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ABSTRACT

Fuzzy relational calculi based on BK products of relations have representational and

computational means for handling both concrete numerical representations of relations and

symbolic manipulation of relations. BK calculus of relations together with fast fuzzy

relational algorithms allows concrete numerical representations of relations to be used

extensively in applications. On the other hand, when enriched by relational inequalities like

BK Bootstrap or combined with other theories such as generalized morphisms,high level

symbolic forms of relations can be used for symbolic manipulation of relations thathave been

abstracted from numerical representations. Furthermore, symbolic formulas of relations can

be handled equationally. Equations over BK-products can characterize relationalproperties

in a universal way.

The research in this dissertation focuses on symbolic manipulations of BK products of

fuzzy relations. We have developed as a proof-of-concept an automated tool that works

with various representational forms of relations and facilitates transformations among them.

Major contribution that this system brings into the �eld is that, it provides a link bet ween

numerical and symbolic representations of relations, which can substantially extend the

applicability of fuzzy relations.

The pilot implementation of the tool consists of two systems. At a high level of general

fuzzy logic systems, the �rst system transforms BK-product formulas syntactically between

three notational forms: matrix form, set form and predicate form. We have de�nedfor

each kind of BK-product representations a tree-type data structure, called a notational tree.

All transformations are then carried out by set of transformational algorithms among the

notational trees of BK representational forms.

xi



At a lower level of t-norm based residuated logic systems (BL logic), we have developed a

second system which is a term rewriting theorem prover/checker that validates and generates

proofs for theorems of BK relational calculi. For each given theorem, a derivation tree will

�rst be generated. A matching of any node in that tree with the theorem's conclusion will

validate it. We proposed a generate-and-match algorithm based on a breadth- �rst-search

navigation process through theorems' derivation trees which guarantees a loop-free result for

any derivable theorem (in a given theory). The original version of this algorithmhas been

improved further by applying a human-like proof strategy, which we calleddistance-�rst-

searchand optimized distance-�rst-searchalgorithms. These optimized versions improve the

performance of our system signi�cantly, reducing both number of logical inferences and the

CPU's time required. The experiments also showed that proofs in BK calculi are signi�cantly

shorter than in predicate calculus of BL logic. Interestingly enough, proofs generated by the

tool are the same as those done by hand. This illustrates the successfulness of ourhuman-like

strategy.
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CHAPTER 1

Introduction

1.1 Overview

Relational representation of knowledge makes it possible to perform all the computation

and decision making by means of relational operations in a uni�ed way. The relational

calculus enriched withspecial relational compositionscalled triangle and square products

[3],[4] extends and increases substantially the applicability of fuzzy relations. These non-

associative products were �rst introduced by Bandler and Kohout in 1977 [2],[5],[6] and

are referred to as the BK-products in the literature [7],[8],[9],[10],[11]. In this dissertation,

relational calculus enriched with BK-products will be referred to as BK-relational calculus.

BK calculus of relations together with fast fuzzy relational algorithms and theory

of generalized morphisms [1],[12] have been applied to various practical problems in a

number of scienti�c �elds: computer protection and AI [13], medicine, information retrieval,

handwriting classi�cation, architecture and urban studies, investment and control �elds

[14], generating e�cient search strategies for resolution-based theorem proving. There is

a complete survey in [3] with a list of 50 selected references on the theory and applications.

BK products have several mathematical/notational variants, including matrix form, logic

form, set form, tensor and algebraic/symbolic form. Di�erent applications may use di�erent

forms. Even though they are algebraically equivalent, each of these representations has its

own advantages when it comes to constructing fast and e�cient computational algorithms

(e.g. the set and many-valued logicrepresentations) or to symbolically manipulating the

strings of BK products (e.g. thepredicate forms). As the applicable �elds of BK relational

products evolve, the need for a means to transform among these forms has becomenecessary

and desired. Such a scenario would be: the symbolic formulas of BK relations extracted from

one set of data in one system can be further symbolically manipulated by another system,
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and perhaps, later on, it will need to be translated into a suitable form for computations.

For this reason, this dissertation focuses on developing an automated tool that performs

manipulations and translations between these di�erent mathematical forms and validates

and proves theorems of BK relational calculi.

1.2 Chapter Synopsis of the Dissertation

Chapter 2. Relational Products In this chapter, we present a review on the theoretical

background of the circle and BK relational products1. De�nition of each product

is given in both crisp (boolean values of true or false) and fuzzy forms. We also

summarize special properties of BK relations, including properties of heterogeneous

and homogeneous relations, the closure and interior of relations and how to compute

those in applications.

Chapter 3. Semiotic Descriptors Computing with words is one of the many facets of

fuzzy relational computations. With fuzzy relations, one can handle not only the

mathematical semantics of the logic of relations, but also the semantic informationthat

is carried by the linguistic labels. Semiotic descriptors were introduced by Kohout in

1987 [15] as a means to capture the ontology and epistemology of the relational model

in which the knowledge is represented. This chapter includes basic notions of semiotic

descriptors as well as a glossary of its various categories. It highlights theimportant

roles of semiotic descriptors, both in stand-alone and cross-domain applications.

Chapter 4. Survey of Relational Products Applications This chapter reviews a large

number of BK relational products' applications that have appeared in the literature.

One of their largest applications, CLINAID, a medical data analysis system that assists

physicians in diagnosing diseases and suggesting treatments, is reviewed here. We also

discuss other applications, either �nished or on-going, such as information retrieval,

mobile agents, etc.

Chapter 5. Relational Product Representations After surveying the theoretical back-

ground and the applicable �elds of BK relational products, we focus on the topic of

1In this dissertation, we use BK-products system to refer to bothcircle and BK products, unless stated
otherwise
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BK products representations. Among several mathematical/notational variants, there

are three distinct kinds of notations for BK products that have broadly been used in

various applications. Each of these notations has its unique advantages when it comes

to either symbolically manipulating the BK products or mathematically computing

actual values of relations. In light of the richness of various representationsof BK

products, this chapter discusses a factor that has been hindering the applications of

BK products, which is the possibility of simultaneously using more than one kind of

products representations. In the literature, there is no existing research onhow these

inter-transformations can be done.

Chapter 6. Symbolic Relational Transformations The work presented in this chapter

addresses the matter raised in chapter 5. It focuses on the construction of an automated

tool that allows the inter-transformation among BK products representations. A

detailed description of such a system is given, including it's overall structure, formal

language de�nition and data representation. Modules designs and implementations are

also described here.

Chapter 7. Symbolic Relational Transformations System Testing This chapter de-

scribes the set of tests that have been performed in the above tool.

Chapter 8. Theorem Prover / Checker for Enriched BK Relational Calculi This

chapter presents how we have built a theorem prover / checker for BK relationalcalculi

in t-norm based residuated logic systems (BL) using a term rewriting mechanism. This

theorem prover / checker is the second layer of our automated tool. We describe a

detailed design of our theorem prover / checker, from its knowledge base to rewriting

engine. The brain of our prover / checker is agenerate-and-matchalgorithm. It

generates a derivation tree of a given theorem using the system's rewriting rule and

looks for a matching of the theorem's conclusion with any node in that tree. To improve

the system's performance, we explore a human-like proof strategy and inventtwo new

algorithms for our system which we calldistance-�rst-search and improved distance-

�rst-search. The last section in this chapter is dedicated to these optimization strategies

and implementations.

Chapter 9. Theorem Prover / Checker Experiments We describe various experiments

3



that we have carried out with the prover / checker in both aspects: it's implementations

and it's performance in various applications. Even though the �nal system was

implemented in SWI-Prolog, we also discuss our experiments with Ciao-Prolog in the

process of developing this system. We present how the system is used to prove theorems

of various types, e.g. special properties of relations, classivalence or difunctionality of

relations, generalized morphisms etc., with an emphasis put on the theory of generalized

morphisms and relational inequalities. We provide the basic theory of and motivation

to generalized morphisms which were �rst introduced by Bandler and Kohout in

1977 [6]. Various theorems proved in [16] are those that our theorem prover / checker

should be able to check and prove.

Chapter 10. Conclusions This �nal chapter concludes the works that have been accom-

plished in the dissertation. We summarize the dissertation objectives as well as the

research results according to those objectives. We also discuss and suggest on further

research topics that might have been bene�ted and/or developed from theseresults.

4



CHAPTER 2

Relational Products

2.1 Introduction: The Enriched Theory of Relations

BK-products of relations are used within the Enriched Theory of Relations as de�ned in

[11]. For this reason the transformation tool developed in this work has to comply with this

theory. The theory makes some subtle distinctions that are not common in the standard

literature on relations. For this reason we follow closely the presentation form as introduced

by Bandler and Kohout in 1977 [6]. This applies particularly to expressing the meaning of

relational data types and predicates in English. It will become obvious later (chapter 3) that

these distinctions are essential for transformations between various formsof relations and

for introducing semiotic descriptors by means of predicate formRP of a relation R. This is

important for two reasons:

1. It allows us to have an uni�ed theory of crisp and fuzzy relations as introduced by

Bandler and Kohout in 1977.

2. It makes enriched theory of relations applicable to computing with words that was

introduced by Lofti Zadeh

2.2 What is a Relation?

Given two setsX and Y, one can de�ne a relation between the two sets. A crisp binary

relation from X to Y is given by an open predicate P with two empty slots. When the

�rst slot is �lled with the name x of an element ofX and the second slot is �lled with the

namey of an element ofY, the result will be aproposition, which is either true or false. If the

proposition x P y is true, then we can say thatx is Rp-related to y or that Rp holds between

x and y. In this case, we can writexRpy or simply xRy. Similarly, if the proposition x P y

5



is false, we can say thatx is not Rp-related to y or that Rp does not hold betweenx and y,

and we can writex: Rpy or simply x: Ry. This is called theintensional form of relation.

Example 1. Let X be the setf 2; 4; 7g and Y be the setf 1; 3; 8g. Let P be the predicate

\ greater than ". Then we will have a relation RP from X to Y, in which \ 2 is greater

than 1, 4 is greater than 1, 7 is greater than 3, etc." and \ 4 is not greater than 8, etc.".

The lattice of all binary relations from X to Y is written as B(X  Y).

The satisfaction set or representative setor extension setPS of a relation RP 2 B(X  

Y) is the set of all those pairs (x; y) 2 X � Y for which it holds that:

RS = f (x; y) 2 X � Y jxRyg

It should be noted that the conventional mathematical theory of relations deals only with

satisfaction sets. Hence it deals only relations given by their extension. Names ofpredicates

are, however, used in Zadeh's \computing with words" (CWW) and also when we deal with

semiotic descriptors.

In example 1, the satisfaction set ofR is:

RS = f (2; 1); (4; 1); (7; 1); (4; 3); (7; 3)g

Clearly, RS is a subset of the Cartesian productX � Y. Knowing RP , we know RS;

knowing RS, we know everything aboutRP except the wording of its "name" P . This

issue is important when introducing semiotic descriptors [13],[14],[17],[18], see also Chapter

3 below.

Instead of listing all the pairs in a satisfaction set of a relation, which is rarelyconvenient

or observable, there are several conventional ways to represent a relation.

Notational Convention: Following Bandler and Kohout [6],[4],[2] we drop the sub-

scripts in RS and RP when the meaning is obvious from the context. We shall write

R 2 R (X  Y) and R 2 P (X � Y) or R � X � Y when convenient.

� Arrow diagram . An arrow picture of a relationR 2 R (X  Y) lists all the elements

of X and Y in two columns and draw an arrow fromx 2 X to y 2 Y if xRy.

The arrow picture of example 1 is shown in �gure2.1.

� Incidence matrix . This is a very important representation of relations computation-

ally and conceptually. In this representation type, elements of setX are listed in the

6



12

34

7 8

Figure 2.1: Arrow Diagram Representation of a Relation

row-headings of a table, and elements of setY are listed in the column-headings. Each

cell in the table will represent an element inX � Y. The (x; y) cell will be marked 1

if xRy, and 0 otherwise.

The matrix representation of example 1 is:

R 1 3 8
2 1 0 0
4 1 1 0
7 1 1 0

or

0

@
1 0 0
1 1 0
1 1 0

1

A

� Foreset and afterset . Given a relation R 2 B(X  Y).

The afterset of an elementx 2 X is the subset ofY consisting of all elements inY

that x is related to in R. We have:

xR = f y 2 Y j xRyg:

The foreset of an elementy 2 Y is the subset ofX consisting of all elements inX

which are related toy by R. We have:

Ry = f x 2 X j xRyg:

In example 1, 4R = f 1; 3g; R3 = f 4; 7g.
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2.3 Relations and Operations on B(X  Y)

1. Subrelation . Given two relations R and S. R is a subrelationof S, i� for all x 2 X

and for all y 2 Y, wheneverxRy then alsoxSy. We can also say thatR is contained

in S, or R v S.

8a 2 X; 8y 2 Y(xRy ) xSy)

The result of the v relation is a single-value predicate that can be either true or false.

Example 2. Let relation R be as in example 1. LetS be a relation fromX to Y with

the predicateP0 is is greater of equal to . Then for the two relation R and S, it

is true that R v S.

2. Intersection . Given two relations R and S. The intersection of R and S, written

R u S is a new relation, de�ned by

x(R u S)y () both xRy and xSy

Let R and S be two relations as de�ned in example 2. The intersection of these two

relations is a new relation is equal to .

3. Union . Given two relations R and S. The union of R and S, written R t S is a new

relation, de�ned by

x(R u S)y () xRy or xSy

Let R be the relation de�ned in example 1. LetS be a relation is equal to . The

union of R and S is a new relation is greater of equal to .

There is an important distinction of the v relation from the u and t relations. v is

a predicate that yields valuestrue or false; u and t result in a new relation from the

argument relations.

4. Negation . Given a relation R. The negation ofR is another relation, de�ned by

8



x: Ry () : (xRy)

The negation of a relation is a type of unary operation, that satis�es the following:

(: (: R)) = R

5. Transpose . Given a relation R 2 B(X  Y). Its transpose (also called inverse or

converse)RT is the relation RT 2 B(Y  X ) de�ned by

yRT x () xRy

2.4 Relational Products

Given two relations, sayR and S, one can create a new relationR ? S by applying a binary

operation, taking R and S as its arguments. The? operation is called arelational product,

and the result product ofR ? S is called acomposed relationor a composition.

De�nition Let R and S be two relations: R 2 B(X  Y) and S 2 B(Y  Z ). Let ? be

a two argument operation that takes as its argument relationsR and S that when applied

to its argument yields a new composed relationR ? S 2 B(X  Z ). ? is then called a

relational product and the result of the application of this operation is called a composition

of relations.

There are four important types of relational products. Thecircle product is the usual

associative composition of relations� . The other products are the triangle productC , the

triangle super productB and the square product� . These products were �rst introduced

by Bandler and Kohout in 1977 [6]. They are usually calledBK (Bandler { Kohout) products

[19],[7],[8],[9] in the literature.

2.4.1 The Standard Associative Product of Relation �

Given two relations R 2 B(X  Y) and S 2 B(Y  Z ). The circle product that yields the

composed relationR � S 2 B(X  Z ) is de�ned by either of the two equivalent de�nitions:

1. x i (R � S)zk i� there exists a path in arrow picture fromx i to zk ; or

9



2. x i (R � S)zk () (9yj 2 Y such that x i Ryj and yj Szk).

Figure 2.2: Circle ProductR � S of RelationsR and S

Figure 2.2 above and Figures 2.3, 2.4, 2.5 in the sequel introduce thecone diagramsof

relational products. This convenient graphical form �rst appeared in the context of using BK-

products in fuzzy information retrieval and in representation of medical knowledge [20],[21].

It has been very useful in communicating the meaning of relational semiotic descriptorsto

non-mathematicians, medical experts [22],[23] and engineers.

2.4.2 Triangle Sub-product

Given two relations R 2 B(X  Y) and S 2 B(Y  Z ). The triangle sub-product (or

subtriangle product) R C S is de�ned by:

x i (R C S)zk () x i R � Szk :

2.4.3 Triangle Super-product

Given two relations R 2 B(X  Y) and S 2 B(Y  Z ). The triangle super-product (or

supertriangle product)R B S is de�ned by:

x i (R B S)zk () x i R � Szk :

10



Figure 2.3: Sub-triangle ProductR C S of RelationsR and S

Figure 2.4: Super-triangle ProductR B S of RelationsR and S

2.4.4 Square Product

Given two relations R 2 B(X  Y) and S 2 B(Y  Z ). The square productR� S is

de�ned by:

x i (R� S)zk () x i R = Szk :

2.4.5 Fuzzy BK Products

For fuzzy relations, thedegree to whichx i stands in the product-relation tozk is given by the

degree to whichthe de�ning relation holds true. For overlapping, this is the degree to which

the intersection of the two sets is non-empty, which is the greatest degree ofmembership of

any yi in it. for subsetness and supersetness, it is the least degree to which the membership

11



Figure 2.5: Square ProductR� S of RelationsR and S

in one setimplies the membership in the other, and depends crucially on the choice offuzzy

implication operator (Bandler and Kohout [24]). For set equality it depends on the least

degree to which membership in one set implies the membership in the other and vice versa{

a mutual implication operatoror equivalence operator. The resultant formulas are as follows.

For �nite sets supj and infj can be replaced by maxj and minj .

� (R � S) ik = supj (min (Rij ; Sjk )).

� (R C S) ik = inf j (Rij ! Sjk ).

� (R B S) ik = inf j (Rij  Sjk ).

� (R� S) ik = inf j (Rij � Sjk ) = min ((R C S) ik ; (R B S) ik ).

Product Type Many-Valued Logic Formula
Circle (R � S) ik = _ j (Rij ^ Sjk )
Sub-triangle (R C S) ik = ^ j (Rij ! Sjk )
Sup-triangle (R B S) ik = ^ j (Rij  Sjk )
Square (R� S) ik = ^ j (Rij � Sjk )

Using other many-valued logic connectives for̂ and ! , a wide variety of di�erent

relational products can be de�ned. We have the following de�nitions represent the fuzzy

degrees to which the respective statementsx i Ryj ; yj Szk are true.

