not only global but also local (important for applicabns).

4. The unied treatment of computational algorithms by means of matrix notation is
used which is equally applicable to both crisp and fuzzy relations.

5. The theory unifying crisp and fuzzy relations in some distinguished logics makes
it possible to represent a wholenite nested family of crisp relations with special
properties as asingle cutworthy fuzzy relation for the purpose of computation. After
completing the computations, the resulting fuzzy relation is again converted by-
cuts to a nested family of crisp relations, thus increasing the computing performanc
considerably.

6. Relations in their predicate forms are distinguished form their satisfaction stforesets
and aftersets of relations are used in addition to relational predicates. This ks it
possible to introduce interpretable linguistic labels (semiotic descriptors) that hav
a clearly de ned meaning within the domains of their applications. Then one can
develop an algebra of meaning de ned by equations and inequalities that de nes a
computational basis for forming of ontologies in knowledge engineering applications as

well as incomputing with words

The representational and computational power of BK-products, the triangle subpduct
C and the triangle superproductB resides in their algebraic properties. The interplay

44

of three dierent relational compositions generates powerful inequalities thaenrich the
computational power of both crisp and fuzzy relational calculi.
The following relational inequalities hold for arbitraryV 2 B(A C):

R SvV Rv VBST SvR'CV

where e.g. S v V denotes the relational inclusion de ned by the formulaS v V =
(8x)(8y)(xSy ! xVy). In the relational calculus, it is important to distinguish the symbol
v denoting the relational inclusion, from the symbol which denotes the foreset or afterset
inclusion.

These inequalities, called theResiduation Bootstrap of BK-productswere discovered by
Bandler and Kohout in 1977 §]. Residuation bootstrap of BK-products describes the
interrelationship of ;C;B plays a substantial role in further development of the theory
of crisp and fuzzy relations. Because these formulas depend on residuation, thagry over
into relational theories based on t-norms and corresponding residuated implicatioperators.

Theorem 15 (Residuation Bootstrap of BK-products) [6] For arbitrary V 2 B(A'!
C),
(R Sv V) (Rv VBS") (Sv RTCV)

The proof for this theorem and further information on the role of these inequalitiem
solving relational inequalities over generalized morphisms can be found in Kohotif]] They
also signi cantly simplify proofs of other relational inequalities and equalities (Kohoufc9).

45

CHAPTER 6

Symbolic Relational Transformations

6.1 Introduction

Relational representation of knowledge makes it possible to perform all thernputation and
decision making by means of relational operations in a uni ed way. The relational calculus
enriched with BK products substantially increases the applicability of fuzzy relations.

BK-products have several mathematical/notational variants, including many-valuetbgic
form, predicate form and set form. Di erent applications may use di erent forms.The tool
described in this chapter performs translations between these di erent matheitizal forms.

The triangle and square BK-products signi cantly extend the expressive productsfo
relational calculi. The foreset-afterset notation and the many-valued logic baseVL-
notation are advantageous when relations are manipulated by a computer, applying fuzzy
relational computations to large sets of empirical data. They are semantic in themature
and computations with these are done numerically.

For abstract proofs, on the other hand, it is often advantageous to use the tdinotational
form of the BK-products, namely its predicate form expressed symbolically within an
appropriate system of formal logic using the universal quanti er. Manipulation of rekonal
formulas expressed this way is syntactic/symbolic, using appropriate (syrdfc) inference
rules. These two dierent approaches, the semantic (computing numerically) and the
syntactic/symbolic (computing with syntactic forms - manipulating strings symbolially)
mutually complement each other.

46

6.2 Symbolic Transformations of BK Relational
Products

In the previous chapter we have outlined several distinctive representations oKBelational
products. Three of these, namely set-based, many-valued logic and predicate faisna
are used in the system. Even though they are algebraically equivalent, each tbése
representations has its own advantages when it comes to constructing fastdae cient
computational algorithms (e.g. theset and many-valued logic representationsor to sym-
bolically manipulating the strings of BK products (e.g. thepredicate formg (Bandler and
Kohout [1, 12, 3], Kohout [69]). For this reason automatic transformation from one form to

another is provided by the system described in this chapter.

Set-based definition

// Relational Produ\
T

Many-valued logic definition «———— Predicate definition

Figure 6.1: BK Relational Products Transformations

Figure 6.1 depicts the links between relational formulas (containing€;B; ;) and their
three de nition forms. For each direction in the diagram, the system has to determine
whether or not the transformation can be done and perform the transformatiorthat are

possible. The transformations are of two di erent kinds:

1. purely syntactic, or
2. semantics must be added.

47

When (1) is not sucient and (2) is also required, there may not be a well-de ned
transformation for some many-valued logics.
For each direction the transformation is performed by interaction of a paer and a

symbolic transformer.

Data Structure | Data Structure
| for Notation 1 | for Notation 2

h 4

Input String Output String

Parser Pretty Printer

Transformer

Figure 6.2: System Model

Figure 6.2 depicts our system model. There are three major parts in this model: a parser,
a transformer, and a pretty printer.

The parseris in charge of parsing an input string and then converting it correspondingly
to Prolog's internal data structure of our choice.

The pretty printer does the opposite direction of string conversion, from Prolog's internal
data structure representation to an output string that is more readable to users

The transformer is the kernel of the system. It does the actual transformations from one
notation of relational formulas to another. Both input and output of the transforme are
represented in Prolog's internal date structure.

The transformer described here deals with the general predicate logic. It reqesrno
special semantics of logic connectives i.e. all transformations are perfodheymbolically.

In the following sections, we will describe the transformation tool in greatedetails.
Section6.3.1provides an overall structure of the tool and a complete and formal de nitions
for BK-product relations and their three notational representations. Sectio®.4 describes
the internal implementation of the tool, including the data structure and transformation
algorithms.

In this system, we use Prolog list, but another possibility is predcate.

48

6.3 System Description

6.3.1 Overall Structure

J

rulebhases

XP =

transformed ||

expressions -
LaTex

Pretty LaTex
printer Generator

Figure 6.3: System Structure

Figure 6.3 depicts an overview of our system structure. Here, users interact with the
system through a terminal-based interface. There are four modules: (@@rsermodule, which
allows information to be entered into the system according to its internal datrepresentation,
(2) RPT (Relational Products Transformer) module, which deals with actual transformatios
from one notation of relational formulas to another, (3)pretty printer module, which is in
charge of formating the output strings to a user-friendly format and (4JATEX generator,
which generatesATEX report based on output fromRPT module.

The core of our system is theRPT (Relational Products Transformer) module, which
manipulates and transforms BK-product expressions. Information used for this pratge
is stored in therule bases The result of this process, i.e. transformed expressions, are the
desired output which can be represented in the format similar to users' input or it caalso
be used to automatically generate"LX report (IATEX generator).

The symbolic manipulations are handled irRPT by a term-rewriting technique which is

49

carried out through a rule base of rewrite rules that are user extensible. Symbadixpressions
are transformed using a set of rewrite rules which are pre-de ned in the rule baseThese
include transformation rules for products. Examples of these transformations ear the

ResideBootstrap (Kohout []), pseudo associativity that linksC with B, interrelationship

between triangle and circle products (Kohoutd7, 75]).

6.3.2 Language De nition

The alphabet of our relational theory (RT) includes the following:

{ A set of predicate letters each with some valence (or arity) greater than or equal to 1,
denoted by uppercase letter®; Q; R; :::

{ A set of domain letters , denoted by uppercase letters at the end of the alphabXt Y; Z; :::

{ An in nite set of variables , denoted by lowercase letters at the end of the alphabet
X;Y;Z;

{ Symbols denotingquanti ers : 8 (universal quanti cation), 9 (existential quanti cation).

{ Symbols denotinglogical operators (or connectives):: (logical not), & (logical and), _
(logical or),! ; ;$ (logical implications), W;V

{ Symbols denotingset operators : [;\; ; ;

{ Symbols denotingrelational operator : , ,C,B;u;t;":

{ Other symbols: j, parentheses (,)f, g.

Relations of RT notation

The relations in RT are de ned as follows:

If R;X;Y are predicate letters, then the following is aelation: R(X;Y); whereR; X;Y
are relation's name, domain and range, respectively.

If R;S are relations of the system, then so are: (R);(R");(Rt S);(Ru S):

If R; S are relations of the system, then so areR(S);(R S);(RCS);(RBS):
These are the BK relational products.

All relations of RT are in one of the above forms.

Formulas of Many-Valued Logic Notation

Well-formed formulas (vfs) of MVL-RT are de ned as follows:

50

(@) If Ris arelation in RT, then R; is a wf in MVL-RT.

(b) If Rj;Sy are two wfs in MVL-RT, then the following are also valid wfs in MVL-RT:

~ (Rj &Si)
j
N
(Ri Si)
j
N
(Rij ' Si)
j
N
(Rij Si)

i

(c) All wfs of MVL-RT are in one of the above forms.

Formulas of Predicate Logic Notation

Well-formed formulas (vfs) of Predicate-RT are de ned as follows:

(@) If Ris arelation in RT, x;y are variables thenR(x;y) is a wf in Predicate-RT.

(b) If R(X;y);S(y;z) are two wfs in Predicate-RT, then the following are also valid wfs in
Predicate-RT:

(Y)(R(X;y)& S(y; 2))
By)(R(x;y) S(y;2)
By)(R(x;y) ! S(y;2)
(BY)R(xy) $ S(y;2)

(c) All wfs of MVL-RT are in one of the above forms.

51

Formulas of Set-Based Notation

Foreset and aftersetIf R is a relation, x; y are two variables, then the following are afterset

and foreset of set-RT:
XR; Ry

Well-formed formulas If R; S are two relations in RT, x; z are two variables, andX;Z are

two domain letters, then the following are w s in Set-RT:

f(x:X;z:2)j(xR\ S2z)g
f(x:X;z:2)j(xXR S2z)g
f(x:X;z:2Z2)j(xR Sz)g
f(x:X;z:Z)j(xR = Sz)g

6.3.3 Transformations

In BK products, to make the relational computations valid, it is crucial that the matching
condition between the range and domain of participating relations must be satis ed. To
ensure this validity of transformations, all the range and domain of each relatiorppearing
in the expressions must be speci ed and kept track in the course of transfornats. If it is
not the case, then the matching condition will not be guaranteed.

BK product skeleton - Predicate form
The transformations are of the form:
(R S) = 9Y(Ry&Sy;)
(RCS): = 8y(Ry ! Sy7)
(RBS)e = 8y(Ry Sy)
(R She = 8y(Ry Sy)

From BK products to predicate form: The transition from BK products will be done

outside-in, i.e. the outer product will be transformed rst.
(R S) Tw =8z((R S)x: $ Tu)

52

(R S)y, will then be transformed further into predicate form as follows:

(R S)e=x(R S)z=
= 9y(Ryy &Sy;)

Thus,
(R'S) T =8z((R S $ Ta) =

= 82(9y(Ryy &Sy;) $ Tu)

From predicate form to BK products: the domain and range of given relations must
be kept track of (by using appropriate internal data representation) on the pruct form

formulas.

BK products - MVL form

The transformations are of the form:

(R Sk = (Rj&Sik)

J
A\

(Rij ! Si)
j
N
(RBSk = (Rj Sk)
R
(R Sik= (Rj$ Sik)
j
From BK products to MVL form: The transition from BK products will be done outside

(RC S)i

in, i.e. the outer product will be transformed rst.

(R S) Th=

= (R Sk Tu)

k
N

= ((Rj&Sk) Tu):
k]

53

From MVL form to BK products: the domain and range of given relations must be kept
track of (by using appropriate internal data representation) on the product fon formulas.
The transition will be done inside out, i.e. the inner product will be transformed rst.

N
((Rj&Sk) Tu)=
k
N

= (R Sk Tu)
K
=((R S) T:
BK products - Set form

The transformations are of the form:

(R S«

f(x:X;z:2Z)] (xiR\ Sz)g
(RCS)x, =f(x:X;2:2)j (xR Sz)g
(RBS), =f(x:X;2:2)j (xR Sz)g
(R Sy =f(x:X;z:2)j (xiR=Sz)g

From BK products to set form: The transition from BK products will be done outside
in, i.e. the outer product will be transformed rst:

(R S) T
=f(x: X;u:U) X(R S) Tug
Since
(R Sy, =f(vi:X;2:2)] \1R\ S2)g

the given formula can be transformed further to:
f(x:X;u:U)j (xf(vi:X;z:2)] (iR\ S2g Tu)g

From set form to BK products: The transformation will be done in reverse order of the
process described above. As information on domain and range of each product & kéthin
the product itself, there is no loss of this information during the transformation procss

54

Predicate and MVL forms

IY(Ry&Sy,) (Rj&Sik)
8Y(Ry ! Sy2) (Rij ! Sik)
8Y(Ry Syz) (Rij Si)

8y(Ry Sy2) (Rj Sik)
J

Here we use symbol to denote relational transformations. For exampleQy(Ry, &S,)
Wj (Rj &Sj) means LHS can be transformed into RHS and vice versa.

The LHS indicesx, z are implicit computer representations of the free variables of
predicate free variablex, z of the predicate form9y(R(x;y)& S(y; z)) while the RHS does
not contain free variables, but it contains matrix indices instead. To do the transfonation
between the two formats, we will need a kind of look-up table for index conterg, e.g.

table 6.1

Table 6.1: Index converting

Predicate index| MVL index

X |
y j
z k

Besides index conversion, we also have to convert some logic quanti ers andrectives.

Table 6.2 lists these symbols.

Table 6.2: Symbol converting

Predicate {\/IVL

8 W
9

From predicate to MVL: First, remove the rst two 8 quanti ers. Then, convert the rest
of the quanti ers and indices accordingly to tables.1 and 6.2

55

From MVL to predicate: First convert the outer connective and indices accordingly to
tables6.1and 6.2 Then add two 8 quanti ers at front with corresponding indices.

Set form - MVL

(xiR\ Sz) (Rj&Sk)

J
N

(XiR Sz) (Rij ! Sk)

(xiR Sz) (Ri Sik)

>

(XiR = Sz) (Rj Si)
J
Both set and MVL forms treat relations through their individuals. These two represe
tations are algebraically equivalent. Di erent indices of the two forms should beonverted
as in table6.1 In order to transform expressions between set-based and MVL notationge
need to employ de nitions of fuzzy set inclusions (see Bandler and Kohoui4]). Detailed
transforms are carried out as follows:

xi(R S) Tu)
= (fzi (&R\ Sz)g Tu)
= ming ((miny, (Rj &Si)) $ Tu)
= Ak (A (Rj &Si)) $ Tu)
j
Set form - Predicate form
(xR\ S2) 9yY(Ry&Sy,)
(xR Sz) 8y(Ry ! Sy;)
(xR Sz) 8y(Ry Syz)

(XR=S2) 8y(Ry Sy)

56

Using the fuzzy set inclusions de nitions, transformations in this case are carried out
similarly to the previous case. Note that expressions in set-based notation caimt hidden
range/domain of participating relations, hence we should inquire or keep track of this
information accordingly to the directions of transitions.

xX(R S) Tu)
= (fzj (xR\ Sz)g Tu)
= minz((miny(ny&Syz)) $ Tzu)

= 8z(8y(Ry&Sy;) $ T.)

6.4 Data Representation and Transformation
Algorithms

In this section, we will present how BK product formulas and their three notationaldrmats
are internally represented in the system in sectiof.4.1 After that, in section 6.4.2we will

describe algorithmic procedures for each transformations type.