By choosing appropriate many-valued logic (MVL) operations for the logic connectives

in the above de�nitions of products, the Boolean (crisp) case extends to a wider variety

of many-valued logic based (fuzzy) relational systems (Bandler and Kohout [25], [26], [3]).
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Table 2.1: Fuzzy Implications

No. Opr. Name De�nition

1. S# Standard Sharp a 1! b=
�

1 i� a 6= 1 or b= 1
0 otherwise

2. S Standard Strict a 2! b=
�

1 i� a � b
0 otherwise

3. S Standard Star a 3! b=
�

1 i� a � b
b otherwise

4. G43 Gaines 43 a 4! b= min (1; b
a )

4'. G43' Modi�ed Gaines 43 a 40

! b= min (1; b
a ; 1� a

1� b)

5. L Lukasiewicz a 5! b= min (1; 1 � a + b)

5.5 KDL Reichenbach a 5:5! b= min (1; 1 � a + ab)

6. KD Kleene-Dienes a 6! b= (1 � a) _ b

7. EZ Early Zadeh a 7! b= ( a ^ b) _ (1 � a) = ( a 6! b) ^ �a
�a = (1 � a) _ a

8. W Willmott a 8! b= ((1 � a) _ b) ^ (a _ (1 � b) _ (b^ (1 � a)))

= ( a 7! b) ^ �b

= ( a 6! b) ^ �a ^ �b
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Using either inf or min operator for the outer connective^ in the square and triangle

products yields theharsh family of products. Using thesum for the outer connective and

normalizing the sum appropriately yields themeanfamily of products. The details of choice

of appropriate many-valued connectives are discussed in (Bandler and Kohout [25], [4], [26],

[3], Kohout and Kallala [27]).

Table 2.1 lists di�erent many-valued logic implications.

2.4.6 Representation of Conceptual Structures by Products

The BK-products can be used to compare relational structures. IfR is a relation from X to

Y, we call RT the transposedrelation (from Y to X ), in which y is related to x if and only

if x is related to y by R. In this case, if we are taking the products betweenR and S, the

result relation will be a new relation fromX to X itself. This special kind of relations is

called homogeneousrelations.

Let X be a set ofobjects, and let Y be a set ofproperties [28],[29]. Given a relation R

from X to Y then if xRy, we shall say thatobject x possesses property y, and if x: Ry then

object x does not possess property y. Lets consider the semantic meaning of relationsR ? RT .

x i (R � RT )x j object x i shares at least one property with objectx j

x i (R C RT )x j object x i 's properties are among those of objectx j

x i (R B RT )x j object x i 's properties include all those of objectx j

x i (R� RT )x j object x i 's properties are exactly the same as objectx j

In comparison of relational structures, special properties of relations playan important

role. For example, the composed relations given in the table above may contain an ordering

of objects according to the properties that they possess, or an orderingof properties [25]. The

� -product may reveal, for example, some equivalence between objects or between properties

[5].

The exact meaning ofobjects and properties can vary among di�erent applications:

engineering [18],[30], medical [31]; theorem proving [32].
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2.5 Special Properties, Closures and Interiors of
Relations

These mathematical notions are important in computing orderings of relations as well

as tolerances, similarities and equivalences. The standard mathematical literatureand

textbooks talk about relations with properties, such as re
exive relations, tolerances and

equivalences. To be precise, these meansglobal re
exivities, global tolerances, global

equivalences. Global properties are not always adequate when we compute relational

properties of relations given by incomplete or corrupted data, or where not all objects of

our experimental sample have the same properties. In order to get correctresults, local

properties, e.g. local re
exivity, local tolerance, local equivalencehave to be introduced.

Local properties have been �rst introduced for fuzzy relations by Bandler andKohout in

1982 [1],[12].

2.5.1 Homogeneous and Heterogeneous Relations

De�nition 1 Any relation between two di�erent setsR 2 R (X  Y) is called heteroge-

neous relation. Any relation on a single set, e.g. from a setX to itself, is calledhomogeneous

relation or a relation \on X ".

2.5.2 Special Properties of Heterogeneous Relations

De�nition 2 Given a heterogeneous relationR from X to Y.

(1) R is covering if and only if (8x 2 X ); 9y 2 Y such thatxRy.

(2) R is onto if and only if (8y 2 Y); 9x 2 X such thatxRy.

(3) R is univalent if and only if (8x 2 X ), if xRy and xRy0 then y = y0.

(4) R is separatingif and only if (8y 2 Y), if xRy and x0Ry then x = x0.

Combining these four basic properties, one can obtain other composed properties. For

example, the well-known propertyfunctional is a combination ofcoveringand univalent.

The self-inverse circle product is very useful in the characterization of special properties

of relations between two distinct sets. The following proposition con�rms this:

Proposition [6] Propos.1.4.3; see also [11].

Special properties of a heterogeneous relationR 2 R (X  Y).

(1) R is covering if and only ifEX v R � R� 1.
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(2) R is univalent if and only if R� 1 � R v EY .

(3) R is onto if and only if (for all) EY v R� 1 � R.

(4) R is separating if and only ifR � R� 1 v EX .

Here,EX and EY are the left and right identities, respectively.

2.5.3 Special Properties of Homogeneous Relations

It is very often that not all of the elements of the universeX participate in a relation of

interest. This fact, however, should not eliminate the properties which the relation may have

on its e�ective domain. Thus, the local properties are important characteristics of relations

[1].

The De�nition that follows is adopted from Bandler and Kohout, references [6] for crisp

relations and [12] for fuzzy relations. An earlier paper of Bandler and Kohout [1] (on

fuzzy closures and interiors of relations) provides �ner distinctions for fuzzy re
exivity. It

distinguishes local re
exivity, re
exivity, local ultrare
exivity and ultrare
exivit y.

De�nition 3 [6],[12] Given a homogeneous relationR on X .
(1) R is covering , every x i 2 X is related byR to something

, 8 x i 2 X; x i R 6= ;
, 8 x i 2 X; 9x j 2 X such thatx i Rx j = 1

(2) R is locally re
exive , if x i is related to anything or if anything
is related to x i then x i is related to itself
, (x i R [ Rx i 6= ; ) x i 2 x i R)
, 8 x i 2 X; x i Rx i =

W
j (x i Rx j _ x j Rx i )

(3) R is re
exive , if R is covering and locally re
exive
, 8 x i 2 X; x i Rx i = 1
, EX v R

(4) R is transitive , R2 v R.
(5) R is symmetric , RT = R

, R = R t RT

, R = R u RT

(6) R is antisymmetric , R u RT v EX

(7) R is strictly antisymmetric , R u RT = 0X .

The above de�nitions of special properties equally apply to crisp [6], and fuzzy [11]

relations. Each di�erent fuzzy system of connectives will de�ne a di�erent fuzzy theory of

relations. This is determined by the choice of a t-norm and a t-conorm that are usedfor

de�ning the intersection u and union t of relations. Special properties and their closures

and interiors using connectivesmin and max are treated in considerable detail in [1],[2].
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Table 2.5.3shows the complete properties combined by the properties de�ned above.

Table 2.2: Classi�cation of Properties of Crisp and Fuzzy Relations [1],[2].

Locally Anti- Strictly anti-
Covering re
exive Transitive Symm. symm. symm.

Local tolerance + +
Tolerance + + +
Local preorder + +
Preorder + + +
Local equivalence + + +
Equivalence + + + +
Local order + + +
Order + + + +
Strict order + +

It is very often that not all of the elements of the universeX participate in a relation of

interest. This fact, however, should not eliminate the properties which the relation may have

on its e�ective domain. Thus, the local properties are important characteristics of relations.

For fuzzy relations, the distinction between local and global properties was �rst introduced

by Bandler and Kohout in [1]. In this paper Bandler and Kohout also demonstrated the

importance of distinguishing three basic kinds of re
exivity: local re
exivity, local ultra-

re
exivity and global re
exivity for de�ning local properties.

Special properties of fuzzy relations The special properties of crisp relations can be

generalized to fuzzy relations. Unfortunately, with exception of Bandler and Kohout, and

also H•ohle, references treat only global properties of relations. There aremany references

dealing with global fuzzy properties. A very useful introduction is provided in the following

papers: on fuzzy equivalences, with some discussion of fuzzy partitions (Klir and Yuan [33],

Bezdek and Harris [34], Ovchinikov [35]), tolerances (H•ohle [36], Rundensteiner et al. [37]. In

the literature on fuzzy sets, fuzzy equivalences are often calledsimilarities. This terminology

stems from the �rst paper on fuzzy relational properties, published by Zadeh in 1971 [38]).
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2.5.4 Closure and Interior of Relations

There are several importantclosureand interior operators on relations, endowing them with

desirable properties they may lack to begin with. This is succinctly formulated by Bandler

and Kohout [12]:

Verbally, where P is any property which a relation R on X may have or fail to

have, theP � closureof R is de�ned to be theleast inclusive relationS containing

R and possessingP. Dually, the P � interior of R is the most inclusive relation

Q which possessesP and is contained inR.

De�nition 4 [12] Given P is any property which a fuzzy relation R on X may have or fail

to have, S is the P-closure of R, i� S satis�es all of the following

(1) S has property P

(2) R v S

(3) If R v T and T has property P, then Sv T.

It is clear that a P-closure, if it exists, must be unique. We then have:

Corollary 5 A relation R possesses property P if and only if R is equal to its own P-closure.

The following meta-theorem was proved by Bandler and Kohout [12].

Theorem 6 A P-closure exists for all R on X if and only if both

(1) The universal relation UX possesses property P, and

(2) The intersection of every non-empty family of relations, each of which possesses P,

also possesses P.

De�nition 7 [12] Given P is any property which a relation R on X may have or fail to

have, Q is the P-interior of R, if and only if Q satis�es all of the following

(1) Q has property P

(2) Q v R

(3) If M v R and M has property P, then Mv Q.

It is clear that a P-interior, if it exists, must be unique. We then have:

Corollary 8 A relation R possesses property P if and only if R is equal to its own P-interior.
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The following meta-theorem was proved by Bandler and Kohout [12].

Theorem 9 [12] A P-interior exists for all R on X if and only if both

(1) The null relation OX possesses property P, and

(2) The union of every non-empty family of relations, each of which possesses P, also

possesses P.

Now that we have the de�nitions of closure and interior, and the necessary su�cient

conditions for those closure and interior that exist for every relationR on X , we need

another pair of de�nitions before we can state the theorem that gives explicit expressions for

closure and interior operators on special properties of relations.

De�nition 10 [12] Given any relation R on X,

(1) The row-solipsismof R is the relation given by

8i; j 2 J; x i (rowsol R)x j = x i Rx i .

(2) The col-solipsismof R is the relation given by

8i; j 2 J; x i (colsol R)x j = x j Rx j .

Theorem 11 [12]

(1) The local re
exive closure of R is

locref clo R = R t ER .

(1') The local re
exive interior of R is

locref int R = Ru rowsol Ru colsol R.

(2) The symmetric closure of R is

sym cloR = R t RT .

(2') The symmetric interior of R is

sym int R = R u RT .

(3) The local tolerance closure of R is

loctol clo R = locref clo(sym cloR) = sym clo(locref cloR).

(3') The local tolerance interior of R is

loctol int R = locref int(sym int R) = sym int(locref int R).

(4) The transitive closure of R is

tra clo R = R t R2 t R3 t � � � =
k2 Z
t Rk .
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(5) The local preorder closure of R is

locpre cloR = locref clo(tra clo R) = traclo(locref cloR).

(6) The local equivalence closure of R is

locequ cloR = tra clo(sym clo (locref cloR)) = tra clo(locref clo (sym clo(R))

= locref clo (tra clo(sym clo R)) = tra clo(sym clo R).

(7) The re
exive closure of R is

ref clo R = R t EX .

(8) The tolerance closure of R is

tol clo R = ref clo(sym cloR)=sym clo(ref cloR).

(9) The preorder closure of R is

pre clo R = ref clo(tra cloR)=tra clo(ref clo R).

(10) The equivalence closure of R is

equ cloR = tra clo(tol clo R)=tra clo(sym clo(ref clo R))

= tra clo(ref clo(sym clo R)) = ref clo(tra clo(sym clo R)).

Alpha-cuts of Fuzzy relations. It is often convenient to study fuzzy relations through

their � cuts. For any � 2 [0,1), the � cuts of a fuzzy relationR is the crisp relationR� given

by

(R� ) ij =
�

1 if Rij � �
0 otherwise

Cutworthiness (Bandler and Kohout [39], [40]) is an useful criterion in choosing appro-

priate fuzzy extensions of crisp de�nitions of properties. It guarantees the compatibility of

families of crisp relations with their counterpart (the original relation on which the � cut

have been performed). Let consider the following de�nition:

De�nition 12 A property P is cutworthy i� it is true that a fuzzy relation R possesses P

if and only if every � -cut of R possesses P.

Cutworthiness in particular singles outmax-min transitivity as the appropriate extension

of crisp transitivity in contrast to max-producttransitivity.

For relations with special properties (e.g. transitivity, re
exivity, symmetry etc.) cuts

commute with closures (Bandler and Kohout [39]). We have:

refclo (R� ) = ( refcloR )�
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traclo(R� ) = ( tracloR)�

symclo(R� ) = ( symcloR)�

This follows from the general theorem (Bandler and Kohout [40]):

Theorem 13 Cuts commute with closures.

If P is cutworthy and closeable, then for allR 2 B(X ) and all � 2 [0,1], the � -cut of the P-

closure of R is the same as the P-closure of the� -cut of R, that is (P � cloR)� = P � clo(R� ).

As the consequence of this, a whole family e.g. crisp nested equivalences or preorders

can be represented by a single fuzzy equivalence or preorder, respectively. The theorems on

commutativity of cutworthiness and closeability provide the theoretical basis that guarantees

the correctness of fuzzy relational computations.

Other papers (Bandler and Kohout [1], [2], Kohout and Bandler [12]) also contain

a number of interesting formulas specifying the equivalent de�nitions of the composite

relational properties. These are very useful in the computations, and forms bases for the

fast relational algorithms. A typical example is the following formula for thelocal preorder

closure:

locprecloR= locrefclo(tracloR) = traclo(locrefcloR)

It can be seen that this formula gives two ways of computing thelocal preorder closure

which are equivalent mathematically, but may be di�erent from the point of view of

computational complexity. A number of such useful formulas for determining the closures and

interiors for various compound relational properties are given by Kohout and Bandler [12],

[1].

Fuzzy partitions, fuzzy clusters and fuzzy hierarchies. Via their � -cuts, fuzzy local and

global equivalences provide precisely the nested families of partitions in and on a set which

are required by the theory and for the applications in taxonomy envisaged by Bor�uvka [ 41].

Fuzzy local and global tolerances similarly provide families of tolerance classes for the cluster

type of classi�cation which allows overlaps. Fuzzy local and global orders furnish nested

families of hierarchies in and on a set, with their accompanying families of Hasse diagrams

(Kohout [11]).

As said above, it is often that one can not determine an absolute assertion or denial of a

property of a relation on the universeX . But it is usually very helpful if one can assess a
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degreeto which the relation possesses the property. Comparing a relation's property with it

closures or interiors can help determine a degree to which the relation succeeds or fails that

property.

Certain computations lead to a relation which can be expected to approximate to a local

preorder. Several applications in the �elds of medicine, clinical models, and hand writing

classi�cation, etc., had used the local preorder closure of a relation instead ofthe original one

if the degree to which a relation is local preorder is high enough. Bandler and Kohout [12]

give fast algorithms for computing transitive closures, local preorder closures and preorder

closures.

Fast algorithm for local preorder closure. We assume that the cardinality of the universeX

is n.

1. ComputeT0 = locref col R = ER t R.

2. ComputeT1 = T2
0 ; T2 = T2

1 ; � � � ; Ts = T2
s� 1, until Ts = Ts� 1 or 2s � n.

3. Then locpre cloR = T.

Instead ofn computations ofER t Rt R2t� � �t Rn , we need at most log2(n) computations.

This algorithm requires signi�cantly fewer matrix max-min `multiplications' than the direct

computation.

Fast algorithm for transitive closure.

1. Find Ts = locpre clo R using the algorithm above.

2. tra clo R = Ts � R.

Fast algorithm for prerorder closure. Use either one of the above algorithms, and then take

the union of EX with the result; or changeER to EX in the �rst algorithm.
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CHAPTER 3

Semiotic Descriptors

3.1 Basic Notions

The essential facet of the fuzzy approach is the fact that fuzzy relations can manipulate

semantic information that is carried by linguistic labels. Conditions imposed on logic

operations applied to fuzzy relational systems are, however, strictly mathematically de�ned.

Such mathematically de�ned semantics of the logic of relations is necessary, but it is not

su�cient to deal satisfactorily with the meaning of linguistic labels that carry the conceptual

meaning of intended applications.

To be able to carry out the three steps of relational modeling requires adopting some

minimal ontology. The ontology tells us what kinds of things, elements or entities we shall

be using in our computational models. This is always required, whether or not we use

linguistic statements or quantized numerical statements in our computational models. In

order to capture the ontology in linguistic terms we use semiotic descriptors as de�ned

in the methodology of Activity Structures [29],[13],[28] which has been motivated by the

approaches used General Systems studies [42],[43],[44].

The purpose of semiotic descriptors is to capture the ontology and epistemology ofthe

relational model in which the knowledge is represented. The basic ontological categories

of semiotic descriptors are:objects, qualities and relationships. Each category may contain

various kinds of semiotic descriptors as we shall see from the Glossary given in the sequel.

The essential facet of the fuzzy approach is the fact that fuzzy relations can manipulate

semantic information which is carried by linguistic labels. The notion of semiotic descriptor

helps in systematizing the kinds of linguistic variables used in fuzzy sets approaches to

modeling.

One may ask why do we need semiotic descriptors in relational models. Indeed, conditions
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imposed on logic operations applied to fuzzy relational systems are strictly mathematically

de�ned. Such mathematically given semantics of the logic of relations is necessary, butit

is not su�cient to deal satisfactorily with the meaning of linguistic labels which carry the

conceptual meaning of applications. It has to be supplemented by some semiotic notions

that can be expressed as algebraic restrictions over the basic fuzzy relational system. The

carrier of these semiotic notions is the system of semiotic descriptors. This leadsus to the

following de�nition.

Semiotic Fuzzy Knowledge Representation Structureconsists of the pair of structures,

namely < FRS, SD > . FRS is Fuzzy Relational Structure consisting of a family of fuzzy

relations, and SD is collection of semiotic descriptors [13],[29]. Semiotic descriptors can be

classi�ed into the basic kinds. These kinds are brie
y characterized in the Glossary that

follows.

3.2 Glossary: Basic Kinds of Semiotic Descriptors

Element: Any thing that forms a coherent whole capable of potential or actual being. We

shall recognize four important kinds of elements: object, agent, property and situation.

Presentation: Element can appear as apresentationin form of a symbol in a text (as used

in XML), or a cognitive image by another kind of element (agent) as under
ow of stream of

experience.

Object: An abstract or concrete thing (element) that is characterized by properties.

Composed object: An object composed of other elements mutually related (organized in

some structure). Computer science object as it appears in object-oriented programming is

a special kind of composed object in our terminology.

Atomic object: Object that is not composed, when viewed at a particular resolution level

(level of granularity).

Property: Basic characteristic, a relationship between properties. De�nes objectsby

intension. Composed property is de�ned by a logic expression that takes as its arguments

atomic properties.

Attribute: Property (or a composed property) that is chosen according to a speci�c

selection criterion.

Agent: A thing (element) that can take actions on objects and properties and is a meta-

object with respect to objects and properties [45].
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Subject: A thing (element) of kind object that can take actions on other objects [46].

Situation: It is an n-ary relation that connects a class of objects with some other kindsof

elements.

Scenario: A sequence or aggregation of situations viewed from the perspective of ameta-

agent.

Basic kinds of semiotic descriptors: Object, property, agent, situation are the basic

kinds of semiotic descriptors. They can be used as elements in texts.

Activity: An activity is composed of actions. An activity is determined by therepertory of

actions, and the classes of participants. Participants may be objects and/or agents.

Meta-Agent: A meta-agent forms ascenariousing four basic kinds of semiotic descriptors:

object, property, agent and situation. Meta-Activities are activities of meta-agents.

3.3 Semiotic Descriptors as General System
Constructs

In the course of relational computations, any simple formula such asx((R B S)� T))u (1),

could be an input, output, or some intermediate formula of a computing process. In (1),

not only the information about the middle relation, namely the domain and range ofS,

is missing, but also we don't have any idea about the �rst and third relations,R and T,

either. The given formula is well de�ned in term of mathematical computation, but it is

lack of semantic meaning of linguistic labels that carry the conceptual meaning of intended

applications.

Various applications can share the same mathematical formulas like (1), yet the linguis-

tic meaning that each of the formula bears can totally di�er among those applications.

Because of the similarity in the mathematical computations, di�erent applications can

share a common computational algorithm to carry out similar tasks. It is the semiotic

descriptors that help to di�erentiate / distinguish these computations in di�erent contexts

and applications. The idea of multiple systems that serve vastly di�erent purposes and

that each system employs di�erent knowledge structures, can share identical\empty shell"

structure, is formally captured by the notion ofGeneral Systems Constructs[47, 48]

Partial work of Chan-Sook Noe [49] illustrates the idea of structural transferability across

contexts, environments, knowledge domains, etc.. Three (sub)systems were considered: (1)

Diagnosis Unit, (2) Treatment Recommendation Unit (both are units of CLINAID), and (3)
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Value Analysis model. In each system, the knowledge domain is captured by it's semiotic

descriptors.

3.3.1 Semiotic Descriptors in CLINAID's Diagnosis Unit

In this section, we present as an example the role of semiotic descriptors in de�ning and

developing the Diagnosis Unit in CLINAID [50, 51, 49].

Semiotic Descriptors of Basic Sets

All the sets entering into the fuzzy relations of the Diagnosis Unit have the following medical

meaning (semiotic descriptors):

Name A set of
B : : : body systems;
C : : : generalized costs;
D : : : speci�c diseases;
G : : : general diseases;
I : : : investigations;
J : : : investigation results;
P : : : patients;
S : : : signs and symptoms;
Y : : : syndromes.

Semiotic Descriptors of Relations

Name De�nition A set of
IC : : : R (I ! C) Investigations to Generalized costs;
PS : : : R(P ! S) Patients to Signs and symptoms;
SB : : : R(S ! B) Signs and symptoms to Body systems;
PB : : : R(P ! B) Patients to Body systems;
BY : : : R(B ! Y) Body systems to Syndromes;
PY : : : R(P ! Y) Patients to Syndromes;
GI : : : R (G ! I ) General diseases to Investigations;
P I : : : R (P ! I ) Patients to Investigations;
etc. etc. etc.

3.3.2 Semiotic Descriptors in CLINAID's Treatment Recommen-
dation Unit

In this section, we present as an example the role of semiotic descriptors in de�ning and

developing the Treatment Recommendation Unit in CLINAID [49].
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Semiotic Descriptors of Basic Sets

All the sets entering into the fuzzy relations of the Treatment Recommendation Unit have

the following medical meaning (semiotic descriptors):

Name A set of
C : : : generalized cost of the treatments and medications;
P : : : patients;
T : : : treatments and medications;
TF : : : prohibited treatments and medications (TF � T);
Tapplicable : : : applicable treatments and medications (Tapplicable � T);
etc. etc. etc.

Semiotic Descriptors of Relations

Name De�nition A set of
PT : : : R(P ! T) Patients to Treatments and medications;
TC : : : R(T ! CT ) Treatments and medications to

Generalized costs;
TTW : : : R(T ! TW ) Treatments to Con
icting

treatments and medications;
PTapplicable : : : R(P ! Tapplicable ) Patients to Applicable

treatments and medications;
etc. etc. etc. etc.

3.3.3 Semiotic Descriptors in Value Analysis

Semiotic Descriptors of Basic Sets

All the sets entering into the fuzzy relations of the Value Analysis Model [52] have the

following medical meaning (semiotic descriptors):

Name A set of
A : : : Artifacts or objects;
B : : : Systems of functions;
C : : : Generalized;
I : : : Investigations (quality tests, etc.);
P : : : Part or Component;

functional sign;
U : : : Usability measure;
V : : : Variant of a substratum unit/module (e.g. a part);
Y : : : Composed attributes, functional characteristics
etc. : : : etc.
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Semiotic Descriptors of Relations

Name De�nition A set of
AB : : : R (A ! B) Artifacts to Systems of functions;
BP : : : R(B ! P) Systems of functions to Parts;
PC : : : R(P ! C) Parts to Generalized costs;
PY : : : R(P ! Y) Parts to Functional characteristics
V Y U : : : R(V � Y � U) between Variants of a part,
PV C : : : R(P � V � C) between Parts, Variants of a part,

and cost;
PV Y : : : R(P � V � Y) between Parts, Variants of a part,
etc. . . . etc. etc.

Table 3.1: Correspondence of Semiotic Descriptors of Sets across Knowledge Domains

[49]

General Systems Diagnostic Treatment Value
Constructs: Unit Recommendation Analysis

Meta-constructs [50, 51] Unit [ 49, 53, 54] [52]

Object Type I P P A
(Patients) (Patients) (Artifacts)

Function G B
(General Diseases) (Functions)

Object type II I T P
(Investigations) (Treatments) (Parts)

Cost C C C
(Generalized Costs) (Generalized Costs) (Generalized Costs)

Noe showed that despite di�erences in their knowledge domains, the three systems

described above can adapt a similar selection algorithm for its own purposes.The transfer-

ability across knowledge domains is feasible because there is a correspondence of semiotic

descriptors of basic sets across the three knowledge domains in term of meta-constructs (i.e.
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Table 3.2: Correspondence of Semiotic Descriptors of Relations across Knowledge Domains

[49]

Diagnostic Unit Treatment Recommendation Unit Value Analysis
[50, 51] [49, 53, 54] [52]

PG AB i

(Working Diagnoses (Required Functions)

GI B i Pi

(Available Investigations (Available parts for)
for General Disease) Required Functions)

P I f PT; PTavailable ; PTpermitted APi

PTpotential ; PTapplicableg
(Applicable Investigations) (Applicable Treatments) (Applicable Parts)

IC TC Pi C
(Generalized cost (Generalized cost (Generalized cost
of Investigations) of Treatments) of Parts)

II TT Pi Pi

(Hierarchies (Hierarchies (Hierarchies
of Investigations) of Treatments) of Parts)

General Systems Constructs that are relevant to statements that are valid at higher levels

of abstraction or generality [47]). Table 3.1 and table 3.2 [49] show these correspondences.

This similarity yields a general selecting algorithm for all three systems. We have sum-

marized this in table 3.3 shown below. Even though the knowledge domains might share no

common and the applications in those domain might share the same computational process.

This is an example of how the same relational computational procedure can be applied to

di�erent knowledge domains in di�erent systems. What make them distinguishable from one

another in the process of computation is nothing else but theirsemiotic descriptors.
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CHAPTER 4

Survey of Relational Products Applications

The previous chapter was concerned with the symbolic, semiotic level of the use ofBK-

products. This chapter deals with extracting relational structures from empirical data. In

this pursuit, the use of BK-products together with the methods for computing closures and

interiors of fuzzy relations is essential. It should be realized, that the relational structures

and properties can be correctly identi�ed from experimental data, if the algorithms used for

this purpose can deal not only with global but also with local properties of relations.

The BK-products and the fast algorithms based on the mathematics of closures and

interiors of fuzzy relations described above in Chapter 2 were applied to a number of practical

problems in various scienti�c �elds. For example, in medical diagnostic inference (Bandler

and Kohout [55], [25], Kohout et al. [56]), in symptom comparison (Kohout and Kallala [23]),

information retrieval (Kohout et al. [20], Bandler and Kohout [57], Kim [58]), hand writing

classi�cation (Kohout and Kallala [23]), etc..

4.1 Applications in Medical Data Analysis

Medical data analysis is one of the earliest practical �elds that the study of BK relational

products aims at. Kohout and Bandler [55] and [25] emphasize that the asymmetric property

of BK relational products, in contrast to the symmetric property of correlations, is essential to

the investigation of hierarchical dependencies among di�erent components of the investigated

data. Particularly, the use of fuzzy possibilistic theory and fuzzy relational products in the

analysis of medical data show that the pro�le of an individual patient or a small group of

patients, which might not be enough data for statistics, can be analyzed in a meaningful

way.

The analyzed medical data was taken from Parkinson patients, observed by two physio-
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therapists over a period of ten weeks at University College Hospital, London (Kohout and

Bandler [25]). In this study, the similarities and di�erences of mental constructs of two

physiotherapists who were participating in a common situation, e.g. dealing with the same

group of disable Parkinson patients, were successfully detected.

On each session, each of the patients was assessed independently by each of the therapists,

with respect to 8 attributes. The names of theconstruct ci is given to the positive aspect of

these assessments, andsymptom: ci is given to the negative aspect.

List of symptoms List of constructs

: c1: disable c1: almost normal ability
: c2: di�cult to cope with c2: easy to cope with
: c3: dependent c3: independent
: c4: apathetic and unconcerned c4: interested and exploring
: c5: rejecting advice c5: accepting advice
: c6: very ill c6: almost healthy
: c7: depressed c7: cheerful
: c8: anxious and worried c8: calm and secure

Then, the degree of each sign is assessed. This assessment in converted into the fuzzy

matrices. These matrices give the degree to which patients and constructs arerelated. For

example, the result of the assessment of therapistsa, is a relation R(a) given by a matrix of

which the ij -componentR(a)
ij denotesthe degree to which the constructCi is attributed to the

patient Pj . The inversion relation ofR, R(a)T is then a relation from patients to constructs,

whereR(a)T
ij denotesthe degree to which patientPj was considered to exemplify constructCi .

Given two relations R(a) and R(a0)T , wherea and a0 can be two di�erent therapists, two

extremely interesting comparisons can be made using two triangle products of the relations.

� U(a0a) = R(a0)T C R(a) is a relation from patients to patients. Ui j denotesthe degree to

which the attribution (by therapists a') of constructs toPi implies their attribution (by

therapists a) toPj .

� W (aa0) = R(a) C R(a0)T is a relation from constructs to constructs. Wi j denotesthe

degree to which the attribution bya of Ci implies the attribution bya0 of Ck .

Computational result of U reveals a fact that a speci�c patient is a universal sink, i.e.

32



what therapist a0 attributes to anyone, therapist a attributes to her, but what therapists

a0 attributes to her, therapist a need not attribute to anyone else. Computational result of

W indicated that according to therapist 2, \independence" was independent of the other

constructs, while \ability" implies all the others. The relational analysis even reveals that

one of the therapists had better understanding of the problems speci�c to Parkinson patients

than the other therapist had.

This study also showed that di�erent fuzzy implication operators might have di�erent

semantic meanings, and the use of them can lead to di�erent views of the analyzed data.

Another signi�cant application of relational products in the medical �eld is the use of

BK-products for diagnostic inference in a medical knowledge-based system called CLINAID

(Kohout et al. [56], [50]). It is a knowledge-based system for medical diagnosis and treatment

recommendation.

CLINAID uses classi�cation knowledge in order to diagnose diseases. The inferential

process is performed in a hierarchical or heterarchical manner, involving the following seven

levels:

1. Symptoms and Sign Level

2. Risk Factors Level

3. Body System Level

4. Syndrome Level

5. General Disease Level

6. Speci�c Disease Level

7. Aetiological Level

At each level of the diagnostic process, di�erent fuzzy relations are used toperform the

inference because the purpose of each fuzzy relation is di�erent. Hence internal information

within each relation may also di�er. For example, the use of symptoms and signs at the

Body System level and the Syndrome level are not identical. At the Body System level,

\symptoms" and \signs" represent the symptoms and signs of the whole human body, thus

forming a relation which can identify possible body systems. At the Syndrome level, onthe
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other hand, symptoms and signs represent the symptoms and signs a syndrome consists of,

thus forming a relation which can identify relevant syndromes. All this can be formalized

and expressed as a stream of relational computations. The conceptual contents of the levels

and their mutual interactions are expressed by means of mathematical relationsto which

further structural and dynamic constraints are added by means of semiotic descriptors.

4.2 Applications in Information Retrieval

Studies in fuzzy relational products revealed that they are especially adequate tosolve the

problem of automatic documentary information retrieval. In one of the beginning papers on

this application of fuzzy relational products (Kohout et al. [20]), the authors discussed the

similar nature between fuzzy sets and relations's characteristics and the information retrieval

systems' needs. First, in information retrieval, users usually want to �nd those items which

particularly match the request and then select from those a few of the best matches. This

naturally leads to the need of \fuzzy matching". Second, the queries in information retrieval

are invariably incomplete. Thus, we can only search for relevant documents, notexactly

match ones. Third, one would want to have a polythetic classi�cation of documents,in

which each individual in a class possesses only part of the attributes possessed by all the

members of that class (Kohout and Bandler [57]). What is involved in fuzzy information

retrieval of documents can be expressed by the following four items:

1. A set D of documentsd.

2. A set T of terms t j (for example keywords).

3. A document-termrelation R 2 R (D  T). Then Rij is the degree to which document

di treats term t j , i.e. the degree of relevance of termt j to document di .

4. A set S of search requestssk .

The super-triangle and sub-triangle products of relationR and its transposeRT play the

most important role in information retrieval.

� RT C R is a relation fromterms to terms, where (RT C R) ij denotes the degree to which

the presence oft i implies the presence oft j . This also means the degree to which term

t i is more speci�c than termt j .
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� RT B R is also a relation fromterms to terms, where (RT B R) ij denotes the degree to

which term t i is broader than termt j .

� RT � R denotes the degree to which the relevance of termt i matches the relevance of

term t j .

With these products, the thesaurus of terms is established. This thesaurus is used for

processing the relational requests. These relational requests relate to thethesaurus. They

return lists of index terms. Given a speci�c term, a list of broader terms will be returned and

vice versa. Another type of request in an information retrieval system is the fuzzy search

request. They relate to documents. The results of this type are lists of documents. Given a

speci�c terms, a list of documents that treat this terms will be returned.

The fuzzy information retrieval technique described above was applied speci�callyto the

library information retrieval domain. Similarly, another use of this technique was introduced

by Youn-Gi Kim [58] in the theorem prover domain. A fuzzy information retrieval scheme is

used to replace the heuristic weighting strategy, which is dependent on the users'knowledge

of the theorem or intuition, employed in resolution-based automated reasoning. Inthis case,

the following items are constructed:

1. A set D of clausesd.

2. A set T of descriptorst j (for example terms and literals).

3. A clause-descriptorrelation R 2 R (D  T). Then Rij is the degree to which clausedi

is related to descriptort j , i.e. the degree of relevance of feature described by descriptor

t j to clausedi .

Then, the BK-products and fast fuzzy relational algorithms are used in a fuzzy infor-

mation retrieval (FIR) procedure to build a fuzzy thesaurus, which is a hierarchy ofthe

properties (terms and literals). Based on this thesaurus, a relevant clause will be selected to

feed into the inferential stream of a resolution-style theorem prover.

4.3 Other Applications

More recent applications of relational products include an intelligent collision avoidance

system for autonomous underwater vehicles (AUVs) (Lee et al. [59]), teaching principles of
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fuzzy logic analysis using the BK-products model (Granville [60]), cost estimation of new

technologies in aeronautics industry (Kohout et al. [61], [62]).

BK-triangle products play an important role for the characterization of granuality,

knowledge representation and relational computations in fuzzy systems forcomputing with

words (Kohout et al. [63]). They are also used in relational interval computations in

intelligent systems (Kohout et al. [50], [51]). Application of generalized morphisms to

design and implementation of commutating agents in distributed intelligent systemsis

practically promising (Muhammad and Kohout [64], Kohout [45]). Other applications

include diagnosis data and patient management (Bandler and Kohout [4], [25], [65]), in

symptom comparison (Kohout and Kallala [23]), information retrieval (Kohout et al. [20],

Bandler and Kohout [57], Kim [58]), hand writing classi�cation (Kohout and Kallala [23]),

natural language understanding (Nagarajan and Kohout [66]), cognitive structure analysis,

and in generating e�cient search strategies for resolution-based theorem proving (Kohout

and Kim [32]), analysis of protection and security of computing systems (Kohout [13]).
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CHAPTER 5

Relational Products Representations

This chapter extends further on BK products of relations. As we will see in the next section,

there are di�erent representational formats of BK products of relations. Each of them aims

at di�erent purposes. Various applications have been utilized the BK products of relations

(chapter 4), but most of them exploit only one of those formats of BK products. Existing

theory on BK products suggests that these representations link to one another.There

is, however, no existing study as of what links are theoretically and practically feasible

for applications that requires relational computations. The purpose of this chapter isto

introduce the theory that relates to the relational products transformations. This will be

a crucial part to the solving of the problem that will be de�ned in the next chapter as the

main goal of my dissertation.