6.4.1 Data representations

We divide relations into two types, ground and product relations, which correspond to
relation letters and their BK products (expressions), respectively.

Ground relations are represented asrelation (R; X;Y); whereR is a relation letter and

X;Y aredomain and range of R, respectively.
BK-product expressions are represented as:
bk(R; ;S)

where 2 f 'square’,'circle’,'sub’,'sup’ g is a BK operatorf ; ;C;Bg and

R; S are either ground relations or other BK products.
Predicate form expressions are represented as:
predicatéx : X;z : Z; expr)
whereexpr can be either:

57

1. a valueR(x; z) of ground relation R on pair (x; z), or

2. aquanti ed predicate expressionQ;y : Y;[R(X;y); op; Yy; 2)]], whereR(X;y); S(Y; 2)
C fc fc fc
| . . g

f
areexpr's, Q is a predicate quanti er, i.e. Q 218 ;9g, andop2f &;!"; ~; is
a fuzzy connective symbol. Example of aaxpr: 8z 2 Z : R(X; z) fe S(z;y).

Predicate form expressions can be presented using a tree structure:

predicate
H
Hy y
H
H
H
: Q
H Hu
x X z Z op
Hh

Many-valued logic form expressions are represented as:
matrix(i : sizeofX); k : sizeof@); expr)
whereexpr can be either:

1. a value of a ground relatiorR, R; , or
2. aquanti ed expressionQ;j : sizeof{y); [R; ; op; Sk 1], whereR;; ; Sy areexpr's, Q
\% f
isaquantier Q2f ; gandop2f 8CL; fe ; fe ;ftf:; is a fuzzy connective symbol.

Example of aexpr: | : sizeoff);R; 1° S.

Many-valued logic form expressions can be presented also using a tree stmec

58

.HH .HH
I sizeof(X) k sizeof(Z)

]

Set form expressions are represented as either:

1. Binary sets:

Hy

sizeof(Y) |A;

sefx : X;z : Z; afterset (x;R);op;foreset (S;2))

whereR; S are two BK-product expressions in set form.

Set form expressions can be presented using a tree structure:

set
HH
Hy
HH HH
X XR z Z

H
afterset foreset

H H
x [As] [Bs]"

2. Unary setsafterse{x; A) or foresefx; A); whereA is a binary set.

59

6.4.2 Transformation algorithms

In this section, we will show how transformations between BK products and theirhtee

representation forms are performed in our system. The transformation agthms are

presented in term of tree transformations.

From BK products to predicate form, bkp-to-pre(;), is computed as follows
Input Tree
bk
H'l
H
Hy
A op B
f 5509

1. If A'is a ground relation on domainX and rangeY then let|A,, | be the following

predicate expression tree, which represents(x;y):

eval
Hy
A x vy

wherex 2 X andy 2 Y are variables.

2. Otherwise, if A is a BK product relation on domain X and rangeY, then

recursively let the corresponding predicate form ok be:

predicate
H
Hh

> T

Xy

H
X X y Y

wherex 2 X andy 2 Y are variables, and A,y | is some predicate expression.

3. De ne tree|By,

similarly on domainY and rangeZ.

4. LetQ be9if opis ,andletQ be8if op2f ;/;. g.

60

f
5 LetOP 2 f°:&:1°:'§ corresponding toop 2 f ; :/;. g, respectively. The

output is as follows.

Output Tree

predicate
H
Hy y
H
Hh
Q
H aC
x X z Z oP

From predicate form to BK products, pre-to-bkp(;), is computed by reversing the
above described process: determingp from OP, A from A,, and B from By,

recursively.
pre-to-bkp(;) : bkp-to-pre(;):
From BK products to MVL form, bkp-to-mvl(;), is computed as follows
Input Tree
bk
H
H
Hy
A op B
f 5569

1. If A is a ground relation on domainX and rangeY then let |A; | be the following

predicate expression tree:

eval
HH
A i]

wherei;j are variables. HereA; representsA(x;;y;).

61

2. Otherwise, if A is a BK product relation on domain X and rangeY, let the
corresponding predicate form oA be:

mautrix

_).>I

.HH .HH
i sizeof(X) | sizeof(Y)

wherex 2 X andy 2 Y are variables, and A;;

is a predicate expression.

3. De ne tree|Bjx | similarly on domainY and rangeZ.

W \%
4. LetQ be if opis , andletQ be otherwise.
fc

5 LetOP 2f ;&:1°:'§ corresponding toop2 f ; :/;. g, respectively.

Output Tree

matrix
Hy H !
HH
Hh
H
H
Hh
; ; Q
- My Hy My
i sizeof(X) k sizeof(2) Hy
: OoP
- Hy Hy
| sizeof(Y) Aj Bik
From MVL form products to BK products, mvl-to-bkp(;) is computed by a re-

verse process of bkp-to-mvl.

mvl-to-bkp(;) : bkp-to-mvi(;):

62

From BK products to Set form . bkp-to-set(;) is computed as follows

Input Tree
bk
HH
H
Hy
A op B
f 5559

1. If A is a ground relation on domainX and rangeY then let be the setA,
and let the afterset and foreset of A be the following set expression trees:

afterset foreset
H HH
. y
wherex 2 X andy 2 Y are variables. HereAS is relation A as a set.

Otherwise, ifA is a BK product, recursively let the corresponding set form oA

be[AS |.
3. Similarly de ne [BS].

fs fs fs

4. Let OP 2ff:S;\ ; ;g corresponding toop2f ; ;/;. g, respectively.

Output Tree

set
H=HHH
Hh
H
Hy
: : OoP
HH HH H'HH
X XR z ZR

H
afterset foreset

H HH
x [As] [Bs]"z

63

From Set form to BK products . set-to-bkp(;) is computed by a reverse process of

bkp-to-set.

set-to-bkp(;): bkp-to-set(;)
From Set form to MVL form, set-to-mvl(;) is computed as follows

Input Tree (binary set):

afterset foreset

H H
x [As] [Bs]">

where AS; BS are two set expressions.

W . fs V .
1. LetQbe ifOPis\,andletQ be otherwise.

fc s fs fs fs

2. LetOP 2f fC;&; fe ; ffj corresponding toP 2 ff '\'; ;g ,respectively.

3. If AS is a ground relation, sayA, then let | A; | be the following tree:

eval
HH
A i]

4. If AS is a BK product relation on domainX and rangeZ, let| A; |be the following

MVL expression tree:

H, Hy

j sizeof(YR) |AD| |BY

64

whereY is the middle set between two relationsA° and B9 participating in the
construction of AS.

5. De ne tree similarly on domain Y and rangeZ.

Output Tree

matrix
H
Hy y
H
H
H
H
H
H
H
H
: : Q

L Hiy Ly
i sizeofiX) k sizeofg) Hy

: OoP

i sizeoftt) [A;] [Bx

On the other hand, when the input tree (of an unary set) is:

afterset

X A

and the MVL form of A is:

mautrix

H
i,
H
H
H

>T

X sizeofX) y sizeof{r)

65

then the output tree is:

matrix

>T

Hy

y sizeof({y)

Similarly, we can de ne output trees for unary foresets.

Set form - Predicate form : set-to-pre(;) is computed as follows
Input Tree
set
H
H y
H
H
Hh
=]
H H Hy
x X z afterset foreset
H HH
. :
. fs fs fs fs
where AS; BS are two set expressions, ang 2f ;\; ;g.

f
Let Q be9if P is \S, and let Q be 8 otherwise.

fs fs fs

fc fc fc fc . fs .
Let OP 2f ;&;!; g correspondingtoP 2f ;\; ; g, respectively.

If AS is a ground relation (containing no BK products), sayA, then let | A,y | be

the following tree:

eval
Hy
A x vy

If AS is a BK product relation on domainX and rangeZ, let| A,y | be the following

MVL expression tree:

66

y Y A} B,

whereY is the middle set between two relationsA° and B9 participating in the
construction of AS.

De ne tree similarly on domain Y and rangeZ.

Output Tree

predicate
H
Hy y
H
Hy
Q
H Hu
x X z Z oP

Similarly, we can de ne output trees for unary aftersets and foresets.

MVL form - Predicate form . mvl-to-pre(;) is computed via mvl-to-set(;) and
set-to-pre(;).

mvl-to-pre(;) : mvl-to-set(;);set-to-pre(;):

Predicate form - MVL form : pre-to-mvl(;) is computed via pre-to-set() and
set-to-mvi(;).

pre-to-mvi(;) : pre-to-set(;);set-to-mvi(;):

67

CHAPTER 7

Symbolic Relational Transformations System Testing

This chapter describes the functional testings of our symbolic relational transfoations
system. In total, the system handles four representational types: BK pduoicts expressions,
predicate form expressions, many-valued logic form expressions and set faxpressions.
Expressions in each form range from very simple formulas, containing only one Bkoduct,
to more complex nested formulas, containing multiple BK products.

Set-based definition

// Relational Produ\

Many-valued logic definition 47 Predicate definition

Figure 7.1: Relational Products Transformations

Section7.1lists the testing criteria that the transformation tool should meet. Sectiory.2
covers test cases where transformations are done directly from one notaibrepresentation
to another. The last section7.3 includes test cases that involve multiple transformations.

68

7.1 Testing goals

Following are the testing goals that our tool must pass in the system test:

Relations descriptions : The system should let the user create a new, or use an existing,
collection of relations, including relations' names and their semiotic descriptors, domain

and range.

For direct transformations . Direct transformations are those that transform BK rela-
tional expressions from one of the four representational forms to anothdmrough a
single transformation function call. Any arrow in gure 7.1is a direct transformation.

Our system should:

have the capability to check the domain-and-range-matching requirement for the
product expressions to be valid. We call these expressiat@mmputationally valid
If the input expression is not computationally valid, the system should return an

error message to users;

have the capability of transform input expressions from its current form to
another form according to the user's request, provided that input expressions

are computationally valid.

For indirect transformations . Indirect transformations are those that transform BK
relational expressions from one of the four representational forms to ahet through
a series of multiple transformation function calls. Our system should:

have the capability to check the domain-and-range-matching requirement for the
product expressions to be valid. We call these expressioc@mputational valid
If the input expression is not computational valid, the system should return an

error message to users;

have the capability of transform input expressions from its current form to
another form according to the user's request, provided that input expressions
are computationally valid. Speci cally for test cases in this category, in a loop
test, i.e. a series of tests where the input and the output forms are identical, the
output expressions must match the input expressions. An example of a loop test
is BK'! predicate! set! MVL ! BK.

69

7.2 Direct transformations

In this section, we present the test results of direct transformations fromne form of BK

relational expressions to another form.

7.2.1 Collection of input relations

For the purpose of testing, we rst create a collection of input relations togéer with
their semiotic descriptors. This knowledge will be kept and referred to throughub the
transformation processes. Anytime a relation, called by its name, appears in amput
expression to be transformed, the system will rst requires the relation's domaiand range
from this knowledge to make sure that the inquired transformation is valid. Below is thget
of relations that is used in test cases described in this chapter:

Relation Description

relation('R’, Patient’,” Symptom") R is a relation from Patient to Symptom
relation("S'," Symptom’, Treatment') S is a relation from Symptom to Treatment
relation("'T', Treatment', E ect') T is a relation from Treatment to E ect
relation("U',"E ect', Patient’) U is a relation from E ect to Patient

Formulas we use for each test case arB: S;RCS;RB S;R S,and(R S)CT.

7.2.2 Transformations test cases

The following tables summarize our transformations test cases.

Transformation type Function call Tests

BK to Predicate bkp-to-pre(;) Intable 7.2.2
BK to Set bkp-to-set(;) Intable 7.2
BK to MVL bkp-to-mvi(;) Intable 7.2.2
Set to MVL set-to-mvi(;) Intable 7.2.2
MVL to Predicate mvl-to-pre(;) Intable 7.2.2
Predicate to Set pre-to-set() Intable 7.6

70

Table 7.1: Single-step transformations: from BK-algebra to Predicate

Input: BK-algebra

Output: Predicate

bkp_to_pre(bk(R; circle; S); P)

predicate(forall x : Patient;forall y : Treatment;
[exists z : Symptom; [eval(A; x; z); fcAnd; eval(B; z; y)]I)

(8%)(8Y)(92)(R(x; 2) & S(Z;))

bkp_to_pre(bk(R; sub; S); P)

RCS

predicate(forall x : Patient;forall y : Treatment;
[forall z: Symptom;[eval(A; x; z); fcRightarrow; eval(B; z; y)]])

(8x)(8y)(82)(R(x;2) [° S(z;V)

bkp_to_pre(bk(R; sup; S); P)

RBS

predicate(forall x : Patient;forall y : Treatment;
[forall z : Symptom;[eval(A; x; z); fcLeftarrow; eval(B; z; y)]I)

(8x)(8Y)(82)(R(x:2) '° S(z:Y)

bkp_to_pre(bk(R; square S); P)

predicate(forall x : Patient;forall y : Treatment;
[forall z : Symptom;[eval(A; x; z); fcEquiv; eval(B; z; y)]])

(8x)(8y)(82)(R(x:2) ° S(z:Y))

bkp_to_pre
(bk(bk(A; circle; B); sub; C))

(A B)CC)

predicate(forall x : Patient; forall y : E ect ;
[forall; z : Treatment; [[exist;t : Symptom; [eval(A; x;t); fcAnd;
eval(B; t; z)]]; fcRightarrow; eval(C; z; V)]

(8x)(8y)((82)(((9t)(A(X:t)£§CL B(t2) I° czy)

71

Table 7.2: Single-step transformations: from BK-algebra to Typed set

Input: BK-algebra

Output: Typed set

bkp_to_set(bk(R; circle; S); P)

set(x : Patient;y : Treatment;
[afterset(x; A); fsIntersect foreset®; y)])

f
(x : Patient;y : Treatment)(xA \S By)

bkp_to_set(bk(R; sub; S); P)

RCS

set(x : Patient;y : Treatment;
[afterset(x; A); fsSubsetforesetB;y)])

S

f
(x : Patient;y : Treatment)(xA By)

bkp_to_set(bk(R; sup; S); P)

RBS

set(x : Patient;y : Treatment;
[afterset(x; A); fsSupsetforesetB;y)])

S

f
(x : Patient;y : Treatment)(xA By)

bkp_to_set(bk(R; square S); P)

set(x : Patient;y : Treatment;
[afterset(x; A); fsEqual foresetB;y)])

(x : Patient;y : Treatment)(XxA L By)

bkp_to_pre
(bk(bk(A; circle; B); sub; C))

(A B)CCQC)

set(x : Patient;y : E ect ; [afterset(x; set(z : Patient;
t : Treatment; [afterset(z; A); fsIntersect
foresetB;t)])) ; fsSubsetforeset(C; y)])

(x : Patient;y : E ect)
fs
(xfz : Patient;t : Treatment(zA cfglp Bt)g Cy)

72

Table 7.3: Single-step transformations: from BK-algebra to MVL closed formuda

Input: BK-algebra

Output: MVL closed formulas

bkp_to_mvl(bk(R; circle; S); P)

matrix(i : sizeof(Patient);j : sizeof(Treatment);
[vee k : sizeof(Symptom), [eval(A,; i; k); fcAnd,;
eval(B; k;j)]I)