5.1 BK Products of Relations

BK-relational products are represented in chapter2 which include certain non associative

compositions of relations called triangle (C; B) and square products� . The next section

extends the notion of these products.

5.1.1 Enhancing Expressive Power of Calculus of Relations

Bandler and Kohout(1977) introduced non-associative relational compositionsC; B; � that

further extended the crisp relational calculus Kohout [67], B�elohl�avek [ 19], H�ajek [ 7]. The

fuzzy version of these products �rst appeared in Bandler and Kohout (1978a) andwas �rst

presented in London, c.f. Bandler and Kohout (1978b), for succinct surveys see Bandler and

Kohout (1987), Kohout (2001a).

The following mixed pseudo-associativities hold forC and B:
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Table 5.1: De�nitions of Relational Products

Product Type Set-based Definition Many-Valued Logic DEF. Tensor Notation

Circle x(R � S)z , (R � S) ik =
W

j (Rij &Sjk ) (R � S) ik = Rij � Sjk

xR intersects Sz

Subtriangle x(R C S)z , xR
�
� Sz (R C S) ik =

V
j (Rij ! Sjk ) (R C S) ik = Rij C Sjk

Sup-triangle x(R B S)z , xR
�
� Sz (R B S) ik =

V
j (Rij  Sjk ) (R B S) ik = Rij B Sjk

Square x(R� S)z , xR �= Sz (R � S) ik =
V

j (Rij � Sjk ) (R � S) ik = Rij � Sjk

1. Q C (R B S) = ( Q C R) B S, hence written Q C R B S.

2. Q C (R C S) = ( Q � R) C S; Q B (R B S) = Q B (R � S).

The interplay of � ; C; B that is a�orded by relaxing the property of full associativity is

essential for enriching the expressive power of the calculus of relations (Kohout[69].

5.1.2 Various Representations of BK-Products

Mathematical de�nitions.

Let's recall the general de�nition of BK-products. Let R be a fuzzy relation fromX to Y

(in symbolsR 2 R F (X  Y)), and S a relation from Y to Z (in symbolsS 2 R F (Y  Z )),

a product relation R@S is a relation from X to Z , determined by R and S. We use e.g.

R 2 R (X  Y)) when R is crisp, etc.

Bandler and Kohout [68], [5], [2] discuss several products of relations. Each of these

generic product types performs adi�erent logical action on the intermediate sets, as

each logical typeof the product enforces adistinct speci�c meaningon the resulting product-

relation R@S. In the following de�nitions of the products, Rij ; Sjk represent the fuzzy

degrees to which the respective statementsx i Ryj , yj Szk are true.

The table of de�nitions given above contains three di�erent notational forms for BK-

products:
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1. the notation using the concept of set inclusion and equality, c.f. Bandler and

Kohout [68], [24], [5].

2. many-valued logic(MVL) based notation, which uses the logic connectives
V

, &, ! or

� , see Bandler and Kohout [68], [24], [5].

3. the tensor notation, c.f. Bandler and Kohout [70].

The notational forms (1) and (2) of these relational compositions are algebraically

equivalent, producing the same mathematical results. Distinguishing these forms is, however,

important when constructing fast and e�cient computational algorithms, c.f. Bandler and

Kohout [1], [12], Kohout and Bandler [3].

The tensor notation preserves in addition the inner structure of the composition when

the left hand side of the form (3) is used in the formulas. This is given by the fact that

the left member of the composition (e.g.Rij ) uses the indexes as subscripts, while the right

member of the composition uses the superscripts instead (e.g.Sjk ). This is similar to the

way the subscripts and superscripts operate in the tensor calculus.

The logical symbols for the logic connectivesAND, both implications and theequivalencein

the above formulas represent the connectives of some many-valued logic,chosen according

to the properties of the products required. An important special case is when theAND

connective & is represented semantically by a t-norm *. If the logics are residuated, then the

implications are residua of the t-norm, and the equivalence is a biresiduum of the t-norm.

The general formula (R@S) ik := � j (Rij # Sjk ) yields two generic formulas, each of which

de�nes a di�erent family of fuzzy relational products, depending on whether we replacethe

outer connective
L

with
V

(de�ned above) or with normalized arithmetic sum 1
jJ j

P
;

(R@S) ik :=
^

j

(Rij # Sjk ): Harsh product,

(R@S) ik :=
1

jJ j

X

j

(Rij # Sjk ): Mean product.

By choosing appropriate many-valued logic operations for the logic connectives(Bandler and

Kohout [26], Kohout [71], [72], the crisp case extends to a wide variety of many-valued logic

based (fuzzy) relational systems Kohout and Bandler [3], Bandler and Kohout [25], [4], [2],
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Kohout and Kallala [27], [23]. While users often used in our applications the classicalmin and

max for t-norm and t-conorm, respectively, they applied various MVL implication operators

for the computation of BK-products. The details of choice of the appropriate many-valued

connectives are discussed in Bandler and Kohout [25], [4], Kohout and Kallala [27], [23],

Kohout and Bandler [3].

5.1.3 Foresets and Aftersets of Crisp and Fuzzy Relations

The afterset of x 2 X is the subset of Yconsisting of the elementsy 2 Y to which x is

related by R (where � A x = � f xRyg, the degree to whichx and y are R-related):

xR = f y=� f xRyg j y 2 Y and � f xRyg > 0g:

The foreset of y 2 Y is the subset of Xconsisting of all the elementsx 2 X which are

related by R to y (where � A y = � f xRyg, the degree to whichx and y are R-related):

Ry = f x=� f xRyg j x 2 X and � f xRyg > 0g:

When we take the matrix representation of a relationR, aftersets are given by the rows,

while the foresets are given by the columns of the matrixRM . (Here, of course, we assume

that the satisfaction set RS corresponds under the axiom of extensionality to the relation

given by its predicate formRP ).

The notions of afterset and foreset of an element can be extended to afterset and foreset of

a set in (at least) two distinct but equally important ways: aninclusive or exclusiveafterset

/ foreset (see Bandler and Kohout [4], [73]).

The inclusive after- and foresets are given by

A0R = A0
R � R; RB 0 = R � B 0

R

The exclusive after- and foresets are given by

A0R = A0
R C R; RB 0 = R B B 0

R

whereR 2 R F (X  Y) and A0 � A.

To understand how this composition can be computed, one has to look at its component-

wise de�nition that involves indexed elements.A0
i is the membership (characteristic function)
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giving the degree to which the predicateai 2 A0 is TRUE; and Rij is the degree to which

the predicateRij 2 R is TRUE, where Rij is an element ofR.

Ck = ( A0 � R) =
_

i

(A0
i ^ Rik )

Ck = ( A0C R) =
^

i

(A0
i ! Rik )

Ck = ( A0B R) =
^

i

(A0
i  Rik )

5.2 BK Products in Predicate Calculus Form

This section will summarize some notions of Basic Logic (BL) predicate calculus of H�ajek [74]

which axiomatizes all logics in the in�nite family of fuzzy logics based on continuous t-norms.

That will provide us with the necessary technical tools for proving the basic BK-product

inequalities that are called theResiduation Bootstrapof BK-products (Kohout [69]). These

inequalities are essential for the development of fuzzy relational calculus basedon logics

using residuated t-norms.

5.2.1 The Usefulness of Di�erent Notations for Computing with
Relational Products

The triangle and square BK-products signi�cantly extend the expressive products ofrela-

tional calculi. The foreset-afterset notation and the many-valued logic basedMVL-

notation are advantageous when relations are manipulated by a computer, applying fuzzy

relational computations to large sets of empirical data. They are semantic in theirnature

and computations with these are done numerically.

For abstract proofs, on the other hand, it is often advantageous to use the third notational

form of the BK-products, namely its predicate form expressed symbolically within an

appropriate system of formal logic using the universal quanti�er. Manipulation of relational

formulas expressed this way is syntactic/symbolic, using appropriate (syntactic) inference

rules. These two di�erent approaches, the semantic (computing numerically) and the

syntactic/symbolic (computing with syntactic forms - manipulating strings symbolically)

mutually complement each other.

The next de�nition expresses the relational products in a �rst order predicate logic form.
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De�nition 14 BK-Products of Relations C; B; � . For arbitrary fuzzy relations in [0,

1], R from the setX to Y, S from Y to Z de�ne:

1. x(R � S)z = ( 9y)(xRy & ySz);

2. x(R C S)z = ( 8y)(xRy ! ySz);

3. x(R B S)z = ( 8y)(xRy  ySz);

4. x(R� S)z = ( 8y)(xRy � ySz);

For crisp relations the logic connectives are Boolean, and8; 9 are quanti�ers of the

standard (2-valued) predicate calculus. For fuzzy logics the above formulas cover the in�nite

spectrum of many di�erent fuzzy relational calculi. Indeed, taking thesupremumto interpret

9 and the in�mum to interpret 8, any continuous t-norm to interpret & and the residuum of

& to interpret ! yields such a relational calculus. The fuzzy predicate calculus of this form

is called Basic Logic (BL). It has been axiomatized by H�ajek [74]. BL predicate calculus

has been used by Kohout to axiomatize the Basic Algebra of BK-products of relations in t-

norm fuzzy logics, c.f. Kohout [67], [75]. BL predicate calculus subsumes classical predicate

calculus as a special case.

5.2.2 Basic Logic BL of H�ajek

The uni�cation and extension of the technical apparatus of relations from crisp to fuzzy,

including a substantial generalization of BK-products, is supported by H�ajek's BL-predicate

calculusPC(� ). This axiomatization puts on a �rm logical footing the whole family of the

t-norm based fuzzy logics. In the sequelPC(� ) will denote a predicate calculus where *

is an arbitrary t-norm of this family which represents theANDconnective, from which the

implication operator is produced by residuation.

Some formulas that are 1-tautologies of everyPC(� ) for any continuous t-norm (� ) are

chosen as the axioms of Basic Logic (BL).BL forms a common base of all the logicsPC(� ).

De�nition 2: The following formulas are axioms of the basic logic BL:

(A1) ( ' !  ) ! ((  ! � ) ! (' ! � ))

(A2) ( ' & ) ! '
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(A3) ( ' & ) ! ( &' )

(A4) ( ' &( ' !  )) ! ( &(  ! ' ))

(A5a) (' ! ( ! � )) ! (( ' & ) ! � )

(A5b) (( ' & ) ! � ) ! (' ! ( ! � ))

(A6) (( ' !  ) ! � ) ! (((  ! ' ) ! � ) ! � )

(A7) �0 ! '

The deduction ruleof BL is modus ponens. Given this, the notions of aproof and of a

provable formulain BL are de�ned in the obvious way (cf. H�ajek [74]).

The following arelogical axioms on quanti�ers:

(81) (8x)' (x) ! ' (t) ( t substitutable for x in ' (x))

(91) ' (t) ! (9x)' (x) ( t substitutable for x in ' (x))

(82) (8x)( � ! ' ) ! (� ! (8x)' ) (x not free in � )

(92) (8x)( ' ! � ) ! ((9x)' ! � ) (x not free in � )

(83) (8x)( ' _ � ) ! ((8x)' _ � ) (x not free in � )

Let C be a schematic extension of the basic propositional logic BL as given by H�ajek

(1998). We associate withC the corresponding predicate calculusC8(over a given predicate

languageJ ) by taking as logical axioms

� all formulas resulting from the axioms ofC by substituting arbitrary formulas of J for

propositional variables, and

� the axioms (81); (82); (83); (91); (92) for quanti�ers

� taking as deduction rules modus ponens (from'; ' !  inhfer  ) and generalization

(from ' infer (8x)' ).

Given this, the notions of proof, provability, theory, proof/provability in a theory over

C8are obvious.
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5.3 Enriched Calculus of Fuzzy Relations

There are six distinguishing features of the BK-product systems of relations that facilitate

the uni�cation of di�erent many-valued systems of fuzzy relations and enhance theirpractical

applicability (Kohout [ 11]):

1. Non-associative BK-products are introduced and used both in de�nitions of relational

properties and in computations. These products are de�ned not only for homogeneous

but also for heterogeneous relations.

2. Homomorphisms between relations are extended from mappings used in the literature

to general relations. This yieldsgeneralized morphismsimportant for practical solving

of relational inequalities and equations.

3. Relational properties are not only global but also local (important for applications).

4. The uni�ed treatment of computational algorithms by means of matrix notation is

used which is equally applicable to both crisp and fuzzy relations.

5. The theory unifying crisp and fuzzy relations in some distinguished logics makes

it possible to represent a whole�nite nested family of crisp relations with special

properties as asingle cutworthy fuzzy relation for the purpose of computation. After

completing the computations, the resulting fuzzy relation is again converted by� -

cuts to a nested family of crisp relations, thus increasing the computing performance

considerably.

6. Relations in their predicate forms are distinguished form their satisfaction sets; foresets

and aftersets of relations are used in addition to relational predicates. This makes it

possible to introduce interpretable linguistic labels (semiotic descriptors) that have

a clearly de�ned meaning within the domains of their applications. Then one can

develop an algebra of meaning de�ned by equations and inequalities that de�nes a

computational basis for forming of ontologies in knowledge engineering applications as

well as in computing with words.

The representational and computational power of BK-products, the triangle subproduct

C and the triangle superproductB resides in their algebraic properties. The interplay
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of three di�erent relational compositions generates powerful inequalities that enrich the

computational power of both crisp and fuzzy relational calculi.

The following relational inequalities hold for arbitrary V 2 B(A  C):

R � S v V � R v V B ST � S v RT C V

where e.g. S v V denotes the relational inclusion de�ned by the formulaS v V :=

(8x)(8y)(xSy ! xV y). In the relational calculus, it is important to distinguish the symbol

v denoting the relational inclusion, from the symbol� which denotes the foreset or afterset

inclusion.

These inequalities, called theResiduation Bootstrap of BK-productswere discovered by

Bandler and Kohout in 1977 [6]. Residuation bootstrap of BK-products describes the

interrelationship of � ; C; B plays a substantial role in further development of the theory

of crisp and fuzzy relations. Because these formulas depend on residuation, theycarry over

into relational theories based on t-norms and corresponding residuated implicationoperators.

Theorem 15 (Residuation Bootstrap of BK-products) [6] For arbitrary V 2 B(A !

C),

(R � S v V) � (R v V B ST ) � (S v RT C V)

The proof for this theorem and further information on the role of these inequalitiesin

solving relational inequalities over generalized morphisms can be found in Kohout [69]. They

also signi�cantly simplify proofs of other relational inequalities and equalities (Kohout[69]).
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CHAPTER 6

Symbolic Relational Transformations

6.1 Introduction

Relational representation of knowledge makes it possible to perform all the computation and

decision making by means of relational operations in a uni�ed way. The relational calculus

enriched with BK products substantially increases the applicability of fuzzy relations.

BK-products have several mathematical/notational variants, including many-valuedlogic

form, predicate form and set form. Di�erent applications may use di�erent forms.The tool

described in this chapter performs translations between these di�erent mathematical forms.

The triangle and square BK-products signi�cantly extend the expressive products of

relational calculi. The foreset-afterset notation and the many-valued logic basedMVL-

notation are advantageous when relations are manipulated by a computer, applying fuzzy

relational computations to large sets of empirical data. They are semantic in theirnature

and computations with these are done numerically.

For abstract proofs, on the other hand, it is often advantageous to use the third notational

form of the BK-products, namely its predicate form expressed symbolically within an

appropriate system of formal logic using the universal quanti�er. Manipulation of relational

formulas expressed this way is syntactic/symbolic, using appropriate (syntactic) inference

rules. These two di�erent approaches, the semantic (computing numerically) and the

syntactic/symbolic (computing with syntactic forms - manipulating strings symbolically)

mutually complement each other.
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6.2 Symbolic Transformations of BK Relational
Products

In the previous chapter we have outlined several distinctive representations of BK relational

products. Three of these, namely set-based, many-valued logic and predicate formats

are used in the system. Even though they are algebraically equivalent, each ofthese

representations has its own advantages when it comes to constructing fast and e�cient

computational algorithms (e.g. theset and many-valued logic representations) or to sym-

bolically manipulating the strings of BK products (e.g. thepredicate forms) (Bandler and

Kohout [1, 12, 3], Kohout [69]). For this reason automatic transformation from one form to

another is provided by the system described in this chapter.

Figure 6.1: BK Relational Products Transformations

Figure 6.1 depicts the links between relational formulas (containingC; B; � ; � ) and their

three de�nition forms. For each direction in the diagram, the system has to determine

whether or not the transformation can be done and perform the transformationsthat are

possible. The transformations are of two di�erent kinds:

1. purely syntactic, or

2. semantics must be added.
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When (1) is not su�cient and (2) is also required, there may not be a well-de�ned

transformation for some many-valued logics.

For each direction the transformation is performed by interaction of a parser and a

symbolic transformer.

Pretty PrinterParser

Transformer

Input String
Data Structure 
for Notation 1

Data Structure 
for Notation 2 Output String

Figure 6.2: System Model

Figure 6.2depicts our system model. There are three major parts in this model: a parser,

a transformer, and a pretty printer.

The parser is in charge of parsing an input string and then converting it correspondingly

to Prolog's internal data structure of our choice.1

The pretty printer does the opposite direction of string conversion, from Prolog's internal

data structure representation to an output string that is more readable to users.

The transformer is the kernel of the system. It does the actual transformations from one

notation of relational formulas to another. Both input and output of the transformer are

represented in Prolog's internal date structure.