VV W fc
i 1 k(A & Byj))

bkp_to_mvl(bk(R; sub; S); P)

RCS

matrix(i : sizeof(Patient);j : sizeof(Treatment);
[wedge k : sizeof(Symptom); [eval(A;i; k); fcRightarrow;
eval(B; k;j)]I)

VV V fo
i k(A I Bi))

bkp_to_mvl(bk(R; sup; S); P)

RBS

matrix(i : sizeof(Patient);j : sizeof(Treatment);
[wedgek : sizeof(Symptom); [eval(A; i; k); fcLeftarrow;
eval(B; k;j)]I)

VV YV fc
i (A " Bi))

bkp_to_mvl(bk(R; square S); P)

matrix(i : sizeof(Patient);j : sizeof(Treatment);
[wedgek : sizeof(Symptom); [eval(A; i; k); fcEquiv;
eval(B; k;j)

vV VvV

f

W c
i k(A Byg))

bkp_to_pre
(bk(bk(A; circle; B); sub; C))

((A B)CC)

matrix(i : sizeof(Patient); : sizeof(E ect);
[wedge k : sizeof(Treatment); [[vee | : sizeof(Symptom),
[eval(A;i;1); fcAnd; eval(B; I; k)]]; fcRightarrow ; eval(C; k; j)]])

VvV W fc rc
KO (A & Bi) T Cy)

73

Table 7.4: Single-step transformations: from Typed set to MVL closed formuda

Input: Typed set

Output: MVL closed formulas

setto_mvl(set(x : Patient;y : Treatment;
[afterset(x; A); fsIintersect, foresetB; y)]))

f
(x : Patient;y : Treatment)(XA \S By)

matrix(i : sizeof(Patient);j : sizeof(Treatment);
[vee k : sizeof(Symptom), [eval(A; i; k); fcAnd;
eval(B; k;j)l

VV W fc
i 0 k(A & Bij))

setto_mvl(bk(set(x : Patient;y : Treatment;

[afterset(x; A); fsSubset foreset®;y)]))

fs

(x : Patient;y : Treatment)(XA BYy)

matrix(i : sizeof(Patient);| : sizeof(Treatment);
[wedgek : sizeof(Symptom); [eval(A;i; K);
fcRightarrow; eval(B; k; j)]

VV YV fc
i 1O k(A I By))

setto_mvl(set(x : Patient;y : Treatment;
[afterset(x; A); fsSupset foreset®;y)]))

fs
(x : Patient;y : Treatment)(XA BYy)

matrix(i : sizeof(Patient);| : sizeof(Treatment);
[wedge k : sizeof(Symptom); [eval(A;i; k);
fcLeftarrow; eval(B; k;j)]

VV YV fc
i 1O k(A 7 By))

setto_mvl(set(x : Patient;y : Treatment;
[afterset(x; A); fsEqual; foresetB; y)])

(x : Patient;y : Treatment)(XA 5 By)

matrix(i : sizeof(Patient);| : sizeof(Treatment);
[wedgek : sizeof(Symptom); [eval(A;i; k);
fcEquiv; eval(B; k;j)1I)

VvV W fc
i 0 k(A Bi))

setto_mvl(set(x : Patient;y : E ect ;
[afterset(x; set(z : Patient;t : Treatment;
[afterset(z; A); fsintersect, foreset®;1)])) ;
fsSubsetforeset(C; y)])

(x : Patient;y : E ect) ; (xfz : Patient;
fs fs
t : Treatment(zA \ Bt)g Cy)

matrix(i : sizeof(Patient);j : sizeof(E ect);
[wedge k : sizeof(Treatment); [[vee

| : sizeof(Symptom), [eval(A;i;1); fcAnd;
eval(B; I; k)]]; fcRightarrow; eval(C; k; j)1])

vV W fc {C
KO (A & Bi) I Cy)

74

Table 7.5: Single-step transformations: from MVL closed formulas to Predicate

Input: MVL closed formulas

Output: Predicate

mvl_to_pre(matrix(i : sizeof(Patient);
j : sizeof(Treatment); [vee k : sizeof(Symptom),
[eval(A;i; k); fcAnd; eval(B; k;j)]])

VV W fc
i1 k(A & Byj))

predicate(forall x : Patient;forall y : Treatment;

[exists z : Symptom; [eval(A; x; z); fcAnd;
eval(B; z; y)ID)

(8)(8y)(92)(R(x:2) & S(z;))

mvl_to_pre(matrix(i : sizeof(Patient);
j : sizeof(Treatment); [wedge k : sizeof(Symptom),
[eval(A;i; k); fcRightarrow; eval(B; k;j)1])

VV V fo
i k(A 7 Bi))

predicate(forall x : Patient;forall y : Treatment;

[exists z : Symptom; [eval(A; x; z); fcRightarrow
eval(B; z;y)]I)

(8x)(8y)(82)(R(x;2) [S(z;y))

mvl_to_pre(matrix(i : sizeof(Patient);
j : sizeof(Treatment); [wedge k : sizeof(Symptom),
[eval(A;i; k); fcLeftarrow; eval(B; k; j)1])

VV YV fc
i k(A " By))

predicate(forall x : Patient;forall y : Treatment;

[exists z : Symptom; [eval(A; x; z); fcLeftarrow;
eval(B; z; y)ID)

(8x)(8y)(82)(R(x;2) "° S(z:Y))

mvl_to_pre(matrix(i : sizeof(Patient);
j : sizeof(Treatment); [wedge Kk : sizeof(Symptom),
[eval(A;i; k); fcEquiv; eval(B; k;j)]

VV YV fc
i (A By))

predicate(forall x : Patient;forall y : Treatment;

[exists z : Symptom; [eval(A; x; z); fcEquiv;
eval(B; z; y)II)

(8X)(8Y)(82)(R(x:2) " S(z:Y))

mvl_to_pre

(matrix(i : sizeof(Patient); : sizeof(E ect);
[wedgek : sizeof(Treatment); [[vee

| : sizeof(Symptom), [eval(A;i;]); fcAnd;
eval(B; I; k)]]; fcRightarrow ; eval(C; k; j)]1)

vV W fc rc
KA & Bi) 7 Cyy)

predicate(forall x : Patient;forall y : E ect ;
[forall; z : Treatment; [[exist;t : Symptom;
[eval(A; x;t); fcAnd; eval(B; t; 2)]];
fcRightarrow; eval(C; z; V)1])

(8)(8y)(82)(((9)(A(x:t) & B(t2)))
[° c(z;y))

75

Table 7.6: Single-step transformations: from Predicate to Typed set

Input: Predicate

Output: Typed Set

pre_to_set(predicate(forallx : Patient;
forall y : Treatment; [existsz : Symptom;
[eval(A; x; z); fcAnd; eval(B; z; y)]])

(8x)(8Y)(92)(R(x:2) & S(z:V))

set(x : Patient;y : Treatment;
[afterset(x; A); fsIntersect foreset®; y)]))

f
(x : Patient;y : Treatment)(xA \ By)

pre_to_set(predicate(forallx : Patient;
forall y : Treatment; [forall z : Symptom;
[eval(A; x; z); fcRightarrow; eval(B; z; y)]])

(8X)(8y)(82)(R(x; 2) I° S(z:))

set(x : Patient;y : Treatment;
[afterset(x; A); fsSubsetforeset®;y)]))

S

f
(x : Patient;y : Treatment)(xA By)

pre_to_set(predicate(forallx : Patient;
forall y : Treatment; [forall z : Symptom;
[eval(A; x; z); fcLeftarrow; eval(B; z; y)]])

(8X)(8Y)(82)(R(x;2) *° S(z;y))

set(x : Patient;y : Treatment;
[afterset(x; A); fsSupsetforeset®;y)]))

fs
(x : Patient;y : Treatment)(xA By)

pre_to_set(predicate(forallx : Patient;
forall y : Treatment; [forall z : Symptom;
[eval(A; x; z); fcEquiv; eval(B; z; y)1])

(8X)(8y)(82)(R(x:2) * S(z;Y)

set(x : Patient;y : Treatment;
[afterset(x; A); fsEqual foresetB;y)]))

(x : Patient;y : Treatment)(xA & By)

pre_to_set(

predicate(forallx : Patient; forall y : E ect;

[forall; z : Treatment; [[exist; t : Symptom;
[eval(A; x; t); fcAnd; eval(B; t; z)]];
fcRightarrow; eval(C; z; y)]]))

(8x)(8Y)(82)((AM)(A(X:) & B(t;2)))
[C(z;y)))

set(x : Patient;y : E ect;

[afterset(x; set(z : Patient;t : Treatment;
[afterset(z; A); fsIntersect foreset®; t)])) ;
fsSubsetforeset(C; y)])

(x : Patient;y : E ect) ; (xfz : Patient;
f fs
t : Treatment(zA \S Bt)g Cy)

76

7.3 Indirect or Loop Transformations

In this class of tests, we carried out those test cases that involved motlgan one type
of transformations. For example, a given formula in BK product form, after eseries of
transformations that ends in BK product form should look exactly like the input formula.

Some examples of multiple-step (or loop) test are:

BK products ; Predicate ; Set ; Many-Valued Logic ; BK Products.
(BK-PSM-BK)

BK products ; Predicate ; Many-Valued Logic ; Set ; BK Products.
(BK-PMS-BK)

BK products ; Many-Valued Logic ; Predicate ; Set ; BK Products.
(BK-MPS-BK)

BK products ; Many-Valued Logic ; Set ; Predicate ; BK Products.
(BK-MSP-BK)

BK products ; Set ; Many-Valued Logic ; Predicate ; BK Products.
(BK-SMP-BK)

BK products ; Set ; Predicate ; Many-Valued Logic ; BK Products.
(BK-SPM-BK)

Figures 7.2, 7.3 7.4, 7.5 7.6, 7.7 correspondingly illustrate the test results of these
multiple-step transformations. The start BK product formulas in those tests rage from
simple to more complicated combinations of BK relational products. They are:

A B (ABB) (C D))CA

AC(B C) (ABB) (C D))C(A E)
(A B)B(C D) (A B) (CC(DCA) E)

77

Figure 7.2: BK-PSM-BK

Figure 7.3: BK-PMS-BK

78

Figure 7.4: BK-MPS-BK

Figure 7.5: BK-MSP-BK

79

Figure 7.6: BK-SMP-BK

Figure 7.7: BK-SPM-BK

80

CHAPTER 8

Theorem Prover / Checker for Enriched Fuzzy BK
Relational Calculi

Enriched fuzzy BK relational Calculi together with other theories such as thegrof general-
ized morphisms and relational inequalitiest] 69, theory of classivalence and relational di-
functionality [76], substantially increase the applications of fuzzy logic. As seen in chapter
symbolic forms of relations can be used for symbolic manipulation of relations thiadve been
abstracted from numerical representations. Symbolic forms can be handleduationally.
Equations over BK-products can characterize relational properties in a univaal way. In
this chapter, we develop a term rewriting theorem prover/checker for BKalational calculi.
The system is built based on properties of BK relational calculi, especially BK Btstrap.
It should be able to validate the truth of theorems proved to be true in BK relatioal calculi
and to derive a complete proof for input theorems.

This chapter is organized as follow:

Section8.1 discusses the design motivation for our theorem prover / checker. Sectiér2
gives a formal description of the system. Optimized rewriting strategies are dissed in
section 8.3 Section 9 presents experiments we conducted with the system. This section
contains both system developing experiments, namely usage of parallel versequential
Prolog in system implementation, and applications of the system for proving theorena$
various types of theorems on relations. Proofs of special propertiesrefations, of theorem
on classivalent relations based on t-norm residuated fuzzy logic, of the ex¢eéon of Tarskis
relational axioms into BL logic, and of theorems generalized morphisms will be discubse
detail.

81

8.1 Design Motivation of a Term Rewriting System
as Theorem Prover / Checker for Generalized
Morphisms and Relational Inequalities

One of the objectives of this dissertation is to build a term rewriting system fBK products
transformations. Such a rewriting system is designed to serve as a theoremverd checker
for theorems of BK relational calculi. In other words, the system veri es whéer a given
theorem in BK relational calculi is true or not. It will do so by nding a derivation from
the premise(s) to the conclusion(s) by applying a series of substitutions using the system's
rewriting rules base.

The rewriting rules base of our system is built based on special properties of B&ational
calculi such as associativity of circle product, mixed pseudo associativity of trigle products,
transpose of circle, triangle and square products, and most importantly, the Bresiduation
Bootstrap.

A rewriting system s a system in which expressions of a formal language are de ned and

can be transformed according to a nite set of rewrite rules.

A term rewriting system deals speci cally with terms. Conventionally, it consists of a
set of terms and a set of rewrite rules that specify how to transform thogerms.
Terms can be recursively de ned as follows:

1. Any constant is a term;

2. Any variable is a term;

4. Nothing else is a term.

Rewrite rules are pairs of the formt;) t,, wheret;;t, are two terms. In a given
expressionre, if there is a termt in e that t uni es with t; with unier then the

occurrence ot; in e can be replaced by,

A proof checker is a system that allows users to enter a proof of a theorem along with a
set of assumptions into the system and check whether that proof is correct undéose

assumptions.

82

A theorem prover is a system that from a set of axioms and hypothesis, it will either
generate a logical consequence to a conclusion con rming that a given theorem isetr
or derive to a contradiction to that conclusion (before running out of its resoues)
thus show that that theorem is not true. There are various reasoning techniquekat
can be applied in a theorem prover such as rst-order resolution with uni cation, lea
theorem proving, term rewriting, model checking, etc..

A term rewriting theorem prover / proof checker Is a prover or checker that em-
ploying the term rewriting technique for its reasoning process.

In this section, we will present the design motivations for our theorem provechecker.
Terms and rewrite rules will be discussed in sectiofi.1.1 Sections8.1.2 and 8.3 focus
on the rewriting strategies that we have applied to our system, both originally andfter
optimizations.

A formal description to our theorem checker/prover will be given in sectior.2
where terms are de ned in section8.2.2, rewrite rules in section8.2.2 and deduction
calculi/rewriting strategies in section8.2.3

Figure 8.1: Structure of our Theorem Prover / Checker

Figure 8.1 gives a pictorial demonstration of our theorem prover / checker. It consists

83

(1) a user interface where users enter theorems to be checked and recthe results from the
system, (2) a term rewriting system that de nes the process of nding a derivatiopath from

the premise(s) to the conclusion(s) and (3) the system's knowledge base which cordaa
set of terms that are de ned speci cally for the purpose of BK-relational manipulatias, and
a set of relations on how to transform these terms, or rewriting rules. Detad discussions
about each of these components will be presented in subsequent sections.

8.1.1 Knowledge Base

The knowledge base unit stores and manages the system's knowledge. For the specic
purpose of working with BK relational theory enriched by generalized morphisms, tha
knowledge includes a set of expressions of BK relational products and a set of prtps

that BK products possess.

BK-products Expressions

The theorem prover / checker system deals with the generic BK relations foutas of the
form A@B, where @2 f ; ;C;Bg. It does not deal directly with other notational forms
of BK products such as set form, many-valued logic form or predicate form. All dmulas

are represented as expressions and are formally de ned as follows:
(1) Any relational variable, such asR; S; T;:::is an expression in our system.

(2) Any expression of the form éxpr,@expr;) of 2 arguments (where each argumerxpr;
is an expression of the system and @ is a relational productfin; ;C;Bgis also an

expression of the system
(3) Nothing else is an expression in our system.

Rewrite Rules

Theorems in BK relations enriched by generalized morphisms and relational inequality are
derived based on a set of properties of BK relational products and the logic sy®s in which
they are de ned.

There are widely-known properties of BK and circle products such as associ#tivof
circle products, mixed associativity of circle and triangle products of BK, BK raeduation
bootstrap, etc.. These properties show equivalences between BK-produgpreessions:

84

1. Associativity:
(R S T) (R (S T) R ST

(RCS)BT) (RC(SBT) RCSBT
2. Mixed pseudo associativity:
(RC(SCT)) (R S)CT)
(RB(SBT)) (RB(S T))
3. Residuation bootstrap:

(R SYvT) (Rv(TBS") (Sv (RTCT))

4. Transpose (1)
(RNHT R

5. Transpose 2 (relational inclusion)

(RvsS) (RTvSh

6. Transpose 3 (interchange betwee@ and B)
(RBS)T (STCR")
(RCS)T (STBR")

7. Transpose 4 (of product)
(R 9" (s" R")

8. Transpose 5 (of products)
(R S)" (ST R
Among these expressions, the BK residuated Bootstraf is the most signi cant one.

It describes the inter-relationships among circle and triangle (C;B) products. The BK
Bootstrap plays an important role in further development of crisp and fuzzyalations. It has

85

been used widely in proofs of theorems of the extensions of Tarski's axioms figxrelations
to t-norm based residuated fuzzy relations/[5, 77], theorems of generalized morphisms,[69],
etc.. Furthermore, the inequalities in the Bootstrap can be used to charactee relational
properties such as transitivity [/], classivalent or difunctional of relations 6).

Originally, our knowledge base consists of a set of rewriting rules (in the formexjuivalent
expressions)as listed above. There are, however, other rules that are enspeci c to certain
logic systems. Our knowledge base should be exible and extensionable enough to deal with
this matter. We will see later in chapter9 a such extension of the rule base, when an extra
rewriting rule plus the Modus Ponens were added to address the proof of fuzzi ed Tarski's
axiom of relation.

8.1.2 Rewriting Engine

The primary functionality of the rewriting engine is to navigate through the knowledge bas
to allocate a derivation from the hypothesis of a given theorem to its colusion. By doing
so, it helps the system validate/verify the theorem. Thus, in this module, we will desiga
proof-looking-upscheme for this purpose.

In mathematics, atheoremoften refers to a mathematical statement of some importance
that has been or is to be proved to be true on the basis of explicit assumptions. lcaly
speaking, many theorems are of the formif A, then B. Such a theorem does not state that
B is always true, only thatB must be true if A is true. In this caseA is called thehypothesis
of the theorem andB the conclusion The theorem \If n is an even natural number then
n=2 is a natural number" is a typical example in which the hypothesis is thamh is an even
natural number and the conclusion is thain=2 is also a natural number.

The theorems on generalized morphisms and relational inequalities that our system
addresses are of specic formA if-and-only-if B (Ai B , or A, B), where A;B are
two terms. In our system, regular mathematical theorems and if-and-only-if theems are
represented respectively atheorem(A,B) and iff(A,B) , whereA;B are two BK-product
terms.

In this section, we describe the mechanism of our rewriting engine. It focuses on haw
derivation for an i -theorem is generated from the given set of rewriteules in the system's
knowledge base.

First, we will describe how a proof of an i -theorem is conducted. Let the input theora

86

to be proved beiff(A,B) , where A;B are two terms. This goal is transformed into two
subgoals, namelytheorem(A,B) and theorem(B,A), where theorem(X,Y) is a traditional
theorem, stated as \ifX true then Y is also true". Furthermore,theorem(X,Y) is true if Y

is reachable fromX, or reachable(X,Y) is true. This means that there exists a derivation

/ reduction path from X to Y. More speci cally, sinceX;Y are two terms, there is a chain
of term rewriting derivations which starts with X and ends up atY. Each derivation step

is done by replacing a sub term (or term) in the source term (formula) with anotheterm
via applying a rewriting rule in the system's knowledge base. This process is summarized in
table 8.1

Table 8.1: | -theorem prover / checker constructor.

i (A,B) .= theorem(A,B),theorem(B,A).
theorem(A,B) ::= reachable(A,B).
reachable(A,B) := existsA! A;! A,! I A,! B

Now, in the rest of this section, we will describe in details how the rewriting engine deals
with the last part of the proof process mentioned above. In other words, howchain of term
rewriting derivations A! A;! A,! ! A, ! B can be derived in order to show that
reachable(A,B) is true.

Derivation tree T, of aterm A

Start with term A, the rewriting engine will construct a derivation treeT, for A. It will collect

all possible derivations of A by replacing sub terms & with equivalent terms accordingly

to the given rewrite rules. If at any point during the derivation-generatingprocess, there is a
derivation of A that matches B then the proof generating process is successfully completed
and the system will conclude thatreachable(A,B) is true. It follows that we haveA) B

is true, and hence the input theoremff(A,B) is proved to be true.

De nition 16 One-step derivation of a term. LetA be a BK-product term of the system.
One-step derivations ofA are those that can be derived from by replacing a (sub)term of

A by another term using one of the system's rewriting rules only once.

87

For example, ifA is R S, then by replacingR with (RT)T (apply transpose rule once),
we have RT)" S is a one-step derivation ofA.

De nition 17 Derivation tree of a BK-product term. Let A be a BK-product term of our
system. The derivation treeT, of A is de ned recursively as follow:

(a) A is the root of Tp.

(b) For any nodeN of Ty, its children are all possible terms that can be derived frokh by
an one-step derivation ofN, excluding those terms that matcN 's predecessors.

Figure 8.2 shows a pictorial illustration of A's tree derivation T,. If B matches any node
of Ta, then reachable(A,B) and hencetheorem(A,B) are true.

A
o
H
H
H
H
H
H
H
H
H
H
H
H
A]_ A2 A3
My My
H H
A A A Az
HH H HH HH H H
H A1 A Azii Ao H
A1 A Agis A1 Axn A

Figure 8.2: Tree derivationT, of a BK-product term A.

There are essentially two strategies to construct the derivation tre€,, namely depth-
rst-search and breadth- rst-search.

(1) Depth- rst search: Each branch ofT,, say Ta, will be completely constructed rst, then
the next branch, Ta, will be constructed after that, etc.

88

(2) Breadth- rst-search: The derivation tree T, will be built breadth-widely, by level. It
means that

(@) The rst level, i.e. the root A will be built rst.

(b) Suppose that thei™ level of Ta is already built. Then, the (i + 1)" level will
contain all one-step derivations of nodes from thi" level.

Recall that all the one-step derivations of a node iff, are created by applying one of
the rewrite rules of the system. Even though the number of rewrite rules are ret there are
rules such that if applied multiple times, this can lead to an in nite loop that will cause the
system to stay in that loop forever. For example, ruleR"™)T R can be applied in nitely
many times as:R (R")T ((RMH)T)NHT RS R , or another version of this
rule application can beRT ((RT)™)T R@*DT Hence, if the right derivation
path does not reside in the rst branch of the derivation tree, using depth- rst-seah in
our system will de nitely lead to an in nite loop in the program. Hence, we must use
breadth- rst-search strategy for our term rewriting process. It ensurethat no in nite loop
occurrence, since at every node of the derivation tree, each rewrite rule viok applied at
most once. Thus, the number of nodes at each level will always be nite. So, if thput
theorem is derivable (in a given theory), the system will reach its derivation ¥eduction path
after a nite number of derivation steps.

Derivation tree representation

In our system, derivation trees of terms are represented using FIFO queu&iven an term
A, a FIFO queueS of sources is used as a pool to keep possible derivationsAofAs the
derivation tree of A is built by breadth- rst-search manner, the queueS of A will be created
and used to nd a match for the target term B as follow: At the beginning, A is added
to a FIFO queue S of sources. IfB 2 S then we take the rst elements out of S for
examination (or a visit). FIFO queuesS is then expanded by adding all terms that are one-
step derivations ofs and not yet visited Examined or visited terms are placed in a separate
pool called \Visited".

Figure 8.3 shows the FIFO queueS of terms derivable fromA.

Now we are ready to explain the breadth- rst-search algorithm for allocating aroof for
reachable(A,B) . Here A will be our source formula andB will be our target formula, or

89

A Al AZ A3 All A12 A21 A22 Alll A112 A113

Figure 8.3: FIFO queueS of sources

goal. Initially, both S and V are empty. At rst, A will be added to the top of queueS.
At any point, if there is a formula in S that matches B, i.e. B 2 S, then the derivation
from A to that particular formula will be the proof to reachable(A,B) and the system wiill
conclude that the theorem is true. Otherwise, the system will pick and visit the forola, say
s, at the top of the queue. It will then create a set of formulas that are onstep derivable
from s which are not already in queueS and not yet been visited by the system. This set
X will then be added to the queueS, while s is removed fromS and added toV. This
generating-and-matchprocess continues until a match oB is found in S.
A formal description for this process will be given in sectioB.2

8.2 Theorem Prover/Checker's Formal Description

8.2.1 Problem Domain

The system that we develop is a special-purpose theorem prover / checkar BK relational
algebra / calculus enriched by generalized morphisms. It accepts as an input a theorem
which was already proved to be true in BK relational calculus by another means suak by
hand, and produces as an output a validation result (answer \yes" to true theorems}yavell
as a complete proof, i.e. a chain of rewriting rules that has been apply successfullyieid

the answer.

8.2.2 Language Representation

In this section, we will a clausal-logic-like formalism to de ne:

{ How the theorems will be presented to the system;

{ How they will actually be presented internally within the program; and

{ How the solution found - completed proofs - will be displayed back to the user.

90

BK-product expressions

The alphabet of our theorem prover / checker (TC) includes the following:

{ A set of relational variables (or relation names denoted by uppercase letteR?; Q; R; :::
{ Symbols denotingrelational products : , , C, B:

{ Symbols denotingproduct operators : v;':
{ Symbols denotinglogical equivalence :

{ Other symbols: parentheses (,).
In our system, BK product expressions are de ned as follow:

(1) Any relational variable, such asR; S; T;:::is an expression in our system.

(2) Any expression of the form éxpr,@expr,), whereexpr; is any expression of the system
and @ is a relational product inf ; ;C;Bg, is also an expression of the system

(3) Nothing else is an expression in our system.

Internally, these expressions are represented in a pre x form:

expr = rel.var
j rel_op\(" expr; expr\)"
rel_ var == \A":::\zZ"

Bellow are some concrete examples of BK-product internal expressions.

BK-product expressions| Internal representations

R S

R S circle(R,S)

RC(SBT) left(R, right(S,T))

(RS (SCT) circle(square(R,S),left(S,T))

Input theorem representations

There are two kinds of input theorems that our system accepts, thtbeorem(A,B) kind and
iff(A,B) kind, where A; B are two BK-product expressions. The rst kind is for the class

91

of theorems of the form \If A is true, then B is also true", while the latter is for the class of
theorems of the form WA is true if and only if B is true". Table 8.2 shows how the theorems

are represented to the system as inputs.

Table 8.2: Input theorem representations

Function call Description

theorem(expry; expr,) prove theorem \If expr; is true, then expr, is also true"
iff (expry; expr;) prove theorem \expr, is true if and only if expr; is true"

Term rewrite rules

The rule base of our theorem prover / checker are those that were listed in 8en 8.1

Internally, they are represented as in table3.3.

Table 8.3: Rewrite rule representations

Rule Description

equiv (expry; expr;) bidirectional reduction rule
impl (expry; exprz) unidirectional reduction rule where occurrence
of expry in an expression can be replaced ®xpr,

This rule base is user-extensible. At the moment, users can directly add new rules itlie
rule base at the Prolog level. They should strictly follow the formats displayed in kde 8.3

Output to users

When a user enters a theorem to be checked/proved into the system, aftezngrating a
correct proof, the system will output to the user the complete proof and answeivgs" to
the question about the truth of the input theorem.

The output will be presented in the following form:

Bellow is a result proof for theoren28.

92

Table 8.4: Output representations

User interface Description

Input: theorem(A,B)

Output:

PROOF. Start of proof

[Rule name]A) A; One proof step, including the name
[Rule name]A;) A, of the rule applied and formula derived

etc. after this step

[Rule name]A,) B

QED End of proof

Yes Input theorem is true
?- fcl8.
PROOF.

[a1]’ (((tran(f) circle r) circle g) sub s)) ((tran(f) circle (r circle g)) sub s)
[b1]" ((tran(f) circle (r circle g)) sub s)) ((r circle g) sub (tran(tran(f)) left s))
[ta]' ((r circle g) sub (tran(tran(f)) left s))) ((r circle g) sub (f left s))

[b2]" ((r circle g) sub (f left s))) (r sub ((f left s) right tran(g)))

QED.

Yes

8.2.3 Generate-and-Match Algorithm for theorem generating /
proving

In this section, we will describe how the theorem prover / checker generatespeoof for
an input theorem. Bellow is a pseudo-code algorithm of a complete procedure of proof
generating.

Input: iff(A,B)
Call theorem(A,B) ; // Show thattheorem(A,B) is true;
Call theorem(B,A) ; // Show thattheorem(B,A) is true;
If both theorem(A,B) and theorem(B,A) are true

93

then Output: iff(A,B) s true.

Input: theorem(A,B)
Call reachable(A,B) ; // Show thatB is reachable fromA;
Initiate an empty queueS that keeps the set of possible
derivation of A and an empty listV that keeps
visited terms; // S is used to store the derivation tred, of A;
Add A to the top of queueS;
If B2S(*
there is a derivation chain fromA to B
hencereachable(A,B) ;
Output theorem(A,B) is true .
else,
Select the next terms 2 S such thats 2 V;
Create a setX of all terms x satisfying
X l)Step S;XZS;xzV
Add set X to the pool S, and remove elemens from S;
Now, S = fS[Xgnfsg;
Update visited setV: V = V [f sg;
Back to step (*) with sorted S and updatedV;

8.3 Optimizer

When a human does a mathematical proof, a very usual strategy, which may be usedtj
subconsciously, is to nd a proof in an incremental manner. He or she will try to approac
the conclusion in small steps, where each step is either trivial or pretty simple tb@v. The
important thing that he or she should try to achieve in this process is to choose thosmall
steps so that each of them should lead closer to the target.

In our system, there are twelve rewrite rules in the knowledge base. When cousting
a derivation tree for a given formula, the number of nodes in that tree can psibly grow

exponentially. For a derivation with n levels, that number could reach up to 12 Thus,

94

without any optimizing feature, for a long enough proof, the system might exhaust its
resources before reaching its conclusion. A concrete example is the theorenthencriteria
for F and G for a generalized morphism to be backward compatibility (theorerdl). This
theorem, when proved by hand, required nine steps. But when checked / validated byet
system, it required more than seventeen billion logical inferences, which tookeo three and
a half hours of CPU time. The system actually ran out of its argument stack befe reaching
the conclusion. To overcome this obstacle, we have added an optimizing feature thatpse
the prover to nd a goal faster. We use an heuristic approach that mimics the naturefo
human's common strategy mentioned above: rules with formulas that look clostr the
target (goal) formula will be given higher priorities, i.e. will be tried rst. The doseness
between two formulas is de ned via the distance between them.