The transformer described here deals with the general predicate logic. It requires no

special semantics of logic connectives i.e. all transformations are performed symbolically.

In the following sections, we will describe the transformation tool in greaterdetails.

Section6.3.1provides an overall structure of the tool and a complete and formal de�nitions

for BK-product relations and their three notational representations. Section6.4 describes

the internal implementation of the tool, including the data structure and transformation

algorithms.

1In this system, we use Prolog list, but another possibility is predicate.
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6.3 System Description

6.3.1 Overall Structure

Figure 6.3: System Structure

Figure 6.3 depicts an overview of our system structure. Here, users interact with the

system through a terminal-based interface. There are four modules: (1)parsermodule, which

allows information to be entered into the system according to its internal data representation,

(2) RPT (Relational Products Transformer) module, which deals with actual transformations

from one notation of relational formulas to another, (3)pretty printer module, which is in

charge of formating the output strings to a user-friendly format and (4)LATEX generator,

which generates LATEX report based on output fromRPT module.

The core of our system is theRPT (Relational Products Transformer) module, which

manipulates and transforms BK-product expressions. Information used for this procedure

is stored in the rule bases. The result of this process, i.e. transformed expressions, are the

desired output which can be represented in the format similar to users' input or it canalso

be used to automatically generate LATEX report (LATEX generator).

The symbolic manipulations are handled inRPT by a term-rewriting technique which is
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carried out through a rule base of rewrite rules that are user extensible. Symbolicexpressions

are transformed using a set of rewrite rules which are pre-de�ned in the rule bases. These

include transformation rules for products. Examples of these transformations are: the

ResideBootstrap (Kohout [6]), pseudo associativity that linksC with B, interrelationship

between triangle and circle products (Kohout [67, 75]).

6.3.2 Language De�nition

The alphabet of our relational theory (RT) includes the following:

{ A set of predicate letters each with some valence (or arity) greater than or equal to 1,

denoted by uppercase lettersP; Q; R; :::

{ A set of domain letters , denoted by uppercase letters at the end of the alphabetX; Y; Z; :::

{ An in�nite set of variables , denoted by lowercase letters at the end of the alphabet

x; y; z; :::

{ Symbols denotingquanti�ers : 8 (universal quanti�cation), 9 (existential quanti�cation).

{ Symbols denotinglogical operators (or connectives): : (logical not), & (logical and), _

(logical or), ! ;  ; $ (logical implications),
W

;
V

:

{ Symbols denotingset operators : [ ; \ ; � ; � ; � :

{ Symbols denotingrelational operator : � , � , C, B; u; t ; T ::

{ Other symbols: j, parentheses (, ),f , g.

Relations of RT notation

The relations in RT are de�ned as follows:

� If R; X; Y are predicate letters, then the following is arelation: R(X; Y ); where R; X; Y

are relation's name, domain and range, respectively.

� If R; S are relations of the system, then so are:: (R); (RT ); (R t S); (R u S):

� If R; S are relations of the system, then so are: (R � S); (R� S); (R C S); (R B S):

These are the BK relational products.

� All relations of RT are in one of the above forms.

Formulas of Many-Valued Logic Notation

Well-formed formulas (wfs) of MVL-RT are de�ned as follows:
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(a) If R is a relation in RT, then Rij is a wf in MVL-RT.

(b) If Rij ; Sjk are two wfs in MVL-RT, then the following are also valid wfs in MVL-RT:

_

j

(Rij &Sjk )

^

j

(Rij  Sjk )

^

j

(Rij ! Sjk )

^

j

(Rij � Sjk )

(c) All wfs of MVL-RT are in one of the above forms.

Formulas of Predicate Logic Notation

Well-formed formulas (wfs) of Predicate-RT are de�ned as follows:

(a) If R is a relation in RT, x; y are variables thenR(x; y) is a wf in Predicate-RT.

(b) If R(x; y); S(y; z) are two wfs in Predicate-RT, then the following are also valid wfs in

Predicate-RT:

(9y)(R(x; y)& S(y; z))

(8y)(R(x; y)  S(y; z))

(8y)(R(x; y) ! S(y; z))

(8y)(R(x; y) $ S(y; z))

(c) All wfs of MVL-RT are in one of the above forms.
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Formulas of Set-Based Notation

Foreset and afterset. If R is a relation, x; y are two variables, then the following are afterset

and foreset of set-RT:

xR; Ry

Well-formed formulas. If R; S are two relations in RT, x; z are two variables, andX; Z are

two domain letters, then the following are w�s in Set-RT:

f (x : X; z : Z ) j (xR \ Sz)g

f (x : X; z : Z ) j (xR � Sz)g

f (x : X; z : Z ) j (xR � Sz)g

f (x : X; z : Z ) j (xR = Sz)g

6.3.3 Transformations

In BK products, to make the relational computations valid, it is crucial that the matching

condition between the range and domain of participating relations must be satis�ed. To

ensure this validity of transformations, all the range and domain of each relation appearing

in the expressions must be speci�ed and kept track in the course of transformations. If it is

not the case, then the matching condition will not be guaranteed.

BK product skeleton - Predicate form

The transformations are of the form:

(R � S)xz = 9y(Rxy &Syz)

(R C S)xz = 8y(Rxy ! Syz)

(R B S)xz = 8y(Rxy  Syz)

(R� S)xz = 8y(Rxy � Syz)

From BK products to predicate form: The transition from BK products will be done

outside-in, i.e. the outer product will be transformed �rst.

((R � S)� T)xu = 8z((R � S)xz $ Tzu)
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(R � S)xz will then be transformed further into predicate form as follows:

(R � S)xz = x(R � S)z =

= 9y(Rxy &Syz)

Thus,

((R � S)� T)xu = 8z((R � S)xz $ Tzu) =

= 8z(9y(Rxy &Syz) $ Tzu)

From predicate form to BK products: the domain and range of given relations must

be kept track of (by using appropriate internal data representation) on the product form

formulas.

BK products - MVL form

The transformations are of the form:

(R � S) ik =
_

j

(Rij &Sjk )

(R C S) ik =
^

j

(Rij ! Sjk )

(R B S) ik =
^

j

(Rij  Sjk )

(R� S) ik =
^

j

(Rij $ Sjk )

From BK products to MVL form: The transition from BK products will be done outside

in, i.e. the outer product will be transformed �rst.

((R � S)� T) il =

=
^

k

((R � S) ik � Tkl )

=
^

k

(
_

j

(Rij &Sjk ) � Tkl ):
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From MVL form to BK products: the domain and range of given relations must be kept

track of (by using appropriate internal data representation) on the product form formulas.

The transition will be done inside out, i.e. the inner product will be transformed �rst.

^

k

(
_

j

(Rij &Sjk ) � Tkl ) =

=
^

k

((R � S) ik � Tkl )

= (( R � S)� T) il :

BK products - Set form

The transformations are of the form:

(R � S)xz = f (x : X; z : Z ) j � (x i R \ Szk)g

(R C S)xz = f (x : X; z : Z ) j � (x i R � Szk)g

(R B S)xz = f (x : X; z : Z ) j � (x i R � Szk)g

(R� S)xz = f (x : X; z : Z ) j � (x i R = Szk)g

From BK products to set form: The transition from BK products will be done outside

in, i.e. the outer product will be transformed �rst:

((R � S)� T)xu

= f (x : X; u : U)j� (x(R � S) � Tu)g

Since

(R � S)xz = f (v1 : X; z : Z )j� (v1R \ Sz)g

the given formula can be transformed further to:

f (x : X; u : U)j� (xf (v1 : X; z : Z )j� (v1R \ Sz)g � Tu)g

From set form to BK products: The transformation will be done in reverse order of the

process described above. As information on domain and range of each product is kept within

the product itself, there is no loss of this information during the transformation process.
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Predicate and MVL forms

9y(Rxy &Syz) 

_

j

(Rij &Sjk )

8y(Rxy ! Syz) 

^

j

(Rij ! Sjk )

8y(Rxy  Syz) 

^

j

(Rij  Sjk )

8y(Rxy � Syz) 

^

j

(Rij � Sjk )

Here we use symbol
 to denote relational transformations. For example,9y(Rxy &Syz) 

W

j (Rij &Sjk ) means LHS can be transformed into RHS and vice versa.

The LHS indices x, z are implicit computer representations of the free variables of

predicate free variablesx, z of the predicate form9y(R(x; y)& S(y; z)) while the RHS does

not contain free variables, but it contains matrix indices instead. To do the transformation

between the two formats, we will need a kind of look-up table for index converting, e.g.

table 6.1.

Table 6.1: Index converting

Predicate index MVL index
x i
y j
z k
� � � � � �

Besides index conversion, we also have to convert some logic quanti�ers and connectives.

Table 6.2 lists these symbols.

Table 6.2: Symbol converting

Predicate MVL
8

V

9
W

From predicate to MVL: First, remove the �rst two 8 quanti�ers. Then, convert the rest

of the quanti�ers and indices accordingly to tables6.1 and 6.2.
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From MVL to predicate: First convert the outer connective and indices accordingly to

tables 6.1 and 6.2. Then add two 8 quanti�ers at front with corresponding indices.

Set form - MVL

� (x i R \ Szk) 

_

j

(Rij &Sjk )

� (x i R � Szk) 

^

j

(Rij ! Sjk )

� (x i R � Szk) 

^

j

(Rij  Sjk )

� (x i R = Szk) 

^

j

(Rij � Sjk )

Both set and MVL forms treat relations through their individuals. These two represen-

tations are algebraically equivalent. Di�erent indices of the two forms should beconverted

as in table6.1. In order to transform expressions between set-based and MVL notations,we

need to employ de�nitions of fuzzy set inclusions (see Bandler and Kohout [24]). Detailed

transforms are carried out as follows:

� (x i (R � S) � Tul )

= � (f zk j � (x i R \ Szk)g � Tul )

= min zk ((min yj (Rij &Sjk )) $ Tkl )

=
^

k

(
^

j

(Rij &Sjk )) $ Tkl )

Set form - Predicate form

(xR \ Sz) 
 9y(Rxy &Syz)

(xR � Sz) 
 8y(Rxy ! Syz)

(xR � Sz) 
 8y(Rxy  Syz)

(xR = Sz) 
 8y(Rxy � Syz)
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Using the fuzzy set inclusions de�nitions, transformations in this case are carried out

similarly to the previous case. Note that expressions in set-based notation contain hidden

range/domain of participating relations, hence we should inquire or keep track of this

information accordingly to the directions of transitions.

� (x(R � S) � Tu)

= � (f zj � (xR \ Sz)g � Tu)

= min z((min y(Rxy &Syz)) $ Tzu)

= 8z(8y(Rxy &Syz) $ Tzu)

6.4 Data Representation and Transformation
Algorithms

In this section, we will present how BK product formulas and their three notational formats

are internally represented in the system in section6.4.1. After that, in section 6.4.2we will

describe algorithmic procedures for each transformations type.

6.4.1 Data representations

We divide relations into two types, ground and product relations, which correspond to

relation letters and their BK products (expressions), respectively.

Ground relations are represented as:relation (R; X; Y ); whereR is a relation letter and

X; Y are domain and rangeof R, respectively.

BK-product expressions are represented as:

bk(R; � ; S)

where � 2 f 'square','circle','sub','sup' g is a BK operator f � ; � ; C; Bg and

R; S are either ground relations or other BK products.

Predicate form expressions are represented as:

predicate(x : X; z : Z; expr)

whereexpr can be either:
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1. a valueR(x; z) of ground relation R on pair (x; z), or

2. a quanti�ed predicate expression [Q; y : Y;[R(x; y); op; S(y; z)]], whereR(x; y); S(y; z)

are expr 's, Q is a predicate quanti�er, i.e. Q 2 f8 ; 9g, and op2 f
fc
&;

fc
! ;

fc
 ;

fc
�g is

a fuzzy connective symbol. Example of anexpr : 8z 2 Z : R(x; z)
fc
! S(z; y).

Predicate form expressions can be presented using a tree structure:

predicate

� � � � � � �

HHHHHHH

:
�� HH

x X

:

z Z

Q

� � �
HHH

:

y Y

op
� � HH

Axy Byz

Many-valued logic form expressions are represented as:

matrix(i : sizeof(X ); k : sizeof(Z ); expr)

whereexpr can be either:

1. a value of a ground relationR, Rij , or

2. a quanti�ed expression [Q; j : sizeof(Y); [Rij ; op; Sjk ]], whereRij ; Sjk areexpr 's, Q

is a quanti�er Q 2 f
W

;
V

g and op 2 f
fc
&;

fc
! ;

fc
 ;

fc
�g is a fuzzy connective symbol.

Example of aexpr :
W

j : sizeof(Y); Rij
fc
! Sjk .

Many-valued logic form expressions can be presented also using a tree structure:
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matrix

� � � � � � � � � � � �

HHHHHHHHHHHH

:
� � HH
i sizeof(X)

:
� � HH

k sizeof(Z)

Q

� � � ��

HHHHH

:
� � HH

j sizeof(Y)

op
� � HH

A ij B jk

Set form expressions are represented as either:

1. Binary sets:

set(x : X; z : Z; afterset (x; R); op;foreset (S; z))

whereR; S are two BK-product expressions in set form.

Set form expressions can be presented using a tree structure:

set

� � � � � � � � �

HHHHHHHHH

:
�� HH

x XR

:
�� HH
z ZR

OP

� � ��
HHHH

afterset
� � HH

x AS

foreset
� � HH

BS z

2. Unary setsafterset(x; A) or foreset(x; A); whereA is a binary set.
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6.4.2 Transformation algorithms

In this section, we will show how transformations between BK products and their three

representation forms are performed in our system. The transformation algorithms are

presented in term of tree transformations.

From BK products to predicate form, bkp-to-pre(�; � ), is computed as follows

Input Tree � :

bk

� � � � �

HHHHH

A op
f � ; � ; /; . g

B

1. If A is a ground relation on domainX and rangeY then let Axy be the following

predicate expression tree, which representsA(x; y):

eval
� � HH

A x y

wherex 2 X and y 2 Y are variables.

2. Otherwise, if A is a BK product relation on domain X and range Y, then

recursively let the corresponding predicate form ofA be:

predicate

� � � ��

HHHHH

:
�� HH

x X

:

y Y

Axy

wherex 2 X and y 2 Y are variables, and Axy is some predicate expression.

3. De�ne tree Byz similarly on domain Y and rangeZ .

4. Let Q be 9 if op is � , and let Q be 8 if op2 f � ; /; . g.
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5. Let OP 2 f
fc
� ;

fc
&;

fc
! ;

fc
 g corresponding toop 2 f � ; � ; /; . g, respectively. The

output is as follows.

Output Tree � :

predicate

� � � � � � �

HHHHHHH

:
�� HH

x X

:

z Z

Q

� � �
HHH

:

y Y

OP
� � HH

Axy Byz

From predicate form to BK products, pre-to-bkp(�; � ), is computed by reversing the

above described process: determineop from OP, A from Axy and B from Byz

recursively.

pre-to-bkp(�; � ) :� bkp-to-pre(�; � ):

From BK products to MVL form, bkp-to-mvl( �; � ), is computed as follows

Input Tree � :

bk

� � � � �

HHHHH

A op
f � ; � ; /; . g

B

1. If A is a ground relation on domainX and rangeY then let A ij be the following

predicate expression tree:

eval
� � HH

A i j

wherei; j are variables. HereA ij representsA(x i ; yj ).
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2. Otherwise, if A is a BK product relation on domain X and range Y, let the

corresponding predicate form ofA be:

matrix

� � � � � � � �

HHHHHHHH

:
� � HH
i sizeof(X)

:
� � HH

j sizeof(Y)

A ij

wherex 2 X and y 2 Y are variables, and A ij is a predicate expression.

3. De�ne tree B jk similarly on domain Y and rangeZ .

4. Let Q be
W

if op is � , and let Q be
V

otherwise.

5. Let OP 2 f
fc
� ;

fc
&;

fc
! ;

fc
 g corresponding toop2 f � ; � ; /; . g, respectively.

Output Tree � :

matrix

� � � � � � � � � � � �

HHHHHHHHHHHH

:
� � HH
i sizeof(X)

:
� � HH

k sizeof(Z)

Q

� � � ��

HHHHH

:
� � HH

j sizeof(Y)

OP
� � HH

A ij B jk

From MVL form products to BK products, mvl-to-bkp( �; � ) is computed by a re-

verse process of bkp-to-mvl.

mvl-to-bkp( �; � ) :� bkp-to-mvl( �; � ):
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From BK products to Set form : bkp-to-set(�; � ) is computed as follows

Input Tree � :

bk

� � � � �

HHHHH

A op
f � ; � ; /; . g

B

1. If A is a ground relation on domainX and rangeY then let AS be the setA,

and let the afterset and foreset of A be the following set expression trees:

afterset
� � HH

x AS

foreset
� � HH

AS y

wherex 2 X and y 2 Y are variables. HereAS is relation A as a set.

2. Otherwise, ifA is a BK product, recursively let the corresponding set form ofA

be AS .

3. Similarly de�ne BS .

4. Let OP 2 f
fs
= ;

fs
\ ;

fs
� ;

fs
�g corresponding toop2 f � ; � ; /; . g, respectively.

Output Tree � :

set

� � � � � � � ��

HHHHHHHHH

:
�� HH

x XR

:
�� HH
z ZR

OP

� � ��
HHHH

afterset
� � HH

x AS

foreset
� � HH

BS z
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From Set form to BK products : set-to-bkp(�; � ) is computed by a reverse process of

bkp-to-set.

set-to-bkp(�; � ) : � bkp-to-set(�; � )

From Set form to MVL form, set-to-mvl(�; � ) is computed as follows

Input Tree � (binary set):

set

� � � � � � � �

HHHHHHHH

:
�� HH

x X

:

z Z

P

� � ��
HHHH

afterset
� � HH

x AS

foreset
� � HH

BS z

whereAS; BS are two set expressions.

1. Let Q be
W

if OP is
fs
\ , and let Q be

V
otherwise.

2. Let OP 2 f
fc
� ;

fc
&;

fc
! ;

fc
 g corresponding toP 2 f

fs
� ;

fs
\ ;

fs
� ;

fs
�g , respectively.