De nition 18 Let T be the tree representation of a formul& . The power-tree setof T is
the multi-set of all the sub-trees of , whose roots are any one of the nodes of

Then, the power-tree set of is the following set of sub-trees:
f(left(R, right(S,T))), (R), (right(S,T)), (S), (T) g

De nition 19 Let A;B be the power-tree set of two formulaB;; F,. Then the distance
between two given formulas is computed as

d(F.;F) =# ff A[BgnfA\ Bgg
Examples

1. Distance of zero: the distance between two identical formulas is zeroetlF;; F, be
two identical formulas. Then their corresponding binary tree3; T, must be two equal
setsA1; A,. Thus,

d(Fq;Fp) =# ff AL AgnfAi\ Agg=#f,g =0

2. Distance of two: LetF; = squarg(S;T); F, = left (S; T), then their power-tree sets will
be A; = f(squargS;T);(S);(T)g; A, = f(left (S;T));(S);(T)g. Hence, the distance
of these two formulas is:

d(Fi;F2) =# ff Ac[AgnfAi\ Axgg=2

95

Table 8.5: Distance of Reference Rules Elements

Ref. Rules Formula Distance
Circle Associativity (R S) T) (R (5 T) 4
Triangle Pseudo Associativity| (RCS)BT) (RC(SBT)) 4
Sub-product Conversion (RC(SCT)) (R SCT) 4
Super-product Conversion (RB(SBT)) (RB(S T) 4
Residual Bootstraps (B1) (R S)vT) (Sv (RTCT) 5
Residual Bootstraps (B2) (R SYvT) (Rv (TBS")) 5
Transpose (T1) (RHT =R 2
Transpose (T2) (RvS) (R"vSh 4
Transpose (T3) (RCS)™ (STBR") 5
Transpose (T4) (RBS)™ (STCR") 5
Transpose (T5) (R S)T (ST R") 5
Transpose (T6) (R S)T (ST R") 5

96

3. Distance of our reference rules: Tablg.5 shows the distances of all pairs of formulas
that construct the reference rules system.

Theorem 20 Let A be any formula. LetB be any formula such that in our proof systerA
can be derived fromB in one step. Then the distance ofA and B must not exceed a given
constantn. In other words, givenA, we have

step

8B :(B)™PA)j dA:B) n

Proof Table 8.5 lists the distances of all pairsA; B of formulas of the system such thaiA
can be derived fronB in one step. Since none of those distances is greater than 5, the above
theorem is proved. |}

Having introduced an optimizing factor for our prover, namely the distance of a particuta
formula to the goal/destination, we will then update our breadth- rst search geneate-and-
match algorithm. In the optimized algorithm, the source se& of all to-be-visited formulas
that are equivalent to already-visited but not-yet-matched-the-goal formuls is created and
expanded as in the original version. The di erence is in the selection of a new elemsr& S
to be examined. Before picking the rst available element irg, i.e. the top element of the
gueueS, we rst ascendingly sort the queue by the distance of each queue's element to the
goal. Thus, among the set of equivalent formulas, we will get the one with the |l¢akstance
to the target rst.

Optimized Generate-and-Match Algorithm for Theorem checker / prover

Input: theorem(A,B)
Call reachable(A,B) ; // Show thatB is reachable fromA;

Initiate an empty queue S that keeps the set of possible
derivation of A and an empty listV that keeps
visited terms; // S is used to store the derivation tred, of A;

Add A to the top of queuesS;

IfB2S(*)
there is a derivation chain fromA to B

97

hencereachable(A,B) ;
Output theorem(A,B) is true .
else,
Select the next terms 2 S such thats 2 V;
Create a setX of all terms x satisfying
X l)Step S;X2Z2S5;x2Z2V
Add set X to the pool S, and remove elemens from S;
Now, S = fS[Xgnfsg;
Sort the source seS by ascending order of the distances from it's elements ®;
Update visited setV: V = V [sg;
Back to step (*) with sorted S and updatedV;

De nition 21 d s called acceptable if for alA, and a constantn f X jd(A; X) nis nite.
Theorem 22 The powertree distance is acceptable.

Proof Let A be a formula in our system and be a constant. LetX be a formula such that
distance betweermA and X is not greater thann.

d(A; X)=# ff A[XgnfA\ Xgg n

This means that the cardinal of multi-set of all nodes oKX that are not the same as any
node ofA is not greater thann. In other words, the total number of nodes inX does not
excesses a constant, i.eib=(n+ n,), wheren, is the number of nodes imA.

Since the number of nodes iX has an upper bounchb and each node can only be any of
the four relational products (circle, left, right, square), or a function such astran ,
the setf X jd(A;X) n must be smaller or equal tharN "°nb , whereN is the total number
of di erent operators and function letters de ned and K is the maximum arity of these
functions and operators. Thus the number of choices must be nite. Hence, the pentree
distance is acceptable. |

Theorem 23 Let d be an acceptable distance. The above optimized search procedure is
complete in the sense that all theorems that can be proved from knowledge base will be proved
by the prover.

98

Proof Let A and B be two formulas such that theoremiff(A,B) is true. We will show
that our prover will be able to prove it.

Let n = d(A; B) be the distance betwee and B. Obviously, n is a constant. Sinced in
our system is an acceptable distance (by theore&®) we have the number of trees that has
distance toB smaller or equal to that of B is nite. It means that # fXjd(B;X) ng=c,
where c is a constant. Because in the above optimized search procedure, those tnegh
smaller distance toB than n will be given higher priorities and thus be visited rst. Thus,
the search will reachB after at most c trees, i.e. after a nite steps. |}

99

CHAPTER 9

Theorem Prover / Checker Experiments

In this section, we discuss the experiments that we have conducted through out the
development process of the system. First, in secti@lwe will discuss our implementational
experiences in terms of choices of programming language. This aspect of our esyst
development stems from the fact that there are two distinct kinds of Prolog avaitde: parallel
(such as Ciao-Prolog) and serial (such as SWI-Prolog). Regarding specic oe¢ of our
system, each of these kinds possesses interesting advantages ovdr eter. While the
parallel Ciao-Prolog supports breadth- rst search strategy, which is verynuch convenient
for our proof search algorithm, the SWI-Prolog is more reliable and predictable in ternos
performance, and system's knowledge base extension.

We will then describe how the theorem prover / checker works with various tygs of
applications. A majority number of experiments which we will discuss in great detaiis
section 9.2 are those with generalized morphisms and relational inequalities. Signi cant
improvements of the optimized and further-optimized versions over the original bretd rst-
search version of the theorem prover / checker will be shown through theseperiments.

Other types of applications like theorems of relations' special properties, skvalence
and difunctionality of relations, and theorems on the extensions from axioms for guigo
t-norm based residuated fuzzy relations are discussed in secti&8 9.4 and 9.5.

9.1 Implementations: Ciao-Prolog and SWI-prolog

Even though the nal implementation of the system has been written in SWI-Prologye will
brie y describe our experiments with Ciao-Prolog, which was the rst choice we litawhile
choosing a programming language to implement the system.

A majority of the experiments have been conducted with the theorem proverecker

100

written in SWI-Prolog. There are three versions that have been implemented: (&)theorem
prover with no optimization, (2) optimized theorem prover, and (3) further optimizel
theorem prover. We will discuss our experiments with each of these versionsdetail in
the following sections.

Ciao [79), distributed under the GNU Library General Public License (LGPL), is a public
domain, next generation multi-paradigm programming environment with a unique set of
features:

Ciao oers a complete Prolog system, supporting 1SO-Prolog, but its novel
modular design allows both restricting and extending the language. As a result,
it allows working with fully declarative subsets of Prolog and also extending these
subsets (or ISO-Prolog) both syntactically and semantically. Most importatly,
these restrictions and extensions can be activated separately on eachgoeam
module so that several extensions can coexist in the same application for di eten
modules. Ciao also supports (through such extensions) programming with
functions, higher-order (with predicate abstractions), constraints, and obggs,
as well as feature terms (records), persistence, several contudes (breadth- rst
search, iterative deepening, ...), concurrency (threads/engines), a good base f
distributed execution (agents), and parallel execution. Libraries also support
WWW programming, sockets, external interfaces (C, Java, TclTk, relational
databases, etc.), etc.

Since Ciao-Prolog has a special feature letting users exibly choose between tiepst
search and breadth- rst search in the course of reasoning, we picked it as thegramming
language for our system.

The Ciao-Prolog implementation worked nicely with certain theorems of BK relainal
calculi, but failed on others. For example, this version can prove theorem on sjsd
properties of relations, theorems of forward and backward compatibilities ofegeralized
morphisms (which we will discuss in detail in later sections), but when we expand the
knowledge base to accommodate proofs of other theorems, the system cetséahction. It
faced the "out of memory bu er”, the breadth- rst search is unpredictable and debugginthe

module could not locate the bugs or errors . After weighting the e ort of understandingow

101

Table 9.1: Ciao-Prolog versus SWI-Prolog implementations

Ciao | SWI
Relational Properties Y Y
Forward and Backward Compatibility (FC, BC) | Y Y
FC, BC criteria for F and G N Y

the breadth- rst search works in Ciao versus implementing the breadth- rst searchurselves
in SWI Prolog, we chose to go with the latter choice.

SWI-Prolog is an open source implementation of the programming language Prolog,
commonly used for teaching and prototyping. It was originally designed and implemented
by Jan Wielemaker B0, 81] in 1987. Since then, SWI-Prolog has been under continuous
development, driven by the needs for real-world applications. These days SWI-Pls
widely used in research and education as well as for commercial applications.

It has a rich set of features, libraries (including its own GUI library, XPCE), tools
(including an IDE) and extensive documentation. SWI-Prolog runs on Unix, Windows and
Macintosh platforms.

We have implemented three versions for our theorem prover / checker systenhesxe the
latter is an improved version of the former one: (1) the rst and original velisn applies
a breadth- rst-search strategy, (2) the second version has an optimized strategy that uses
distance- rst-searchalgorithm, and (3) the third version is an improved version of the second
one that uses anmproved-distance- rst-searchalgorithm to prove theorems of generalized
morphisms stated in sectiorf.2.1

Table 9.1 shows some theorems that Ciao-Prolog version could not overcome, while the

SWI-Prolog could.

9.2 Experiments with Generalized Morphisms

9.2.1 Overview of Generalized Morphisms and Relational Inequal-
ities
Generalized Morphisms

Let A, B, C, D be sets with relationsR, S upon them { R from A to B and S from C
to D, where each relation determines some structure. In addition, we have homomorphic

102

mappingsF and G. F is from A to C and G is from B to D. There are two points of
departure that stem from this fundamental algebraic notion ohomomorphism[6, 69:

1. the design or checking mappings which will \preserve" or \respect" certaigiven

relations, and on the other hand

2. the design or checking of relations which \absorb" or \validate" certain give mappings.

Figure 9.1: Structure preserving mappings.

For example letA = B, C = D and R, S be orders. GivenA and C we wish to nd one
or all the mappings fromA to C that preserve orders { this illustrates the case (1). This
can be pictured by a commutative diagram { see guré®.l

An example of (2) is, given a mapping fronA to C, how to match the order onA given
by R, with some other order onC, or vice versa { so that some given mapping will preserve
or co-preserve them.

Another exampleiswheréd = B B,C = D D andR andS determine some groupoids

{ see gure 9.2

Figure 9.2: The commutativity of diagrams for homomorphisms of structures with binary
operations.

103

Figure 9.3: A diagram for forward and backward compatibility.

In this situation, the conventional homomorphism yields a commuting diagram of arrows
suchthatR G = F S, where of course, the morphismE and G are the relations which
are both covering and univalent (i.e. functional). To obtain the constructions thasolve the
problems (1) or (2) requires the aboveelational equation to be solved with respect to
one of the relationsR, S, F or G.

When the mappings (functional relations)F and G are replaced by general relationgsee
gure 9.3), the equation is no longer valid but has to baeplaced by two inequalities
The notion of a homomorphism splits into two independent notions, generalized morphism
and generalized proteromorphism.

De nition 24 Generalized Morphisms.
Let F, R, G, S be heterogeneous relations between the s&i8;C; D such that
F2R(A C),R2R(A B),G2R(B D),S2R(C D) (see gure9.4).

The conditions that (for alla2 A, b2 B, c2 C,d2 D)

9
aFc =

aRb =) cSdq,;
bGd’

will be expressed in any of the following ways:
1. FRG: S are compatible forward or forward-compatible.
2. F; G respectR; S forwards
3. R; S absorbsF; G forwards
4. F; G are generalized homorphisms frorR to S.

104

Theorem 25 (Forward Compatibility) [6]
The following statements are equivalent:

1. FRG : S are forward-compatible

22F!' R GvS

Figure 9.4: Forward Compatibility

Figure 9.5: Backward Compatibility

De nition 26 (Generalized Proteromorphisms.) [6]
Let F, R, G, S be heterogeneous relations between the s&18;C;D such thatF 2R (A
C),R2R(A B),G2R(B D),S2R(C D) (see Fig. 5).

The condition that (for alla2 A, b2 B, cs C,d2D)

aFc =
cSd. =) aRb
bGd’

105

will be expressed in any of the following ways:
1. FRG: S are compatible backward or backward-compatible
2. F; G respectR; S backwards
3. R; S absorbF; G backwards
4. F; G are generalized proteromorphisms frorR to S.
Theorem 27 (Backward Compatibility) [6]
The following statements are equivalent:
1. FRG:S are backward-compatible
22F S G!'vR

Proofs of Theorems about Compatibility

Relational inequalities displayed in Figures9.4 and 9.5 give a rigorous mathematical
de nition of generalized morphisms. If we want to use generalized morphisms either in
pure mathematics or in applications (such as knowledge engineering, scienti c computations
etc.) we need some other theorems describing the properties of generalized morphijsiijs

For example, given any three relations chosen froR; S; F; G we may wish to compute
the fourth remaining unknown one. In order to do so, we have to possess the swolnt
of inequalities that allows us to compute the unknown relation from the known ones.
Compatibility criteria provide solution for either R or S. In latter section we shall also
present the solutions forF and G.

Theorem 28 Forward Compatibility Solution [L6]

FRG : S are forward compatiblei (FT R G)vSi Rv (FCSBG")

Theorem 29 Backward Compatibility Solution [6]

FRG : S are backward compatiblei (F S G')VRi Sv (FTCRBG)

106

Figure 9.6: Solution: Forward Compatibility

Figure 9.7: Solution: Backward Compatibility

Theorem 30 Generalized Morphisms - Forward Compatibility: Criteria forF and G[16]
FRG:S are forward compatible i

1. Fv (RC(GCS")
or equivalently

2. Gv (RTC(F CS))

Theorem 31 Generalized Morphisms - Backward Compatibility: Criteria folr and G [16]
FRG:S are backward compatible i

1. Fv (RBG)BS"))
or equivalently

2. Gv (RTBF)BS)

107

Figure 9.8: Solution in F for FRG:S Forward Compatibility

Figure 9.9: Solution in G for FRG:S Forward Compatibility

Motivations to Generalized Morphism

Application of Generalized Morphismsto design and implementation of Communicating
Agents in Distributed Intelligent Systems is particularly promising, c.f. Kohout {9,
Muhammad and Kohout [54].

In Muhammad's work [37] on mobile agents, generalized morphisms are the solid
mathematical foundation that makes the collaborative diagnosis among multiple agent$ o
CLINAID's system [5(] valid. In the process of diagnosis, when an actor (agent) does not
have the knowledge to make the diagnosis independently, it can communicate with and
make a request for collaboration from other agent(s). In order to do thathe system should
translate the symptom(s)/disease(s) from the language of one agent (sayeagCMIT) to the
language of the other (say agent WTE). The translators are: (1) relatiof : B(C ! W),
such that C represents the set of CMIT symptoms andV represents the set of WTE signs

108

(2) relation GT : B(E ! D), such that D represents the set of CMIT diseases and
represents the set of WTE diseases. The same relatiofsand G can be used by WTE to
communicate with and request collaboration from CMIT. Figure.10[87] provides a pictorial

representation of such a scenario.

Figure 9.10: Generalized Homomorphism in Collaborative Diagnosis of Two Agents

Translator relations F; FT; G, and G' are the generalized homomorphic mappings which
relationally control the communication and interaction between the participahg agents
within the diagnostic base model. These relations are calculated using TheoreBtsand
31 (Compatibility Theorems for F and G, Bandler and Kohout). Based on these theorems,
FRG : S is forward compatible sinceF v (R C (G C ST)). Relational F is a generalized
homomorphism from relation R to relation S that provides the partial correspondence
between the two relations.G v (RT C (F C S)) also provesFRG : S is forward compatible.
Relation G is a generalized homomorphism that provides partial correspondence betwéen
and S. This allows compatibility/interactions between participating agentsR and S within
the system.

109

9.2.2 Experimental Results

All three versions of our theorem prover / checker, which we call BFS, DSF-v1l andSp-
v2, successfully prove all the theorems of generalized morphisms and relational inditjea
described in9.2.1

1. Version 1, BFS, implements the proof searching algorithm described in secti®2.3
Although almost all of the theorems in9.2.1 have been proved and validated by BFS,
the number of logical inferences and CPU time required for some cases argaxely
high. Theorem 30 for F, for example, requires 171,066,340 logical inference in 96
seconds of CPU time. One extreme was theoreB1 which requires more than 17
billions logical inference. The system actually ran out of its resources beforecituld
reach the conclusion. This shows that, BFS cannot be used as it is, because it could
not navigate through the huge derivation trees of BK product expressions e cidly.

2. Version 2, DFS-v1, implements the algorithm described in sectié3. Testing results
with DFS-v1 is very promising. Not only it can prove / check all theorems ir9.2.], it
can do it very fast. Theorem30 for F now takes only 0.1 second of CPU time (versus
96 second in BFS), and theoren31 requires only 2.55 second (compare to BFS who
could not even reach an answer. There is one exception though. Theorgin DFS-v1
takes four times longer than in BFS.

3. Version 3, DFS-v2, improves the strategy of distance- rst-search bya@uping siblings
with the same distance to the target together. That way, not only those derivadns of
the hypothesis that are closer to the conclusion, will be examined rst, but those who
have the same parent node will also be examined closely. DFS-v2 out-performs the
other two versions, reduces the number of logical inferences and CPU time neetied
tenths to hundredths of time. There is no sound explanation to this scenario, but we
think that this might be because that beside the distance DFS-v2 takes into account
another factor that children (nodes) of the same parent will be searched/examined
closely together as possible, and that if two terms of the theorem to be pexV are
ground terms then only one direction of the theorem is needed for both terms to be

equivalent.

Numerical results of these experiments are summarized in talfde2

110

Figure 9.11: Results of Proof Checker for General Morphisms

9.3 Special property of relations

In [78, 6], Bandler and Kohout showed thatC;B; products add the expressive power to
the mathematics of relations. The residuated BK relational products provide a univeab

representation of preorders for all crisp and fuzzy relations.

Theorem 32 (Relation Transitivity) [78, 6]

1. Relation R is transitive if and only if Rv RB RT.

2. Relation R is re exive if and only if RB RT v R.

3. Hence, relationR is preorder if and only ifR = RB RT.

Using our theorem prover / checker, the above mentioned theorem can be pedwnicely.

Proof Our system provesthat R Rv R) (Rv RBRT).
By de nition, relation R is transitive if and only if R? v R, hence, the given theorem is

true. |}

111

Table 9.2: Experimental Results: Performance Comparisons

of logical inferences CPU time

BFS DFS-vl | DFS-v2 BFS DFS-vl1 | DFS-v2
Theorem 28 9,079,459 71,568 | 16,813 4.10s 0.04s 0.01s
Theorem 29 8,840,116 66,406 | 15,297 4.04s 0.02s 0.00s
Theorem 30 for F 171,066,340 | 1,332,044 34,378 96.06s 0.10s | 0.01s
Theorem 30 for G 5,815,625 130,270 | 15,512 2.59s 0.04s | 0.004s
Theorem 31 for F 506,130 2,795,023 11,905 0.22s 1.13s | 0.01s
Theorem 31 for G 17,433,753,339 6,162,096/ 258,206|| 12944.675 2.55s | 0.17s

9.4 Theorems of classivalence of heterogeneous
relations

In his 2001 paper [6], Kohout pointed out that the notion of equivalence classes de ned

in homogeneous relations can not be carried over to the case of heterogeneelations.

It means that, given a relation R between two distinct sets, sayA and B, equivalent

classes oR are not well de ned. To deal with this problem, Kohout introduced a more

general property of relation by generalizing the equivalence of homogeneous tietes to

heterogeneous relations and called dlassivalenceor partial difunctionality .

De nition 33

called &-classivalentif it satis es the following condition:

112

(8a)(8b)(8a%(8)(aRb&aRb&aRK’!

arRH)

[76] A fuzzy relationR 2 B(X 'Y) in a t-norm residuated logic (BL) is

Figure 9.12gives a pictorial description of heterogeneous relations classivalence.

Figure 9.12: Classivalent Relation

In the same paper, Kohout de ned the classivalency conditions that are characteeix by
various relational inequalities containing BK relational products.
Theorem 34 (Classivalency Conditions of Heterogeneous Relations) [76]

The following conditions are equivalent:
1. A fuzzy relationR 2 B(X 'Y) is &-classivalentin a t-norm residuated logic (BL).
22R RTv RRCRT

3.R RTVRBRT

The system proves this theorem in two reduction steps, while the original proof ifi]
conducted rigorously in the rst order predicate fuzzy logic BL requires eight sps.

9.5 Theorem of the last of fuzzi ed Tarskis axioms in
BL logic

The theory of crisp binary homogeneous relations is de ned through a set of axioms in the
rst order predicate logic by Tarski in his classical paperd3] in 1941. In order to extend
this theory to include fuzzy heterogeneous relations, Kohout'§, 4] investigated how can
Tarski's axioms be extended to fuzzy relational calculi in a rigorous axiomatic waHe did
so by looking at the extensions of Tarski's axioms obtained by replacing the crisp@ean
algebra by the t-norm based residuated BL-algebras. In his 2001 pap&¥][various proofs
of relational axioms were shown in the t-norm based residuated logic (BL). Theqwf of the

113

last axiom is the one that we are most interested in, because it is the only one thatntains
relational inequalities, and that it requires application of Modus Ponens in the proof. Since
the original knowledge base of our theorem prover / checker does not contain amference
rule such as Modus Ponens, it is desirable to test the extensibility of the system's kiedge
base to deal with kind of proofs.

The last axiom is stated in B4] as:

RT R SvsS
In the proof of this last axiom, a new (to our knowledge base) rewrite rule in BL, narhye
()!' (!) (1) and Modus Ponens are used to show that
(RT R SvS) (R Sv(RTH'CYS
thus, by (1), we have:
(R Sv((RH'CS)! (RT R Sv S

The system, after adding the new rewrite rule (1) and Modus Ponens, is able to conduct
the proof above. This experiment is a good example that shows that our knowledgesba
can be conveniently extended to accommodate new proofs of theorems.

114

CHAPTER 10

Conclusions

This nal chapter wraps up the works that have been accomplished in this dissertation. &V
will rst summarize the dissertation objectives as well as the research ressilaccording to
those objectives. The next section will discuss in detail the contribution of this diertation
to computer science. Last but not least, we will discuss further research topidsat could
be developed from our results.

10.1 Summary of Dissertation Objectives
There are three objectives that this dissertation aims at and attains.

Objective 1. To study theoretically the feasibility of symbolic transformations of relational
products,

Objective 2. To build a term rewriting system for relational products,

Objective 3. To develop an automated tool for symbolic manipulations of relational
products.

10.1.1 Theoretical study of symbolic transformations of relationa I
products

The research in this dissertation evolves around BK relational products and thewarious
representations in computer science applications, which are many-valued logic, ls@sed and
predicate notations. The needs for each of these representations are cleamfthe point of
view of applications, as was shown in chaptér. There is, however, no complete research on
how these representations could be linked together for more complex and/or gamain

115

applications. Furthermore, there does not exist a tool for automated transfimations between
those representations of BK relational products. In this dissertation, we delep a scheme
that allows these transformations to be done automatically. A formal and uni ed de nitim
for each notational type is presented in chapte.

Semiotic descriptors play an important role in BK relational computations and applica-
tions. As discussed in chapteB, in many applications such as in medical system CLINAID,
value analysis, mobile agents, etc., semiotic descriptors were built and maintained asnaist
have" part in the system. It is a common scenario in practical situations that somef the
\middle" descriptors are missing, either by incomplete input or, more often, they are lacking
ability of keeping track of that information during the course of relational computatias. In
our scheme, we take care of this by de ning the semiotic descriptors together withrelation
as a whole. Thus, it does not matter how a relation or a relational product is manipulated,
this bit of information on the descriptors can always go with the relation or producitself.

In our system, transformations among BK products of relations and their three natianal
forms (matrix form, set form and predicate form) are performed syntactadly.

10.1.2 A term rewriting system as the theorem prover / checker
for relational products

The second objective is to build a pilot prototype for a theorem prover / checkdor BK-
product generalized morphisms. The goal of such a system is to automatically validahat
a given theorem (concerning generalized morphisms theory) is true and can actuallpguce
a proof to show that. A term rewriting system has been built to attain this goal.

The theory of generalized morphisms for BK relational calculus, discussed in chap8is
a sound foundation for promising applications of BK relational products. The most currén
one was Jean Muhammad's work on mobile agent, where generalized morphisms was the
foundational stone that made her mobile computation scheme work very nicely.

Our theorem prover / checker consists of (1) a knowledge base that containssat of
rewrite rules of BK relational products, and (2) rewriting engine that nds a derivatio path
from the hypothesis to the conclusion, i.e. nd a a proof for the theorem in question.

Set of rewriting rules
In this pilot study, we are building a rewrite system for BK products at the level of riational

116

elements in product relations. It includes important properties of relational produst such as
associativity (circle product), mixed associativity (super and sub triangle produs), pseudo
associativity (that shows the inter-relationship between circle and triangle pducts), and
equally signi cant, the BK Bootstrap. This set of rewriting rules acts as the knowedge base
of our system, base on which the rewriting engine would look for a proof for a givireorem.

Rewriting engine

While the set of rewriting rules is the knowledge base of the system, the rewriting engine
is the actual brain of the system. It navigates through the knowledge base tdlacate
a derivation path of rewriting that leads to required conclusion formulas from aigen
hypothesis. Formulas in our system are BK products expressions, represehias binary
trees. This tree representation will come in more handy in the next section, wherewliscuss
the system's optimized feature. Another type of tree that we have created the system is
the derivation tree of a formula, sayR. It contains all (possibly in nitely many) formulas
that are derivable from R in the set of rewriting rules of the system. If there exists one
node in that derivation tree of R (supposedly is a theorem's hypothesis) that can match that
theorem's conclusion (say formul&), then the theorem prover / checker can validate that
the given theorem is true.

To go with the derivation trees that the system creates, we have develapa breadth-
rst search algorithm that selects the desired derivations while generating deritran trees
of hypotheses. We have also proved that this algorithm is complete in the sensettifaa
theorem is true in our theory, then the system will always be able to nd a proof fat and
thus validate it.

Optimizing feature for an heuristic algorithm of the rewriting engine

There are twelve rewrite rules in the system's knowledge base, so when congingc a
derivation tree for a given formula, the number of nodes in that tree can psily grow
exponentially. For a derivation with n levels, that number could reach up to 12 Thus,
without any optimizing feature, for a long enough proof, the system might exhaust its
resource even before reaching its conclusion. A concrete example is the theoosmnthe
criteria for F and G for a generalized morphism to be backward compatibility (theem 31,
chapter 8). This theorem, when proved by hand, required nine steps. But when checked /

validated by the system, it required more than seventeen billion logical inferersgzavhich took

117

over three and a half hours of CPU time. The system actually ran out of its argumestack
before reaching the conclusion. To over come this obstacle, we have added an optimizing
feature that helped speed up the process of proof checking. Instead of randomigking

an element from the derivation tree of the hypothesis, we select the one thiat closest to
the target, i.e. the conclusion. To measure the closeness between two formulae have
introduced a notion of subtree-distance. The smaller this distance is, the "closertia two
formulas are to each other. We have also proved that this heuristic algorithm i®mplete in

the sense that all theorems that can be proved from the knowledge base will beyad, and
hence validated by our system.

10.1.3 A tool for symbolic transformations of relational products

In terms of implementation, we have built an automated tool for symbolic manipulationsfo
BK relational products. We have chosen Prolog as the programming language to deypethe
system, because it possesses advantages that our system can benemfr We should note
here that most of the advantages of Prolog that we have found related withuo research
strongly agree with those that the author of CTADEL had pointed out. The di erences would
lay in the part where each of Prolog's features was concretely used in theotwystem (e.g.
CTADEL and our system). Not only that Prolog terms can be used to representing of the
BK relational algebra, but they can also be used to represent internal datarsttures for the
system. Beside that, Prolog term uni cation is a very useful pattern matching tehnique that
works well in the process of transformations. Last but not least, the backic&ing mechanism
of Prolog makes the generate-and-match procedure in our theorem prover / ckecbe able
to exhaustively look for possible proof of a given theorem.

There are two levels in our implementation. In the higher level, BK relational products
are transformed syntactically in a purely logical way. It means that all trangfrmations at
this level are done without any speci c semantics of the logic system. At this levelye
have de ned one tree-type data structure for each kind of BK products represgtions,
called a notational tree. The algorithm that transforms those notational tree among each
other which we have designed, allows automating transformations between all BKatonal
products formulas and their three distinctive representations. The system hasdretested
for dierent sets of input data, ranging from simple formulas to more complex nested
formulas that contain multiple products. We have performed tests on direct trasformations,

118

i.e. from one representation to another, as well as those that yield a chaif @ntinuous
transformations.

On the second level, we have implemented a system for a theorem prover / clexctor
theorems of generalized morphisms and relational inequalities. Rewriting rules of thestgm
are represented internally using Prolog terms. Derivation trees of BK produformulas are
represented using Prolog lists. Using generate-and-matcimechanism, we have implemented
in our rst version of the system a breadth- rst search strategy for allgating a derivation
path from hypothesis to the conclusions of the theorem in checking, thus validating iEven
though it was not an original objective of the dissertation, we have achieved apizing
our theorem prover / checker. The breadth- rst-search strategy in veisn one is enhanced
by taking an optimizing factor into account, which creates a new proof searchirggrategy
that we named distance- rst-search We have even advanced the development further, to
a third version of the system which is an improved version of the second one. udes an
improved-distance- rst-searchstrategy that groups together \sibling" expressions with the
same distance to the target. In each optimized version, both the number of logl inferences
and the number of CPU time needed for all theorems, have been reduced to a ti@t of
tens to hundreds times.