3. If AS is a ground relation, sayA, then let A ij be the following tree:

eval
� � HH

A i j

4. If AS is a BK product relation on domainX and rangeZ , let A ij be the following

MVL expression tree:

Q

� � � � �

HHHHH

:
� �� HHH

j sizeof(YR)

OP
� � HH

A0
ij B 0

jk
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whereY is the middle set between two relations (A0 and B 0) participating in the

construction of AS.

5. De�ne tree BS similarly on domain Y and rangeZ .

Output Tree � :

matrix

� � � � � � � � � � � �

HHHHHHHHHHHH

:
� � HH

i sizeof(X )

:
� � HH

k sizeof(Z )

Q

� � � ��

HHHHH

:
� � HH

j sizeof(Y)

OP
� � HH

A ij B jk

On the other hand, when the input tree� (of an unary set) is:

afterset

x A

and the MVL form of A is:

matrix

� � � � � � � �

HHHHHHHH

:
� � HH

x sizeof(X )

:
� � HH

y sizeof(Y)

Axy
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then the output tree � is:

matrix

� � ��
HHHH

:
� � HH

y sizeof(Y)

Axy

Similarly, we can de�ne output trees for unary foresets.

Set form - Predicate form : set-to-pre(�; � ) is computed as follows

Input Tree � :

set

� � � � � � � �

HHHHHHHH

:
�� HH

x X

:

z Z

P

� � ��
HHHH

afterset
� � HH

x AS

foreset
� � HH

BS z

whereAS; BS are two set expressions, andP 2 f
fs
� ;

fs
\ ;

fs
� ;

fs
�g .

� Let Q be 9 if P is
fs
\ , and let Q be 8 otherwise.

� Let OP 2 f
fc
� ;

fc
&;

fc
! ;

fc
 g corresponding toP 2 f

fs
� ;

fs
\ ;

fs
� ;

fs
�g , respectively.

� If AS is a ground relation (containing no BK products), sayA, then let Axy be

the following tree:

eval
� � HH

A x y

� If AS is a BK product relation on domainX and rangeZ , let Axy be the following

MVL expression tree:
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Q

� � �
HHH

:

y Y

OP
� � HH

A0
xy B 0

yz

whereY is the middle set between two relations (A0 and B 0) participating in the

construction of AS.

� De�ne tree BS similarly on domain Y and rangeZ .

Output Tree � :

predicate

� � � � � � �

HHHHHHH

:
�� HH

x X

:

z Z

Q

� � �
HHH

:

y Y

OP
� � HH

Axy Byz

Similarly, we can de�ne output trees for unary aftersets and foresets.

MVL form - Predicate form : mvl-to-pre(�; � ) is computed via mvl-to-set(�; � ) and

set-to-pre(�; � ).

mvl-to-pre(�; � ) :� mvl-to-set(�; � ); set-to-pre(�; � ):

Predicate form - MVL form : pre-to-mvl(�; � ) is computed via pre-to-set(�; � ) and

set-to-mvl(�; � ).

pre-to-mvl(�; � ) :� pre-to-set(�; � ); set-to-mvl(�; � ):

67



CHAPTER 7

Symbolic Relational Transformations System Testing

This chapter describes the functional testings of our symbolic relational transformations

system. In total, the system handles four representational types: BK products expressions,

predicate form expressions, many-valued logic form expressions and set formexpressions.

Expressions in each form range from very simple formulas, containing only one BKproduct,

to more complex nested formulas, containing multiple BK products.

Figure 7.1: Relational Products Transformations

Section7.1 lists the testing criteria that the transformation tool should meet. Section7.2

covers test cases where transformations are done directly from one notational representation

to another. The last section7.3 includes test cases that involve multiple transformations.
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7.1 Testing goals

Following are the testing goals that our tool must pass in the system test:

Relations descriptions : The system should let the user create a new, or use an existing,

collection of relations, including relations' names and their semiotic descriptors, domain

and range.

For direct transformations : Direct transformations are those that transform BK rela-

tional expressions from one of the four representational forms to another through a

single transformation function call. Any arrow in �gure 7.1 is a direct transformation.

Our system should:

� have the capability to check the domain-and-range-matching requirement for the

product expressions to be valid. We call these expressionscomputationally valid.

If the input expression is not computationally valid, the system should return an

error message to users;

� have the capability of transform input expressions from its current form to

another form according to the user's request, provided that input expressions

are computationally valid.

For indirect transformations : Indirect transformations are those that transform BK

relational expressions from one of the four representational forms to another through

a series of multiple transformation function calls. Our system should:

� have the capability to check the domain-and-range-matching requirement for the

product expressions to be valid. We call these expressionscomputational valid.

If the input expression is not computational valid, the system should return an

error message to users;

� have the capability of transform input expressions from its current form to

another form according to the user's request, provided that input expressions

are computationally valid. Speci�cally for test cases in this category, in a loop

test, i.e. a series of tests where the input and the output forms are identical, the

output expressions must match the input expressions. An example of a loop test

is BK ! predicate! set ! MVL ! BK.
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7.2 Direct transformations

In this section, we present the test results of direct transformations from one form of BK

relational expressions to another form.

7.2.1 Collection of input relations

For the purpose of testing, we �rst create a collection of input relations together with

their semiotic descriptors. This knowledge will be kept and referred to through out the

transformation processes. Anytime a relation, called by its name, appears in aninput

expression to be transformed, the system will �rst requires the relation's domainand range

from this knowledge to make sure that the inquired transformation is valid. Below is theset

of relations that is used in test cases described in this chapter:

Relation Description

relation(`R',`Patient',`Symptom') R is a relation from Patient to Symptom

relation(`S',`Symptom',`Treatment') S is a relation from Symptom to Treatment

relation(`T',`Treatment',`E�ect') T is a relation from Treatment to E�ect

relation(`U',`E�ect',`Patient') U is a relation from E�ect to Patient

Formulas we use for each test case are:R � S; R C S; R B S; R� S, and (R � S) C T.

7.2.2 Transformations test cases

The following tables summarize our transformations test cases.

Transformation type Function call Tests

BK to Predicate bkp-to-pre(�; � ) In table 7.2.2

BK to Set bkp-to-set(�; � ) In table 7.2

BK to MVL bkp-to-mvl( �; � ) In table 7.2.2

Set to MVL set-to-mvl(�; � ) In table 7.2.2

MVL to Predicate mvl-to-pre(�; � ) In table 7.2.2

Predicate to Set pre-to-set(�; � ) In table 7.6
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Table 7.1: Single-step transformations: from BK-algebra to Predicate

Input: BK-algebra Output: Predicate

bkp to pre(bk(R; circle; S); P) predicate(forall x : Patient ; forall y : Treatment ;
[exists z : Symptom; [eval(A; x; z ); fcAnd; eval(B; z; y)]])

R � S (8x)(8y)(9z)(R(x; z)
fc
& S(z; y))

bkp to pre(bk(R; sub; S); P) predicate(forall x : Patient ; forall y : Treatment ;
[forall z : Symptom; [eval(A; x; z ); fcRightarrow; eval(B; z; y)]])

R C S (8x)(8y)(8z)(R(x; z)
fc
! S(z; y))

bkp to pre(bk(R; sup; S); P) predicate(forall x : Patient ; forall y : Treatment ;
[forall z : Symptom; [eval(A; x; z ); fcLeftarrow; eval(B; z; y)]])

R B S (8x)(8y)(8z)(R(x; z)
fc
 S(z; y))

bkp to pre(bk(R; square; S); P) predicate(forall x : Patient ; forall y : Treatment ;
[forall z : Symptom; [eval(A; x; z ); fcEquiv; eval(B; z; y)]])

R� S (8x)(8y)(8z)(R(x; z)
fc
� S(z; y))

bkp to pre predicate(forall x : Patient ; forall y : E�ect ;
(bk(bk( A; circle; B ); sub; C)) [forall ; z : Treatment ; [[exist; t : Symptom; [eval(A; x; t ); fcAnd;

eval(B; t; z )]]; fcRightarrow; eval(C; z; y)]])

((A � B ) C C) (8x)(8y)(( 8z)((( 9t)(A(x; t )
fc
& B (t; z)))

fc
! C(z; y)))
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Table 7.2: Single-step transformations: from BK-algebra to Typed set

Input: BK-algebra Output: Typed set

bkp to set(bk(R; circle; S); P) set(x : Patient; y : Treatment;
[afterset(x; A); fsIntersect; foreset(B; y)])

R � S (x : Patient; y : Treatment)(xA
fs
\ By)

bkp to set(bk(R; sub; S); P) set(x : Patient; y : Treatment;
[afterset(x; A); fsSubset; foreset(B; y)])

R C S (x : Patient; y : Treatment)(xA
fs
� By)

bkp to set(bk(R; sup; S); P) set(x : Patient; y : Treatment;
[afterset(x; A); fsSupset; foreset(B; y)])

R B S (x : Patient; y : Treatment)(xA
fs
� By)

bkp to set(bk(R; square; S); P) set(x : Patient; y : Treatment;
[afterset(x; A); fsEqual; foreset(B; y)])

R� S (x : Patient; y : Treatment)(xA
fs
= By)

bkp to pre set(x : Patient; y : E�ect ; [afterset(x; set(z : Patient;
(bk(bk( A; circle; B); sub; C)) t : Treatment; [afterset(z; A); fsIntersect;

foreset(B; t )])) ; fsSubset; foreset(C; y)])

((A � B) C C) (x : Patient; y : E�ect)

(xf z : Patient; t : Treatment(zA
fs

cap Bt)g
fs
� Cy)
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Table 7.3: Single-step transformations: from BK-algebra to MVL closed formulas

Input: BK-algebra Output: MVL closed formulas

bkp to mvl(bk( R; circle; S); P) matrix( i : sizeof(Patient); j : sizeof(Treatment);
[vee; k : sizeof(Symptom); [eval(A; i; k ); fcAnd;
eval(B; k; j )]])

R � S
V

i
V

j (
W

k (A ik
fc
& Bkj ))

bkp to mvl(bk( R; sub; S); P) matrix( i : sizeof(Patient); j : sizeof(Treatment);
[wedge; k : sizeof(Symptom); [eval(A; i; k ); fcRightarrow;
eval(B; k; j )]])

R C S
V

i
V

j (
V

k (A ik
fc
! Bkj ))

bkp to mvl(bk( R; sup; S); P) matrix( i : sizeof(Patient); j : sizeof(Treatment);
[wedge; k : sizeof(Symptom); [eval(A; i; k ); fcLeftarrow;
eval(B; k; j )]])

R B S
V

i
V

j (
V

k (A ik
fc
 Bkj ))

bkp to mvl(bk( R; square; S); P) matrix( i : sizeof(Patient); j : sizeof(Treatment);
[wedge; k : sizeof(Symptom); [eval(A; i; k ); fcEquiv;
eval(B; k; j )]])

R� S
V

i
V

j (
W

k (A ik
fc
� Bkj ))

bkp to pre matrix( i : sizeof(Patient); j : sizeof(E�ect) ;
(bk(bk( A; circle; B ); sub; C)) [wedge; k : sizeof(Treatment); [[vee; l : sizeof(Symptom);

[eval(A; i; l ); fcAnd; eval(B; l; k )]]; fcRightarrow; eval(C; k; j )]])

((A � B ) C C)
V

k (
W

l (A il
fc
& B lk )

fc
! Ckj )
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Table 7.4: Single-step transformations: from Typed set to MVL closed formulas

Input: Typed set Output: MVL closed formulas

set to mvl(set(x : Patient ; y : Treatment ; matrix( i : sizeof(Patient); j : sizeof(Treatment);
[afterset(x; A ); fsIntersect; foreset(B; y )])) [vee; k : sizeof(Symptom); [eval(A; i; k ); fcAnd;

eval(B; k; j )]])

(x : Patient ; y : Treatment)( xA
fs
\ By)

V
i
V

j (
W

k (A ik
fc
& Bkj ))

set to mvl(bk(set( x : Patient ; y : Treatment ; matrix( i : sizeof(Patient); j : sizeof(Treatment);
[afterset(x; A ); fsSubset; foreset(B; y )])) [wedge; k : sizeof(Symptom); [eval(A; i; k );

fcRightarrow; eval(B; k; j )]])

(x : Patient ; y : Treatment)( xA
fs
� By)

V
i
V

j (
V

k (A ik
fc
! Bkj ))

set to mvl(set(x : Patient ; y : Treatment ; matrix( i : sizeof(Patient); j : sizeof(Treatment);
[afterset(x; A ); fsSupset; foreset(B; y )])) [wedge; k : sizeof(Symptom); [eval(A; i; k );

fcLeftarrow; eval(B; k; j )]])

(x : Patient ; y : Treatment)( xA
fs
� By)

V
i
V

j (
V

k (A ik
fc
 Bkj ))

set to mvl(set(x : Patient ; y : Treatment ; matrix( i : sizeof(Patient); j : sizeof(Treatment);
[afterset(x; A ); fsEqual; foreset(B; y )]) [wedge; k : sizeof(Symptom); [eval(A; i; k );

fcEquiv; eval(B; k; j )]])

(x : Patient ; y : Treatment)( xA
fs
= By)

V
i
V

j (
W

k (A ik
fc
� Bkj ))

set to mvl(set(x : Patient ; y : E�ect ; matrix( i : sizeof(Patient); j : sizeof(E�ect) ;
[afterset(x; set(z : Patient ; t : Treatment ; [wedge; k : sizeof(Treatment); [[vee;
[afterset(z; A); fsIntersect; foreset(B; t )])) ; l : sizeof(Symptom); [eval(A; i; l ); fcAnd;
fsSubset; foreset(C; y)]) eval(B; l; k )]]; fcRightarrow; eval(C; k; j )]])

(x : Patient ; y : E�ect) ; (xf z : Patient ;
V

k (
W

l (A il
fc
& B lk )

fc
! Ckj )

t : Treatment( zA
fs
\ Bt )g

fs
� Cy)
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Table 7.5: Single-step transformations: from MVL closed formulas to Predicate

Input: MVL closed formulas Output: Predicate

mvl to pre(matrix( i : sizeof(Patient); predicate(forall x : Patient ; forall y : Treatment ;
j : sizeof(Treatment); [vee; k : sizeof(Symptom); [exists z : Symptom; [eval(A; x; z ); fcAnd;
[eval(A; i; k ); fcAnd; eval(B; k; j )]]) eval(B; z; y)]])

V
i
V

j (
W

k (A ik
fc
& Bkj )) (8x)(8y)(9z)(R(x; z)

fc
& S(z; y))

mvl to pre(matrix( i : sizeof(Patient); predicate(forall x : Patient ; forall y : Treatment ;
j : sizeof(Treatment); [wedge; k : sizeof(Symptom); [exists z : Symptom; [eval(A; x; z ); fcRightarrow;
[eval(A; i; k ); fcRightarrow; eval(B; k; j )]]) eval(B; z; y)]])

V
i
V

j (
V

k (A ik
fc
! Bkj )) (8x)(8y)(8z)(R(x; z)

fc
! S(z; y))

mvl to pre(matrix( i : sizeof(Patient); predicate(forall x : Patient ; forall y : Treatment ;
j : sizeof(Treatment); [wedge; k : sizeof(Symptom); [exists z : Symptom; [eval(A; x; z ); fcLeftarrow;
[eval(A; i; k ); fcLeftarrow; eval(B; k; j )]]) eval(B; z; y)]])

V
i
V

j (
V

k (A ik
fc
 Bkj )) (8x)(8y)(8z)(R(x; z)

fc
 S(z; y))

mvl to pre(matrix( i : sizeof(Patient); predicate(forall x : Patient ; forall y : Treatment ;
j : sizeof(Treatment); [wedge; k : sizeof(Symptom); [exists z : Symptom; [eval(A; x; z ); fcEquiv;
[eval(A; i; k ); fcEquiv; eval(B; k; j )]]) eval(B; z; y)]])

V
i
V

j (
V

k (A ik
fc
� Bkj )) (8x)(8y)(8z)(R(x; z)

fc
� S(z; y))

mvl to pre predicate(forall x : Patient ; forall y : E�ect ;
(matrix( i : sizeof(Patient); j : sizeof(E�ect) ; [forall ; z : Treatment ; [[exist; t : Symptom;
[wedge; k : sizeof(Treatment); [[vee; [eval(A; x; t ); fcAnd; eval(B; t; z )]];
l : sizeof(Symptom); [eval(A; i; l ); fcAnd; fcRightarrow; eval(C; z; y)]])
eval(B; l; k )]]; fcRightarrow; eval(C; k; j )]])

V
k (

W
l (A il

fc
& B lk )

fc
! Ckj ) (8x)(8y)(( 8z)((( 9t)(A(x; t )

fc
& B (t; z)))

fc
! C(z; y)))
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Table 7.6: Single-step transformations: from Predicate to Typed set

Input: Predicate Output: Typed Set

pre to set(predicate(forallx : Patient; set(x : Patient; y : Treatment;
forall y : Treatment; [existsz : Symptom; [afterset(x; A); fsIntersect; foreset(B; y)]))
[eval(A; x; z); fcAnd; eval(B; z; y)]])

(8x)(8y)(9z)(R(x; z)
fc
& S(z; y)) (x : Patient; y : Treatment)(xA

fs
\ By)

pre to set(predicate(forallx : Patient; set(x : Patient; y : Treatment;
forall y : Treatment; [forall z : Symptom; [afterset(x; A); fsSubset; foreset(B; y)]))
[eval(A; x; z); fcRightarrow; eval(B; z; y)]])

(8x)(8y)(8z)(R(x; z)
fc
! S(z; y)) (x : Patient; y : Treatment)(xA

fs
� By)

pre to set(predicate(forallx : Patient; set(x : Patient; y : Treatment;
forall y : Treatment; [forall z : Symptom; [afterset(x; A); fsSupset; foreset(B; y)]))
[eval(A; x; z); fcLeftarrow; eval(B; z; y)]])

(8x)(8y)(8z)(R(x; z)
fc
 S(z; y)) (x : Patient; y : Treatment)(xA

fs
� By)

pre to set(predicate(forallx : Patient; set(x : Patient; y : Treatment;
forall y : Treatment; [forall z : Symptom; [afterset(x; A); fsEqual; foreset(B; y)]))
[eval(A; x; z); fcEquiv; eval(B; z; y)]])

(8x)(8y)(8z)(R(x; z)
fc
� S(z; y)) (x : Patient; y : Treatment)(xA

fs
= By)

pre to set( set(x : Patient; y : E�ect ;
predicate(forall x : Patient; forall y : E�ect ; [afterset(x; set(z : Patient; t : Treatment;
[forall; z : Treatment; [[exist; t : Symptom; [afterset(z; A); fsIntersect; foreset(B; t )])) ;
[eval(A; x; t ); fcAnd; eval(B; t; z )]]; fsSubset; foreset(C; y)])
fcRightarrow; eval(C; z; y)]]))

(8x)(8y)(( 8z)((( 9t)(A(x; t )
fc
& B(t; z))) (x : Patient; y : E�ect) ; (xf z : Patient;

fc
! C(z; y))) t : Treatment(zA

fs
\ Bt )g

fs
� Cy)
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7.3 Indirect or Loop Transformations

In this class of tests, we carried out those test cases that involved morethan one type

of transformations. For example, a given formula in BK product form, after aseries of

transformations that ends in BK product form should look exactly like the input formula.