10.2 Contributions

The primary contribution of this research is the development of an automated toddr BK
relational products manipulations. At a higher level of generic fuzzy logic systems, ill@vs
users to have various representations of BK products transformed automatilya At a lower
level of particular fuzzy logic systems, the system works as a theorem peov checker
that can verify and generate proofs for theorems of generalize morphisms anthtienal
inequalities.

Even though the original objectives did not include the task of optimizing the tool, the
author has been able to optimize the theorem prover / checker module. This signi cantly
improved the performance of the tool .

119

10.3 Further Research

The research and results contained in this dissertation have opened further ditiens to
future work on these topics.

1. Relational computational methods have to be supported by adequate computing tools
Such tools have to be compatible with new Internet technologies that have been
revolutionizing computerized handling of information, both data and knowledge. These
tools need to be integrated into a distributed computing environment.

Several tools for relational computations and data analysis have been developed,
namely Trisys [17] for testing local and global relational propertiesGmorph for
computing generalized relational morphisms3f),[73] and a tool calledFire (Fuzzy
Relational Interval Evaluator) [86] implemented in JAVA. It consists of Relational
Properties Analyzer (RPA) and Fuzzy Interval Ranking Generator (FIRG).

2. Collaboration with other systems, such as MathML, Ctadel, GUHA method. Irhis
scheme, we would gather these completely developed systems and utilize them in
parallel to provide services to users. For each desired functionality, usersnazhoose
to select the appropriate sub-system, i.e. the one that can performs the requireks
most e ciently.

3. There are other theorem provers for equational logic systems such asFE@Quational
Prover) [87, 8] which is an automated prover for rst-order classical equational logic,
or Maude, a high-performance equational and rewriting logic language and system.
Since our theorem prover is built for an equational-logic-like system (of BK relatis),
it would be desirable to see how other mentioned systems can deal with theorems
proved in our system, and if so, to compare the performances among these prever

120

REFERENCES

[1] W. Bandler and L.J. Kohout. Fast fuzzy relational algorithms. In A. Ballester,
D. Cardus, and E. Trillas, editors, Proc. of the Second Internat. Conference on
Mathematics at the Service of Manpages 123{131, Las Palmas, 1982. (Las Palmas,
Canary Islands, Spain, 28 June - 3 July), Universidad Politechnica de las Palmas.
(document), 1.1, 2.5, 2.5.3 25.3 2.2, 25.32.5.45.1.2 6.2

[2] W. Bandler and L.J. Kohout. Relations, mathematical. In M.G. Singh, editor,
Systems and Control Encyclopedjgpages 4000 { 4008. Pergamon Press, Oxford, 1987.
(document), 1.1, 2.2, 2.5.3 2.2, 2.5.4 5.1.2 5.1.2

[3] L.J. Kohout and W. Bandler. Fuzzy relational products in knowledge engineering. In
V. Nowk et al., editor, Fuzzy Approach to Reasoning and Decision Makingages 51{66.
Academia and Kluwer, Prague and Dordrecht, 19921.1, 2.4.5 5.1.2 6.2

[4] W. Bandler and L.J. Kohout. A survey of fuzzy relational products in their applicability
to medicine and clinical psychology. In L.J. Kohout and W. Bandler, editord&Knowledge
Representation in Medicine and Clinical Behavioural Scienggages 107{118. Gordon
and Breach Publ., London and New York, 19861.1, 2.2, 2.4.5 4.3, 5.1.2 5.1.3

[5] W. Bandler and L.J. Kohout. Fuzzy relational products as a tool for analysis and
synthesis of the behaviour of complex natural and arti cial systems. In P.P. Wang
and S.K. Chang, editors,Fuzzy Sets: Theory and Applications to Policy Analysis and
Information Systems pages 341{367. Plenum Press, New York and London, 19801,
2465121, 2

[6] W. Bandler and L.J. Kohout. Mathematical Relations, their Products and Generalized
Morphisms Tech. report, Man-Machine Systems Laboratory, EES-MMS-REL 77-3,
Dept. of Electrical Eng., University of Essex, Colchester, Essex, U.K., 1B7Reprinted
as Ch. 2 in: Kohout, L.J. & Bandler, W., Survey of Fuzzy and Crisp Relations, Lect.
Notes in Fuzzy Mathematics and Computer Sci., Creighton Univ. Omaha (to appear).
1.1, 122122 24252 253 3,25.35.3 15 6.3.1 8, 8.1.1, 9.2.], 25, 26, 27, 9.3
32

[7] P. Hajek. Aremark on Bandler-Kohout products of relations.Int. J. of General Systems
25(2):165{166, 19961.1, 2.4, 5.1.1

[8] B. DeBaets and E. Kerre. A revision of Bandler-Kohout composition of laions.
Mathematica Pannonica 4:59{78, 1993.1.1, 2.4

121

[9] B. DeBaets and E. Kerre. Fuzzy relational compositions.Fuzzy Sets and Systems
60(1):109{120, 19931.1, 2.4

[10] B. DeBaets and E. Kerre. The cutting of compositions.Fuzzy Sets and Systems
62(3):295{310, 19941.1

[11] L.J. Kohout. Boolean and fuzzy relations. In P.M. Pardalos and C.A. Floudas, editg
The Encyclopedia of Optimization pages 189{202. Kluwer, Boston, 2001. vol.l, A-D.
1.1,2.1,252 25325453

[12] W. Bandler and L.J. Kohout. Special properties, closures and interiors of gisand
fuzzy relations. Fuzzy Sets and System&6(3):317{332, June 19881.1, 2.5 2.5.3 3,
2544,2547, 25409 10 11, 2545.1.26.2 1

[13] L.J. Kohout. A Perspective on Intelligent Systems: A Framework for Analysis and
Design Chapman and Hall & Van Nostrand, London & New York, 1990.A Scientic
Monograph, 255 pages. In 1991, received an international prize from The Intern&nal Institute for
Advanced Studies in Systems ResearchThe best book of the year in the area of Al Systems". 1.1,
22,3143

[14] L.J. Kohout, J. Anderson, and W. et al. BandlerKnowledge-Based Systems for Multiple
Environments Ashgate Publ. (Gower), Aldershot, U.K., 1992 A Scienti c Monograph, 382
pages. Written by the principal author in collaboration with others. Awar ded "Outstanding Scholarly
Contribution Award" by the Systems Research Foundation in 19931.1, 2.2

[15] L.J. Kohout. Semiotic aspects of fuzzy logics. Ifth International Seminar on Fuzzy
Set Theory Linz, Austria, September 1987. Institut far Mathematik, Universitat Linz.
Invited contribution . 1.2

[16] L.J. Kohout. De ning homomorphisms and other generalized morphisms of fuzzy
relations in monoidal fuzzy logics by means of bk-products. In P.P. Wang, editor,
Joint Conference on Information Sciences { JCIS'2003Research Triangle Park, N.C.,
September 2003. Association for Intelligent Machinery..2, 9.2.1, 28, 29, 30, 31

[17] L.J. Kohout. The dynamics of generalization: From fuzzy linguistic statements to
concepts and constructs. In J. Albus, A. Meystel, and R. Quintero, editordntelligent
Systems: A Semiotic Perspectivgpages 77{82, Gaithersburg, MD, October 20-23, 1996
1996. The National Institute of Standards and Technology. Invited paper2.2

[18] L.J. Kohout and E. Kim. Reasoning with cognitive structures of agents I: :Acqutgon of
rules for computational theory of perceptions by fuzzy relational products. In ® Ruan
and E. Kerre, editors,Fuzzy IF-THEN Rules in Computational Intelligence chapter 8,
pages 161{188. Kluwer, Boston, 200®.2, 2.4.6

[19] R. Belohhvek. Similarity relations and BK-relational products. Information Sciences
126(1-4):287{295, 20002.4, 5.1.1

122

[20] L.J. Kohout, E. Keravnou, and W. Bandler. Automatic documentary information
retrieval by means of fuzzy relational products. In B.R. Gaines, L.A. Zadeh, and H.-
Zimmermann, editors,Fuzzy Sets in Decision Analysispages 383{404. North-Holland,
Amsterdam, 1984.2.4.1, 4, 4.2, 4.3

[21] L.J. Kohout, E. Keravnou, W. Bandler, C. Trayner, and J. Anderson. Constructio of
an expert therapy adviser as a special case of a general system pioe design. In
R. Trappl, editor, Cybernetics and Systems Research gages 97{104. North-Holland,
Amsterdam, 1984.2.4.1

[22] L.J. Kohout and M. Kallala. Evaluator of neurological patients' dexterity basd on
relational fuzzy products. InProc. of Second Expert Systems International Conference
(London, October 1986) pages 1{12. Learned Information Inc., New Jersey, USA and
Oxford, UK, 1986. 2.4.1

[23] L.J. Kohout and M. Kallala. The use of fuzzy information retrieval in knowledge-
based management of patients' clinical pro les. In B. Bouchon and R.R. Yager, edits,
Uncertainty in Knowledge-Based Systems (Lecture Notes in Computer Science vol. 286)
pages 275{282. Springer Verlag, Berlin, 1982.4.1, 4, 4.3 5.1.2

[24] W. Bandler and L.J. Kohout. Fuzzy power sets and fuzzy implication operatorsuzzy
Sets and Systems4:13{30, 1980. Reprinted in:Readings in Fuzzy Sets for Intelligent
Systems D. Dubois, H. Prade and R. Yager (eds.), Morgan Kaufmann Publishers, San
Mateo, Calif., 1993, pages 88-9&.4.5 1, 2, 6.3.3

[25] W. Bandler and L.J. Kohout. Semantics of implication operators and fuzzy relatioha
products. Internat. Journal of Man-Machine Studies 12:89{116, 1980. Reprinted in
Mamdani, E.H. and Gaines, B.R. edsFuzzy Reasoning and its ApplicationsAcademic
Press, London, 1981, pages 219-2464.5 2.4.6 4, 4.1, 4.3, 5.1.2

[26] W. Bandler and L.J. Kohout. Fuzzy implication operators. In M.G. Singh, editor,
Systems and Control Encyclopedjgpages 1806{1810. Pergamon Press, Oxford, 1987.
2455.1.2

[27] L.J. Kohout and M. Kallala. Choice of fuzzy optimal logics for pattern classies by
means of measure analysis. IRroc. of 7th International Congress on Cybernetics and
Systems Imperial College, London, September 1982.4.5 5.1.2

[28] L.J. Kohout. Activity structures as a tool for design of technological aifacts. Systems
and Cybernetics: An International Journa) 18(1):27{34, 1987.2.4.6 3.1

[29] L.J. Kohout. Activity Structures: A methodology for design of multi-environmentand
multi-context knowledge-based systems. In L.J. Kohout, J. Anderson, and W. Bandler,
editors, Knowledge-Based Systems for Multiple Environmentshapter 5. Ashgate Publ.
(Gower), Aldershot, U.K., 1992.2.4.6 3.1

[30] L.J. Kohout, E. Kim, and G. Zenz. Fuzzy relational modeling of cost and af-
fordability for advanced technology manufacturing environment. InProc. of 1999

123

NSF Design and Manufacturing Grantees Conferenc&Vashington DC, January 1999.
National Science Foundation. Proceedings in CD-ROM version. Also available on
http://www.usc.edu/dept/ise/NSF/proceedings. 2.4.6

[31] Eunjin Kim, L.J. Kohout, and I. Stabile. Evaluation of gynecological clinical test d&a
by means of fuzzy triangle relational products. IfProc. of the 5th IFSA World Congress
pages 564{367, Seoul, Korea, June 19934.6

[32] L.J. Kohout and Yong-Gi Kim. Generating control strategies for resolutio-based
theorem provers by means of fuzzy relational products and relational closuresn
B. Lowen and M. Roubens, editorsFuzzy Logic: State of the Art pages 181{192.
Kluwer Academic, Boston and Dordrecht, 19932.4.6 4.3

[33] G.J. Klir and B. Yuan. Fuzzy sets and fuzzy logic: theory and applicationPrentice
Hall, 1995.2.5.3

[34] J.C. Bezdek and J.D. Harris. Convex decompositions of fuzzy partition. Math. Anal.
Appl., 67:490{512, 19792.5.3

[35] S. Ovchinikov. Similarity relations, fuzzy partitions, and fuzzy orderingFuzzy Sets and
Systems 40(1):107{126, 19912.5.3

[36] U. Hehle. Quotients with respect to similarity relations. Fuzzy Sets and Systems
27(1):31{44, 1988.2.5.3

[37] E. Rundensteiner, W. Bandler, L. Kohout, and L.W. Hawkes. An investigation of fuy
nearness measure. IfProc. of Second IFSA Congresspages 362{365. International
Fuzzy Systems Association, July 19872.5.3

[38] L. A. Zadeh.Fuzzy Sets: Selected Papers John Wiley, New York, 1987. Edited by R.
Yager et al. 2.5.3

[39] W. Bandler and L.J. Kohout. Cuts commute with closures. In R. Lowen and
M. Roubens, editors,Proceedings of the 4th IFSA World Congress IFSA91 Brussels,
Vol. Arti cial Intelligence . International Fuzzy Systems Association, 19912.5.4 2.5.4

[40] W. Bandler and L.J. Kohout. Cuts commute with closures. In B. Lowen and
M. Roubens, editors,Fuzzy Logic: State of the Artpages 161{167. Kluwer Academic,
Boston and Dordrecht, 19932.5.4 2.5.4

[41] O. Boruvka. Foundations of the Theory of Groupoids and GroupsVEB Deutscher
Verlag der Wissenschaften, Berlin, 1974. [Also published as a Halsted Press book by
Willley, New York, 1976]. 2.5.4

[42] W. Bandler and L.J. Kohout. Activity structures and their protection. In R.F. Ericson,
editor, Improving the Human Condition: Quality and Stability in Social Systems (Proc.
Silver Anniversary 1979 International Meeting of the Society for General Systems
Research), pages 239{244, Louisville KY, 1979. Society for General Systems Researc
Distributed by Springer Verlag, New York. 3.1

124

[43] L.J. Kohout and B.R. Gaines. Protection as a general systems probleninternat.
Journal of General Systems3:1{21, 1976.3.1

[44] L.J. Kohout. The functional hierarchies of the brain. In G.J. Klir, editor, Applied
General Systems Research: Recent Developments and Tremusges 531{544. Plenum
Press, New York, 1978. [An invited paper at the 1977 NATO Symposium on Genkra
Systems Research, section: Advances of GS Research in Biological Scien&4.].

[45] L.J. Kohout. Dynamic sharing of cognitive structures by means of generalized mor
phisms. In P.P. Wang, editor, Proc. of the 2nd Joint Conf. on Information Sciences
(Sept. 28 - Oct. 1, Wrightsville Beach, NC, USA) pages 597{600. Duke University,
1995.3.2, 4.3 9.2.1

[46] L.J. Kohout and | Stabile. Logic and methodology of galen: Its relevance to cemnb-
porary systems science. In G.E. Lasker and R.R. Hough, edito’sdvances in Support
Systems Research (Proc. of 2nd Internatinal Congress on Systems Research, Informatics
and Cybernetics 1989)pages 271{276, 1990. ISBN 0-921836-063%2

[47] L.J. Kohout. On functional structures of behaviour. In L.J. Kohout and W. Ban-
dler, editors, Knowledge Representation in Medicine and Clinical Behavioural Science
chapter 7, pages 69{94. Gordon and Breach Publ., London and New York, 198%3,
3.3.3

[48] L. J. Kohout. Activities structures: a methodology for design of multiple envinoaments
and multi-context knowledge-based systemsL. J. Kohout and W. Bandler, editors,
Knowledge-Based Systems for Multiple Environments. Ashgate Publications (Gower),
Aldershot, UK., Chapter 5, 1992.3.3

[49] C. S. Noe. Using BK Products of Fuzzy Relations for Management of Granular
Structures in Relational Architectures for Knowledge-based Systeni.D. dissertation,
Florida State University, Tallahassee, Florida, 19973.3 3.3.1, 3.3.2 3.1, 3.2 3.3.3 3.3

[50] L. J. Kohout, I. Stabile, W. Bandler, and J. Anderson.Clinaid : Medical knowledge-
based system based on fuzzy relational structures. In M. Cohen and D. Hudseditors,
Comparative Approaches in Medical Reasoningages 1{25. World Scienti ¢, 19953.3.],
3.1,3233414309.2.1

[51] L.J. Kohout and I. Stabile. Relational computations in medical KBS CLINAID: the
means for integrating interval, symbolic logic and neural network techniques. Th et al.
Furuhashi, editor, Proc. of the 1st On-Line Workshop of Soft Computingpages 228{
233, Nagoya, 464-01, Japan, August 1996. The Society of Fuzzy Theory and Sgst
(SOFT), Nagoya University. http://www.bioele.nuee.nagoya-u.ac.jp/wscl. 3.3.1, 3.1,
3.2 3343

[52] L.J. Kohout and G. Zenz. Activity structures and triangle BK-products of fuzzy
relations { a useful modelling and computational tool in value analysis studies. In
R. Mesiar et al., editor,Proc. of IFSA 1997 (The world Congress of International Fuzzy

125

Systems Association, Prague) vol. 1\/.pages 211{216. IFSA, June 1993.3.3 3.1, 3.2,
3.3

[53] L.J. Kohout and C.S. Noe. Design of strategies for the choice of patienste by fuzzy
kbsclinaid . In G.E. Lasker, editor, Proc. of InterSymp '95, Internat. Conf. on Systems
Research, Informatics and Cybernetigpages 117{118. Internat. Institute for Advanced
Studies in Systems Research and Cybernetics, August 19961, 3.2, 3.3

[54] C.S. Noe, L.J. Kohout, and J. Anderson. An algorithm for optimization of patient
investigation choices in fuzzy kbglinaid . In P.P. Wang, editor, Proc. of the 2nd Joint
Conf. on Information Sciences (Sept. 28 - Oct. 1, Wrightsville Beach, NC, USApages
601{603. Duke University, 19953.1, 3.2, 3.3

[55] W. Bandler and L.J. Kohout. The use of new relational products in clinical modelling. In
B.R. Gaines, editor,General Systems Research: A Science, a Methodology, a Technology
(Proc. 1979 North American Meeting of the Society for General Systems Research).
pages 240{246, Louisville KY, January 1979. Society for General Systems éash. 4,

4.1

[56] L.J. Kohout, J. Anderson, S. Gao, and W. Bandler. On a transformation of triangle
product inference structure of Clinaid into fuzzy neural network architecture wh
variable treshold. In P.P. Wang, editor, Proc. of Joint Conference on Information
Sciencespages 304{307, Durham, NC, November 1994. 3rd Annual Internat. Confece
on Fuzzy Theory and Technology (November 13-16, 1994), Duke Universig;, 4.1

[57] L.J. Kohout and W. Bandler. The use of fuzzy information retrieval in multi-cente kbs.
In International Conference on Information Processing and Management of Uncertainty
in Knowledge-Based Systemgages 151{154, Paris, 30 June { 4 July, 1986. IFSA &
IEEE. [A new method for fuzzy knowledge retrieval. (Refereed extend abstract)]. 4, 4.2, 4.3

[58] Y.G. Kim. Use of fuzzy relational information retrieval technique for generating control
strategies in resolution-based automated reasonindg?h.D. Dissertation, Florida State
University, Tallahassee, Florida, 19924, 4.2, 4.3

[59] Y. Lee, Y. Kim, and L. J. Kohout. An intelligent collision avoidance system for as
using fuzzy relational products.Information Sciences 158:209{232, 20044.3

[60] B. Granville. Teaching principles of fuzzy logic analysis using the bk-products model.
Joint Conference SC 18(4), 2003.4.3

[61] L.J.Kohout E.Kim and B.M.DuBrosky. Linguistic models of cost-a ordability for
aeronautics industry based on semiotic descriptors and fuzzy relational computatioms
P.P. Wang, editor, Proc. 1997 Joint Internat. Conf. on Information Sciences JCIS'97
pages 241{244, Research Triangle Park, NC, March 1-5 1997. Duke Unsigt In: vol.
2 { Computational Intelligence, Neural Network & Semiotics.4.3

[62] L.J. Kohout, B. Dubrosky, H.P. Wang, G. Zenz, and Zhang. C. Decision-makingitiv
incomplete information in an integrated product and process development enterprige

126

A management decision tool for cost modeling and a ordability applications. In T. Woo,
editor, Proc. of NSF Grantees Conference (Seattle, WA, January 7-10pages 401{402,
Arlington, VA., January 1997. National Science Foundation, NSF-DMII1.4.3

[63] L.J. Kohout, B. Granville, and E. Kim. Granular relational computing with semioic
descriptors using BK-products of fuzzy relations. In P. Wang, Paul, editoiComputing
with Words, chapter 4, pages 89{146. John Wiley, New York, 200%..3

[64] J. Muhammad and L.J. Kohout. The role of generalized morphisms in co-operative
activities of agents. In P.P. Wang, editor,Joint Conference on Information Sciences
{ JCIS'98 Proceedings pages 56{59, Research Triangle Park, N.C., October 1998.
Association for Intelligent Machinery. In vol.1.4.3 9.2.1

[65] L.J. Kohout. Medicine as a technology. In B.R. Gaines, editorGGeneral Systems
Research: A Science, a Methodology, a Technology (Proc. 1979 North American Meeting
of the Society for General Systems Researchl.ouisville KY, January 1979. Society for
General Systems Researci.3

[66] S. Nagarajan and L.J. Kohout. Learning of a new vocabulary using fuzzy relational
representation structures. In Mark B. Fishman, editorProc. of the 4th Florida Arti cial
Intelligence Research Symposium (FLAIRS)pages 165{169, Cocoa Beach, Florida,
1991. The Florida Arti cial Intelligence Research Society4.3

[67] L.J. Kohout. Basic algebra of BK products of relations in t-norm fuzzy logics.In
R. Langari and J. Yen, editors,Proc. of FUZZ-IEEE2000, pages 599{604, Piscataway,
NJ, 2000. IEEE Neural Network Council, IEEE.5.1.1 5.2.1, 6.3.1

[68] W. Bandler and L.J. Kohout. Fuzzy relational products and fuzzy implication operats.
In International Workshop on Fuzzy Reasoning Theory and Applicationd.ondon,
September 1978. Queen Mary College, University of LondoB.1.2 1, 2

[69] L.J. Kohout. Theory of fuzzy generalized morphisms and relational inequalities.
Internat. J. of General Systems 33(4):339{360, 2004.5.1.1, 5.2, 5.3 6.2 8, 8.1.],
9.2.1

[70] L.J. Kohout and W. Bandler. Relational-product architectures for information proess-
ing. Information Science 37:25{37, 1985.3

[71] L.J. Kohout. Checklist paradigm semantics for fuzzy logics. In P.M. Pardadcand C.A.
Floudas, editors, The Encyclopedia of Optimization pages 237{246. Kluwer, Boston,
2001. vol.l, A-D. 5.1.2

[72] L.J. Kohout. Finite complete systems of many-valued logic algebras. In P.M. Rialos
and C.A. Floudas, editors,The Encyclopedia of Optimization pages 138{145. Kluwer,
Boston, 2001. vol.ll, E-Integer.5.1.2

[73] W. Bandler and L.J. Kohout. On the general theory of relational morphismdnterna-
tional Journal of General Systems13:47{66, 19865.1.3 1

127

[74] P. Hajek. Metamathematics of Fuzzy LogicsKluwer, Dordrecht, 1998.5.2, 5.2.1, 5.2.2

[75] L.J. Kohout. Extension of Tarski's axioms of relations to t-norm fuzzy log& In P.P.
Wang, editor, Proc. of 5th Joint Conference on Information Sciencespages 44{47,
Durham, NC, February 27 | March 3, 2000. Association for Intelligent Machinely. vol.
1.52.16.3.1,8.1.1,95

[76] L.J. Kohout. Classivalent and difunctional relations in the interval calculus of fuzy
bk-products. In Proc. of IFSA and NAFIPS conferences. pages 1659{1664. IFSA &
NAFIPS, IEEE, July 2001. ISBN: 0-7803-7079-1, IEEE Catalog Number: 01TH89C.
8,8.1.1, 9.4, 33 34,94

[77] E. McDu e and L.J. Kohout. Embedding Alen temporal algebra into fuzzy recursie
structures. In 2001 IEEE Internat. Conference on Systems, Man & Cybernetics: SMC
2001 Conf. Proc, pages 3420{2424. Systems, Man and Cybernetics Society of the IEEE,
IEEE, October 2001. CD-ROM Proceedings, IEEE catalog number 01CHA336C.8.1.1

[78] W. Bandler and L.J. Kohout. On the universality of the triangle superproduct and the
square product of relations.Internat. Journal of General Systems25(4):399{403, 1997.
8.1.1, 9.3 32

[79] Implementation The Computational logic, Languages and Paral-
lelism (CLIP) Laboratory. The Prolog Development System WWW Site.
http://www.clip.dia. .upm.es/Software/Ciao/ciao . 9.1

[80] Jan Wielemaker. SWI-Prolog. Inhttp://www.swi-prolog.org/. 9.1

[81] Jan Wielemaker. An Overview of the SWI-Prolog Programming Environment. In
WLPE, pages 1{16, 20039.1

[82] J. Muhammad. A framework for agency Florida State University, Tallahassee, Florida,
2005.9.2.1

[83] A. Tarski. Calculus of relations.J. of Symbolic Logi¢ 6(3):73{89, 1941.9.5

[84] L.J. Kohout. Fuzzy logic based extension of Tarski's relational systems usimgn-
associative BK-products of relations. In T. Childers and O. Majer, editorsThe Logica
Yearbook 2001 Prague, 2002. Filoso a. CD ROM electronic version9.5

[85] E. Kim and L.J. Kohout. Design ofgmorph by means of Activity Structures. In
R. Mesiar et al., editor,Proc. of IFSA 1997 (The world Congress of International Fuzzy
Systems Association, Prague), vol. J.pages 84{89. IFSA, June 19971

[86] L.J. Kohout and E. Kim. Fuzzy interval ranking evaluation. In R. Langari and J. ¥n,
editors, Proc. of FUZZ-IEEE2000, pages 216{221, Piscataway, NJ, 2000. IEEE Neural
Network Council, IEEE. 1

[87] W. McCune. EQP Web page http://www.mcs.anl.gov/AR/eqp/ . 3

128

[88] W. McCune. 33 Basic Test Problems: A Practical Evaluation of Some Paramodtita
Strategies. Chapter 5 in \Automated Reasoning and its Applications: Essay in Honor
of Larry Mos", ed. R. Vero, MIT Press , 1997.3

129

BIOGRAPHICAL SKETCH

Ha V. Hoang

Ha Hoang was born in Hanoi, Vietham in January 1975.

Ha received her bachelor degree in Computer Science at Vietnam National University
in Hanoi in 1995. After graduation, she began teaching at Vietnam National University in
the department of Information Technology. She started her master program in th®pring
of 2000 at the University of British Columbia, Canada, before transferring to Flioda State
University, and then received her Master of Science degree at Florida State Univirsn
2002. She expects to receive her doctoral degree in August, 2007. Her sir@fainterest
include formal methods, fuzzy relational computations and software engineering.

Ha Hoang is a member of the honor societies of Upsilon Pi Epsilon and Phi Kappa Phi.

130

	The Florida State University
	DigiNole Commons
	4-25-2007

	Computational Transformation Between Different Symbolic Representations of BK Products of Fuzzy Relations
	Ha Viet Hoang
	Recommended Citation

	List of Tables
	List of Figures
	Abstract
	Introduction
	Overview
	Chapter Synopsis of the Dissertation

	Relational Products
	Introduction: The Enriched Theory of Relations
	What is a Relation?
	Relations and Operations on B(X Y)
	Relational Products
	The Standard Associative Product of Relation
	Triangle Sub-product
	Triangle Super-product
	Square Product
	Fuzzy BK Products
	Representation of Conceptual Structures by Products

	Special Properties, Closures and Interiors of Relations
	Homogeneous and Heterogeneous Relations
	Special Properties of Heterogeneous Relations
	Special Properties of Homogeneous Relations
	Closure and Interior of Relations

	Semiotic Descriptors
	Basic Notions
	Glossary: Basic Kinds of Semiotic Descriptors
	Semiotic Descriptors as General System Constructs
	Semiotic Descriptors in CLINAID's Diagnosis Unit
	Semiotic Descriptors in CLINAID's Treatment Recommendation Unit
	Semiotic Descriptors in Value Analysis

	Survey of Relational Products Applications
	Applications in Medical Data Analysis
	Applications in Information Retrieval
	Other Applications

	Relational Products Representations
	 BK Products of Relations
	Enhancing Expressive Power of Calculus of Relations
	Various Representations of BK-Products
	Foresets and Aftersets of Crisp and Fuzzy Relations

	BK Products in Predicate Calculus Form
	The Usefulness of Different Notations for Computing with Relational Products
	Basic Logic BL of Hájek

	Enriched Calculus of Fuzzy Relations

	Symbolic Relational Transformations
	Introduction
	Symbolic Transformations of BK Relational Products
	System Description
	Overall Structure
	Language Definition
	Transformations

	Data Representation and Transformation Algorithms
	Data representations
	Transformation algorithms

	Symbolic Relational Transformations System Testing
	Testing goals
	Direct transformations
	Collection of input relations
	Transformations test cases

	Indirect or Loop Transformations

	Theorem Prover / Checker for Enriched Fuzzy BK Relational Calculi
	Design Motivation of a Term Rewriting System as Theorem Prover / Checker for Generalized Morphisms and Relational Inequalities
	Knowledge Base
	Rewriting Engine

	Theorem Prover/Checker's Formal Description
	Problem Domain
	Language Representation
	Generate-and-Match Algorithm for theorem generating / proving

	Optimizer

	Theorem Prover / Checker Experiments
	Implementations: Ciao-Prolog and SWI-prolog
	Experiments with Generalized Morphisms
	Overview of Generalized Morphisms and Relational Inequalities
	Experimental Results

	Special property of relations
	Theorems of classivalence of heterogeneous relations
	Theorem of the last of fuzzified Tarski™s axioms in BL logic

	Conclusions
	Summary of Dissertation Objectives
	Theoretical study of symbolic transformations of relational products
	A term rewriting system as the theorem prover / checker for relational products
	A tool for symbolic transformations of relational products

	Contributions
	Further Research

	REFERENCES