Some examples of multiple-step (or loop) test are:

� BK products ; Predicate ; Set ; Many-Valued Logic ; BK Products.

(BK-PSM-BK)

� BK products ; Predicate ; Many-Valued Logic ; Set ; BK Products.

(BK-PMS-BK)

� BK products ; Many-Valued Logic ; Predicate ; Set ; BK Products.

(BK-MPS-BK)

� BK products ; Many-Valued Logic ; Set ; Predicate ; BK Products.

(BK-MSP-BK)

� BK products ; Set ; Many-Valued Logic ; Predicate ; BK Products.

(BK-SMP-BK)

� BK products ; Set ; Predicate ; Many-Valued Logic ; BK Products.

(BK-SPM-BK)

Figures 7.2, 7.3, 7.4, 7.5, 7.6, 7.7 correspondingly illustrate the test results of these

multiple-step transformations. The start BK product formulas in those tests range from

simple to more complicated combinations of BK relational products. They are:

A� B ((A B B)� (C � D)) C A
A C (B � C) (( A B B)� (C � D)) C (A� E)
(A � B) B (C� D) (A� B) � ((C C (D C A)) � E)
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Figure 7.2: BK-PSM-BK

Figure 7.3: BK-PMS-BK
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Figure 7.4: BK-MPS-BK

Figure 7.5: BK-MSP-BK
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Figure 7.6: BK-SMP-BK

Figure 7.7: BK-SPM-BK
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CHAPTER 8

Theorem Prover / Checker for Enriched Fuzzy BK
Relational Calculi

Enriched fuzzy BK relational Calculi together with other theories such as theory of general-

ized morphisms and relational inequalities [6, 69], theory of classivalence and relational di-

functionality [ 76], substantially increase the applications of fuzzy logic. As seen in chapter5,

symbolic forms of relations can be used for symbolic manipulation of relations thathave been

abstracted from numerical representations. Symbolic forms can be handled equationally.

Equations over BK-products can characterize relational properties in a universal way. In

this chapter, we develop a term rewriting theorem prover/checker for BK relational calculi.

The system is built based on properties of BK relational calculi, especially BK Bootstrap.

It should be able to validate the truth of theorems proved to be true in BK relational calculi

and to derive a complete proof for input theorems.

This chapter is organized as follow:

Section8.1 discusses the design motivation for our theorem prover / checker. Section8.2

gives a formal description of the system. Optimized rewriting strategies are discussed in

section 8.3. Section 9 presents experiments we conducted with the system. This section

contains both system developing experiments, namely usage of parallel versus sequential

Prolog in system implementation, and applications of the system for proving theoremsof

various types of theorems on relations. Proofs of special properties ofrelations, of theorem

on classivalent relations based on t-norm residuated fuzzy logic, of the extension of Tarskis

relational axioms into BL logic, and of theorems generalized morphisms will be discussed in

detail.
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8.1 Design Motivation of a Term Rewriting System
as Theorem Prover / Checker for Generalized

Morphisms and Relational Inequalities

One of the objectives of this dissertation is to build a term rewriting system for BK products

transformations. Such a rewriting system is designed to serve as a theorem prover / checker

for theorems of BK relational calculi. In other words, the system veri�es whether a given

theorem in BK relational calculi is true or not. It will do so by �nding a derivation from

the premise(s) to the conclusion(s) by applying a series of substitutions using the system's

rewriting rules base.

The rewriting rules base of our system is built based on special properties of BK relational

calculi such as associativity of circle product, mixed pseudo associativity of triangle products,

transpose of circle, triangle and square products, and most importantly, the BKresiduation

Bootstrap.

A rewriting system is a system in which expressions of a formal language are de�ned and

can be transformed according to a �nite set of rewrite rules.

A term rewriting system deals speci�cally with terms. Conventionally, it consists of a

set of terms and a set of rewrite rules that specify how to transform thoseterms.

Terms can be recursively de�ned as follows:

1. Any constant is a term;

2. Any variable is a term;

3. If t1; t2; : : : ; tn are terms andf is an-arity function symbol, then the following

is also a term: f (t1; t2; : : : ; tn ).

4. Nothing else is a term.

Rewrite rules are pairs of the formt1 ) t2, where t1; t2 are two terms. In a given

expressione, if there is a term t in e that t uni�es with t1 with uni�er � then the

occurrence oft1� in e� can be replaced byt2�

A proof checker is a system that allows users to enter a proof of a theorem along with a

set of assumptions into the system and check whether that proof is correct under those

assumptions.
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A theorem prover is a system that from a set of axioms and hypothesis, it will either

generate a logical consequence to a conclusion con�rming that a given theorem is true,

or derive to a contradiction to that conclusion (before running out of its resources)

thus show that that theorem is not true. There are various reasoning techniques that

can be applied in a theorem prover such as �rst-order resolution with uni�cation, learn

theorem proving, term rewriting, model checking, etc..

A term rewriting theorem prover / proof checker is a prover or checker that em-

ploying the term rewriting technique for its reasoning process.

In this section, we will present the design motivations for our theorem prover/checker.

Terms and rewrite rules will be discussed in section8.1.1. Sections8.1.2 and 8.3 focus

on the rewriting strategies that we have applied to our system, both originally andafter

optimizations.

A formal description to our theorem checker/prover will be given in section8.2,

where terms are de�ned in section8.2.2, rewrite rules in section 8.2.2, and deduction

calculi/rewriting strategies in section8.2.3.

Figure 8.1: Structure of our Theorem Prover / Checker

Figure 8.1 gives a pictorial demonstration of our theorem prover / checker. It consistsof
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(1) a user interface where users enter theorems to be checked and receive the results from the

system, (2) a term rewriting system that de�nes the process of �nding a derivationpath from

the premise(s) to the conclusion(s) and (3) the system's knowledge base which contains a

set of terms that are de�ned speci�cally for the purpose of BK-relational manipulations, and

a set of relations on how to transform these terms, or rewriting rules. Detailed discussions

about each of these components will be presented in subsequent sections.

8.1.1 Knowledge Base

The knowledge base unit stores and manages the system's knowledge. For the speci�c

purpose of working with BK relational theory enriched by generalized morphisms, that

knowledge includes a set of expressions of BK relational products and a set of properties

that BK products possess.

BK-products Expressions

The theorem prover / checker system deals with the generic BK relations formulas of the

form A@B, where @2 f � ; � ; C; Bg. It does not deal directly with other notational forms

of BK products such as set form, many-valued logic form or predicate form. All formulas

are represented as expressions and are formally de�ned as follows:

(1) Any relational variable, such asR; S; T; : : : is an expression in our system.

(2) Any expression of the form (expr1@expr2) of 2 arguments (where each argumentexpri

is an expression of the system and @ is a relational product inf � ; � ; C; Bg is also an

expression of the system

(3) Nothing else is an expression in our system.

Rewrite Rules

Theorems in BK relations enriched by generalized morphisms and relational inequality are

derived based on a set of properties of BK relational products and the logic systems in which

they are de�ned.

There are widely-known properties of BK and circle products such as associativity of

circle products, mixed associativity of circle and triangle products of BK, BK residuation

bootstrap, etc.. These properties show equivalences between BK-product expressions:
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1. Associativity:

((R � S) � T) � (R � (S � T)) � R � S � T

((R C S) B T) � (R C (S B T)) � R C S B T

2. Mixed pseudo associativity:

(R C (S C T)) � ((R � S) C T)

(R B (S B T)) � (R B (S � T))

3. Residuation bootstrap:

((R � S) v T) � (R v (T B ST )) � (S v (RT C T))

4. Transpose (1)

(RT )T � R

5. Transpose 2 (relational inclusion)

(R v S) � (RT v ST )

6. Transpose 3 (interchange betweenC and B)

(R B S)T � (ST C RT )

(R C S)T � (ST B RT )

7. Transpose 4 (of� product)

(R� S)T � (ST � RT )

8. Transpose 5 (of� products)

(R � S)T � (ST � RT )

Among these expressions, the BK residuated Bootstrapref is the most signi�cant one.

It describes the inter-relationships among circle and triangle (� ; C; B) products. The BK

Bootstrap plays an important role in further development of crisp and fuzzy relations. It has
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been used widely in proofs of theorems of the extensions of Tarski's axioms for crisp relations

to t-norm based residuated fuzzy relations [75, 77], theorems of generalized morphisms [6, 69],

etc.. Furthermore, the inequalities in the Bootstrap can be used to characterize relational

properties such as transitivity [78], classivalent or difunctional of relations [76].

Originally, our knowledge base consists of a set of rewriting rules (in the form ofequivalent

expressions)as listed above. There are, however, other rules that are more speci�c to certain

logic systems. Our knowledge base should be 
exible and extensionable enough to deal with

this matter. We will see later in chapter9 a such extension of the rule base, when an extra

rewriting rule plus the Modus Ponens were added to address the proof of fuzzi�ed Tarski's

axiom of relation.

8.1.2 Rewriting Engine

The primary functionality of the rewriting engine is to navigate through the knowledge base

to allocate a derivation from the hypothesis of a given theorem to its conclusion. By doing

so, it helps the system validate/verify the theorem. Thus, in this module, we will designa

proof-looking-upscheme for this purpose.

In mathematics, atheoremoften refers to a mathematical statement of some importance

that has been or is to be proved to be true on the basis of explicit assumptions. Logically

speaking, many theorems are of the form:if A, then B. Such a theorem does not state that

B is always true, only that B must be true if A is true. In this caseA is called thehypothesis

of the theorem andB the conclusion. The theorem \If n is an even natural number then

n=2 is a natural number" is a typical example in which the hypothesis is thatn is an even

natural number and the conclusion is thatn=2 is also a natural number.

The theorems on generalized morphisms and relational inequalities that our system

addresses are of speci�c formA if-and-only-if B (A i� B , or A , B), where A; B are

two terms. In our system, regular mathematical theorems and if-and-only-if theorems are

represented respectively astheorem(A,B) and iff(A,B) , where A; B are two BK-product

terms.

In this section, we describe the mechanism of our rewriting engine. It focuses on howa

derivation for an i�-theorem is generated from the given set of rewrite rules in the system's

knowledge base.

First, we will describe how a proof of an i�-theorem is conducted. Let the input theorem
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to be proved beiff(A,B) , where A; B are two terms. This goal is transformed into two

subgoals, namelytheorem(A,B) and theorem(B,A) , where theorem(X,Y) is a traditional

theorem, stated as \ifX true then Y is also true". Furthermore, theorem(X,Y) is true if Y

is reachable fromX , or reachable(X,Y) is true. This means that there exists a derivation

/ reduction path from X to Y. More speci�cally, sinceX; Y are two terms, there is a chain

of term rewriting derivations which starts with X and ends up atY. Each derivation step

is done by replacing a sub term (or term) in the source term (formula) with anotherterm

via applying a rewriting rule in the system's knowledge base. This process is summarized in

table 8.1.

Table 8.1: I�-theorem prover / checker constructor.

i�(A,B) ::= theorem(A,B),theorem(B,A).
theorem(A,B) ::= reachable(A,B).
reachable(A,B) ::= existsA ! A1 ! A2 ! � � � ! An ! B

Now, in the rest of this section, we will describe in details how the rewriting engine deals

with the last part of the proof process mentioned above. In other words, how achain of term

rewriting derivations A ! A1 ! A2 ! � � � ! An ! B can be derived in order to show that

reachable(A,B) is true.

Derivation tree TA of a term A

Start with term A, the rewriting engine will construct a derivation treeTA for A. It will collect

all possible derivations of A by replacing sub terms ofA with equivalent terms accordingly

to the given rewrite rules. If at any point during thederivation-generatingprocess, there is a

derivation of A that matches B then the proof generating process is successfully completed

and the system will conclude thatreachable(A,B) is true. It follows that we haveA ) B

is true, and hence the input theoremiff(A,B) is proved to be true.

De�nition 16 One-step derivation of a term. LetA be a BK-product term of the system.

One-step derivations ofA are those that can be derived fromA by replacing a (sub)term of

A by another term using one of the system's rewriting rules only once.
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For example, ifA is R � S, then by replacingR with ( RT )T (apply transpose rule once),

we have (RT )T � S is a one-step derivation ofA.

De�nition 17 Derivation tree of a BK-product term. Let A be a BK-product term of our

system. The derivation treeTA of A is de�ned recursively as follow:

(a) A is the root of TA .

(b) For any nodeN of TA , its children are all possible terms that can be derived fromN by

an one-step derivation ofN , excluding those terms that matchN 's predecessors.

Figure 8.2 shows a pictorial illustration ofA's tree derivation TA . If B matches any node

of TA , then reachable(A,B) and hencetheorem(A,B) are true.

A

� � � � � � � � � � � � � � � �

HHHHHHHHHHHHHHHH

A1

� � � ��

HHHHH

A11

� � � �
HHHH

A111 A112 A113

A12

� � HH
A121 A122

A2

� � � ��

HHHHH

A21

� � HH
A211 A212

A22

� � � �
HHHH

A221 A222 A223

A3

Figure 8.2: Tree derivationTA of a BK-product term A.

There are essentially two strategies to construct the derivation treeTA , namely depth-

�rst-search and breadth-�rst-search.

(1) Depth-�rst search: Each branch ofTA , sayTA 1 will be completely constructed �rst, then

the next branch, TA 2 will be constructed after that, etc.
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(2) Breadth-�rst-search: The derivation tree TA will be built breadth-widely, by level. It

means that

(a) The �rst level, i.e. the root A will be built �rst.

(b) Suppose that thei th level of TA is already built. Then, the (i + 1) th level will

contain all one-step derivations of nodes from thei th level.

Recall that all the one-step derivations of a node inTA are created by applying one of

the rewrite rules of the system. Even though the number of rewrite rules are �nite, there are

rules such that if applied multiple times, this can lead to an in�nite loop that will cause the

system to stay in that loop forever. For example, rule (RT )T � R can be applied in�nitely

many times as: R � (RT )T � ((( RT )T )T )T � R6T � R8T � � � � , or another version of this

rule application can beRT � ((RT )T )T � � � � � R(2n+1) T . Hence, if the right derivation

path does not reside in the �rst branch of the derivation tree, using depth-�rst-search in

our system will de�nitely lead to an in�nite loop in the program. Hence, we must use

breadth-�rst-search strategy for our term rewriting process. It ensures that no in�nite loop

occurrence, since at every node of the derivation tree, each rewrite rule willbe applied at

most once. Thus, the number of nodes at each level will always be �nite. So, if theinput

theorem is derivable (in a given theory), the system will reach its derivation /reduction path

after a �nite number of derivation steps.

Derivation tree representation

In our system, derivation trees of terms are represented using FIFO queues.Given an term

A, a FIFO queueS of sources is used as a pool to keep possible derivations ofA. As the

derivation tree of A is built by breadth-�rst-search manner, the queueS of A will be created

and used to �nd a match for the target term B as follow: At the beginning, A is added

to a FIFO queue S of sources. IfB =2 S then we take the �rst element s out of S for

examination (or a visit). FIFO queueS is then expanded by adding all terms that are one-

step derivations ofs and not yet visited. Examined or visited terms are placed in a separate

pool called \Visited".

Figure 8.3 shows the FIFO queueS of terms derivable fromA.

Now we are ready to explain the breadth-�rst-search algorithm for allocating aproof for

reachable(A,B) . Here A will be our source formula andB will be our target formula, or
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Figure 8.3: FIFO queueS of sources

goal. Initially, both S and V are empty. At �rst, A will be added to the top of queueS.

At any point, if there is a formula in S that matches B, i.e. B 2 S, then the derivation

from A to that particular formula will be the proof to reachable(A,B) and the system will

conclude that the theorem is true. Otherwise, the system will pick and visit the formula, say

s, at the top of the queue. It will then create a set of formulas that are one-step derivable

from s which are not already in queueS and not yet been visited by the system. This set

X will then be added to the queueS, while s is removed fromS and added toV. This

generating-and-matchprocess continues until a match ofB is found in S.

A formal description for this process will be given in section8.2.

8.2 Theorem Prover/Checker's Formal Description

8.2.1 Problem Domain

The system that we develop is a special-purpose theorem prover / checker for BK relational

algebra / calculus enriched by generalized morphisms. It accepts as an input a theorem

which was already proved to be true in BK relational calculus by another means suchas by

hand, and produces as an output a validation result (answer \yes" to true theorems) as well

as a complete proof, i.e. a chain of rewriting rules that has been apply successfully toyield

the answer.

8.2.2 Language Representation

In this section, we will a clausal-logic-like formalism to de�ne:

{ How the theorems will be presented to the system;

{ How they will actually be presented internally within the program; and

{ How the solution found - completed proofs - will be displayed back to the user.
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BK-product expressions

The alphabet of our theorem prover / checker (TC) includes the following:

{ A set of relational variables (or relation names denoted by uppercase lettersP; Q; R; :::

{ Symbols denotingrelational products : � , � , C, B:

{ Symbols denotingproduct operators : v ; T :

{ Symbols denotinglogical equivalence : � :

{ Other symbols: parentheses (, ).

In our system, BK product expressions are de�ned as follow:

(1) Any relational variable, such asR; S; T; : : : is an expression in our system.

(2) Any expression of the form (expr1@expr2), whereexpri is any expression of the system

and @ is a relational product inf � ; � ; C; Bg, is also an expression of the system

(3) Nothing else is an expression in our system.

Internally, these expressions are represented in a pre�x form:

expr ::= rel var

j rel op\(" expr; expr\)"

rel var ::= \ A" : : : \ Z "

Bellow are some concrete examples of BK-product internal expressions.

BK-product expressions Internal representations

R S

R � S circle(R,S)

R C (S B T) left(R, right(S,T))

(R� S) � (S C T) circle(square(R,S),left(S,T))

Input theorem representations

There are two kinds of input theorems that our system accepts, thetheorem(A,B) kind and

iff(A,B) kind, where A; B are two BK-product expressions. The �rst kind is for the class
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of theorems of the form \If A is true, then B is also true", while the latter is for the class of

theorems of the form \A is true if and only if B is true". Table 8.2 shows how the theorems

are represented to the system as inputs.

Table 8.2: Input theorem representations

Function call Description

theorem(expr1; expr2) prove theorem \If expr1 is true, then expr2 is also true"

iff (expr1; expr2) prove theorem \expr1 is true if and only if expr2 is true"

Term rewrite rules

The rule base of our theorem prover / checker are those that were listed in section 8.1.

Internally, they are represented as in table8.3.

Table 8.3: Rewrite rule representations

Rule Description

equiv (expr1; expr2) bidirectional reduction rule

impl (expr1; expr2) unidirectional reduction rule where occurrence

of expr1 in an expression can be replaced byexpr2

This rule base is user-extensible. At the moment, users can directly add new rules intothe

rule base at the Prolog level. They should strictly follow the formats displayed in table 8.3.

Output to users

When a user enters a theorem to be checked/proved into the system, after generating a

correct proof, the system will output to the user the complete proof and answer \Yes" to

the question about the truth of the input theorem.

The output will be presented in the following form:

Bellow is a result proof for theorem28.
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Table 8.4: Output representations

User interface Description

Input: theorem(A,B)

Output:

PROOF. Start of proof

[Rule name]A ) A1 One proof step, including the name

[Rule name]A1 ) A2 of the rule applied and formula derived
etc. after this step
[Rule name]An ) B
QED End of proof
Yes Input theorem is true

?- fc18.

PROOF.

`[a1]' (((tran(f) circle r) circle g) sub s) ) ((tran(f) circle (r circle g)) sub s)

`[b1]' ((tran(f) circle (r circle g)) sub s) ) ((r circle g) sub (tran(tran(f)) left s))

`[t1]' ((r circle g) sub (tran(tran(f)) left s)) ) ((r circle g) sub (f left s))

`[b2]' ((r circle g) sub (f left s)) ) (r sub ((f left s) right tran(g)))

QED.

Yes

8.2.3 Generate-and-Match Algorithm for theorem generating /
proving

In this section, we will describe how the theorem prover / checker generates aproof for

an input theorem. Bellow is a pseudo-code algorithm of a complete procedure of proof

generating.

Input: iff(A,B)

Call theorem(A,B) ; // Show thattheorem(A,B) is true;

Call theorem(B,A) ; // Show thattheorem(B,A) is true;

If both theorem(A,B) and theorem(B,A) are true
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then Output: iff(A,B) is true.

Input: theorem(A,B)

Call reachable(A,B) ; // Show thatB is reachable fromA;

Initiate an empty queueS that keeps the set of possible

derivation of A and an empty list V that keeps

visited terms; // S is used to store the derivation treeTA of A;

Add A to the top of queueS;

If B 2 S (*)

there is a derivation chain fromA to B

hencereachable(A,B) ;

Output theorem(A,B) is true .

else,

Select the next terms 2 S such that s =2 V;

Create a setX of all terms x satisfying

x
1� step

) s; x =2 S; x =2 V

Add set X to the pool S, and remove elements from S;

Now, S = f S [ X gnfsg;

Update visited setV: V = V [ f sg;

Back to step (*) with sorted S and updatedV;

8.3 Optimizer

When a human does a mathematical proof, a very usual strategy, which may be used just

subconsciously, is to �nd a proof in an incremental manner. He or she will try to approach

the conclusion in small steps, where each step is either trivial or pretty simple to show. The

important thing that he or she should try to achieve in this process is to choose thosesmall

steps so that each of them should lead closer to the target.

In our system, there are twelve rewrite rules in the knowledge base. When constructing

a derivation tree for a given formula, the number of nodes in that tree can possibly grow

exponentially. For a derivation with n levels, that number could reach up to 12n . Thus,
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without any optimizing feature, for a long enough proof, the system might exhaust its

resources before reaching its conclusion. A concrete example is the theorem onthe criteria

for F and G for a generalized morphism to be backward compatibility (theorem31). This

theorem, when proved by hand, required nine steps. But when checked / validated by the

system, it required more than seventeen billion logical inferences, which took over three and

a half hours of CPU time. The system actually ran out of its argument stack before reaching

the conclusion. To overcome this obstacle, we have added an optimizing feature that helps

the prover to �nd a goal faster. We use an heuristic approach that mimics the nature of

human's common strategy mentioned above: rules with formulas that look closerto the

target (goal) formula will be given higher priorities, i.e. will be tried �rst. The closeness

between two formulas is de�ned via the distance between them.

De�nition 18 Let T be the tree representation of a formulaF . The power-tree setof T is

the multi-set of all the sub-trees ofT, whose roots are any one of the nodes ofT.

Then, the power-tree set ofF is the following set of sub-trees:

f (left(R, right(S,T))), (R), (right(S,T)), (S), (T) g

De�nition 19 Let A; B be the power-tree set of two formulasF1; F2. Then the distance

between two given formulas is computed as

d(F1; F2) = # ff A [ BgnfA \ Bgg

Examples

1. Distance of zero: the distance between two identical formulas is zero. Let F1; F2 be

two identical formulas. Then their corresponding binary treesT1; T2 must be two equal

setsA1; A2. Thus,

d(F1; F2) = # ff A1 [ A2gnfA1 \ A2gg = # f;g = 0

2. Distance of two: LetF1 = square(S; T); F2 = lef t (S; T), then their power-tree sets will

be A1 = f (square(S; T); (S); (T)g; A2 = f (lef t (S; T)); (S); (T)g. Hence, the distance

of these two formulas is:

d(F1; F2) = # ff A1 [ A2gnfA1 \ A2gg = 2
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Table 8.5: Distance of Reference Rules Elements

Ref. Rules Formula Distance

Circle Associativity ((R � S) � T) � (R � (S � T)) 4

Triangle Pseudo Associativity ((R C S) B T) � (R C (S B T)) 4

Sub-product Conversion (R C (S C T)) � ((R � S) C T) 4

Super-product Conversion (R B (S B T)) � (R B (S � T)) 4

Residual Bootstraps (B1) ((R � S) v T) � (S v (RT C T)) 5

Residual Bootstraps (B2) ((R � S) v T) � (R v (T B ST )) 5

Transpose (T1) (RT )T = R 2

Transpose (T2) (R v S) � (RT v ST ) 4

Transpose (T3) (R C S)T � (ST B RT ) 5

Transpose (T4) (R B S)T � (ST C RT ) 5

Transpose (T5) (R � S)T � (ST � RT ) 5

Transpose (T6) (R� S)T � (ST � RT ) 5
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3. Distance of our reference rules: Table8.5 shows the distances of all pairs of formulas

that construct the reference rules system.

Theorem 20 Let A be any formula. LetB be any formula such that in our proof systemA

can be derived fromB in one step. Then the distance ofA and B must not exceed a given

constant n. In other words, givenA, we have

8B : (B
1� step

) A) j d(A; B ) � n

Proof Table 8.5 lists the distances of all pairsA; B of formulas of the system such thatA

can be derived fromB in one step. Since none of those distances is greater than 5, the above

theorem is proved.

Having introduced an optimizing factor for our prover, namely the distance of a particular

formula to the goal/destination, we will then update our breadth-�rst search generate-and-

match algorithm. In the optimized algorithm, the source setS of all to-be-visited formulas

that are equivalent to already-visited but not-yet-matched-the-goal formulas is created and

expanded as in the original version. The di�erence is in the selection of a new elements 2 S

to be examined. Before picking the �rst available element inS, i.e. the top element of the

queueS, we �rst ascendingly sort the queue by the distance of each queue's element to the

goal. Thus, among the set of equivalent formulas, we will get the one with the least distance

to the target �rst.

Optimized Generate-and-Match Algorithm for Theorem checker / prover :

Input: theorem(A,B)

Call reachable(A,B) ; // Show thatB is reachable fromA;

Initiate an empty queueS that keeps the set of possible

derivation of A and an empty list V that keeps

visited terms; // S is used to store the derivation treeTA of A;

Add A to the top of queueS;

If B 2 S (*)

there is a derivation chain fromA to B
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hencereachable(A,B) ;

Output theorem(A,B) is true .

else,

Select the next terms 2 S such that s =2 V;

Create a setX of all terms x satisfying

x
1� step

) s; x =2 S; x =2 V

Add set X to the pool S, and remove elements from S;

Now, S = f S [ X gnfsg;

Sort the source setS by ascending order of the distances from it's elements toB ;

Update visited setV: V = V [ f sg;

Back to step (*) with sorted S and updatedV;

De�nition 21 d is called acceptable if for allA, and a constantn f X jd(A; X ) � n is �nite.

Theorem 22 The powertree distance is acceptable.

Proof Let A be a formula in our system andn be a constant. LetX be a formula such that

distance betweenA and X is not greater thann.

d(A; X ) = # ff A [ X gnfA \ X gg � n

This means that the cardinal of multi-set of all nodes ofX that are not the same as any

node ofA is not greater than n. In other words, the total number of nodes inX does not

excesses a constant, i.e.nb = ( n + nA ), where nA is the number of nodes inA.

Since the number of nodes inX has an upper boundnb and each node can only be any of

the four relational products (circle, left, right, square ), or a function such astran ,

the set f X jd(A; X ) � n must be smaller or equal thanN nbnbK , whereN is the total number

of di�erent operators and function letters de�ned and K is the maximum arity of these

functions and operators. Thus the number of choices must be �nite. Hence, the powertree

distance is acceptable.

Theorem 23 Let d be an acceptable distance. The above optimized search procedure is

complete in the sense that all theorems that can be proved from knowledge base will be proved

by the prover.
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Proof Let A and B be two formulas such that theoremiff(A,B) is true. We will show

that our prover will be able to prove it.

Let n = d(A; B ) be the distance betweenA and B. Obviously, n is a constant. Sinced in

our system is an acceptable distance (by theorem22) we have the number of trees that has

distance toB smaller or equal to that ofB is �nite. It means that # f X jd(B; X ) � ng = c,

where c is a constant. Because in the above optimized search procedure, those treeswith

smaller distance toB than n will be given higher priorities and thus be visited �rst. Thus,

the search will reachB after at most c trees, i.e. after a �nite steps.
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CHAPTER 9

Theorem Prover / Checker Experiments

In this section, we discuss the experiments that we have conducted through out the

development process of the system. First, in section9.1we will discuss our implementational

experiences in terms of choices of programming language. This aspect of our system

development stems from the fact that there are two distinct kinds of Prolog available: parallel

(such as Ciao-Prolog) and serial (such as SWI-Prolog). Regarding speci�c nature of our

system, each of these kinds possesses interesting advantages over each other. While the

parallel Ciao-Prolog supports breadth-�rst search strategy, which is verymuch convenient

for our proof search algorithm, the SWI-Prolog is more reliable and predictable in termsof

performance, and system's knowledge base extension.

We will then describe how the theorem prover / checker works with various types of

applications. A majority number of experiments which we will discuss in great detailsin

section 9.2 are those with generalized morphisms and relational inequalities. Signi�cant

improvements of the optimized and further-optimized versions over the original breadth-�rst-

search version of the theorem prover / checker will be shown through theseexperiments.

Other types of applications like theorems of relations' special properties, classivalence

and difunctionality of relations, and theorems on the extensions from axioms for crisp to

t-norm based residuated fuzzy relations are discussed in sections9.3, 9.4 and 9.5.

9.1 Implementations: Ciao-Prolog and SWI-prolog

Even though the �nal implementation of the system has been written in SWI-Prolog,we will

brie
y describe our experiments with Ciao-Prolog, which was the �rst choice we had while

choosing a programming language to implement the system.

A majority of the experiments have been conducted with the theorem prover/checker
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written in SWI-Prolog. There are three versions that have been implemented: (1)a theorem

prover with no optimization, (2) optimized theorem prover, and (3) further optimized

theorem prover. We will discuss our experiments with each of these versions indetail in

the following sections.

Ciao [79], distributed under the GNU Library General Public License (LGPL), is a public

domain, next generation multi-paradigm programming environment with a unique set of

features:

Ciao o�ers a complete Prolog system, supporting ISO-Prolog, but its novel

modular design allows both restricting and extending the language. As a result,

it allows working with fully declarative subsets of Prolog and also extending these

subsets (or ISO-Prolog) both syntactically and semantically. Most importantly,

these restrictions and extensions can be activated separately on each program

module so that several extensions can coexist in the same application for di�erent

modules. Ciao also supports (through such extensions) programming with

functions, higher-order (with predicate abstractions), constraints, and objects,

as well as feature terms (records), persistence, several control rules (breadth-�rst

search, iterative deepening, ...), concurrency (threads/engines), a good base for

distributed execution (agents), and parallel execution. Libraries also support

WWW programming, sockets, external interfaces (C, Java, TclTk, relational

databases, etc.), etc.

Since Ciao-Prolog has a special feature letting users 
exibly choose between depth-�rst

search and breadth-�rst search in the course of reasoning, we picked it as the programming

language for our system.

The Ciao-Prolog implementation worked nicely with certain theorems of BK relational

calculi, but failed on others. For example, this version can prove theorem on special

properties of relations, theorems of forward and backward compatibilities of generalized

morphisms (which we will discuss in detail in later sections), but when we expand the

knowledge base to accommodate proofs of other theorems, the system ceasedto function. It

faced the "out of memory bu�er", the breadth-�rst search is unpredictable and debuggingthe

module could not locate the bugs or errors . After weighting the e�ort of understandinghow
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Table 9.1: Ciao-Prolog versus SWI-Prolog implementations

Ciao SWI
Relational Properties Y Y
Forward and Backward Compatibility (FC, BC) Y Y
FC, BC criteria for F and G N Y

the breadth-�rst search works in Ciao versus implementing the breadth-�rst searchourselves

in SWI Prolog, we chose to go with the latter choice.

SWI-Prolog is an open source implementation of the programming language Prolog,

commonly used for teaching and prototyping. It was originally designed and implemented

by Jan Wielemaker [80, 81] in 1987. Since then, SWI-Prolog has been under continuous

development, driven by the needs for real-world applications. These days SWI-Prolog is

widely used in research and education as well as for commercial applications.

It has a rich set of features, libraries (including its own GUI library, XPCE), tools

(including an IDE) and extensive documentation. SWI-Prolog runs on Unix, Windows and

Macintosh platforms.

We have implemented three versions for our theorem prover / checker system, where the

latter is an improved version of the former one: (1) the �rst and original version applies

a breadth-�rst-search strategy, (2) the second version has an optimized strategy that uses

distance-�rst-searchalgorithm, and (3) the third version is an improved version of the second

one that uses animproved-distance-�rst-searchalgorithm to prove theorems of generalized

morphisms stated in section9.2.1.

Table 9.1 shows some theorems that Ciao-Prolog version could not overcome, while the

SWI-Prolog could.

9.2 Experiments with Generalized Morphisms

9.2.1 Overview of Generalized Morphisms and Relational Inequal-
ities

Generalized Morphisms

Let A, B , C, D be sets with relationsR, S upon them { R from A to B and S from C

to D, where each relation determines some structure. In addition, we have homomorphic
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mappings F and G. F is from A to C and G is from B to D. There are two points of

departure that stem from this fundamental algebraic notion ofhomomorphism[6, 69]:

1. the design or checking mappings which will \preserve" or \respect" certaingiven

relations, and on the other hand

2. the design or checking of relations which \absorb" or \validate" certain given mappings.

Figure 9.1: Structure preserving mappings.

For example letA = B, C = D and R, S be orders. GivenA and C we wish to �nd one

or all the mappings fromA to C that preserve orders { this illustrates the case (1). This

can be pictured by a commutative diagram { see �gure9.1.

An example of (2) is, given a mapping fromA to C, how to match the order onA given

by R, with some other order onC, or vice versa { so that some given mapping will preserve

or co-preserve them.

Another example is whereA = B � B , C = D � D and R and S determine some groupoids

{ see �gure 9.2.

Figure 9.2: The commutativity of diagrams for homomorphisms of structures with binary
operations.
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Figure 9.3: A diagram for forward and backward compatibility.

In this situation, the conventional homomorphism yields a commuting diagram of arrows

such that R � G = F � S, where of course, the morphismsF and G are the relations which

are both covering and univalent (i.e. functional). To obtain the constructions thatsolve the

problems (1) or (2) requires the aboverelational equation to be solved with respect to

one of the relationsR, S, F or G.

When the mappings (functional relations)F and G are replaced by general relations(see

�gure 9.3), the equation is no longer valid but has to bereplaced by two inequalities .

The notion of a homomorphism splits into two independent notions, generalized morphism

and generalized proteromorphism.

De�nition 24 Generalized Morphisms.

Let F, R, G, S be heterogeneous relations between the setsA; B; C; D such that

F 2 R (A  C), R 2 R (A  B), G 2 R (B  D), S 2 R (C  D) (see �gure 9.4).

The conditions that (for all a 2 A, b2 B, c 2 C, d 2 D)

aFc
aRb
bGd

9
=

;
=) cSd;

will be expressed in any of the following ways:

1. FRG: S are compatible forward or forward-compatible.

2. F; G respectR; S forwards

3. R; S absorbsF; G forwards

4. F; G are generalized homorphisms fromR to S.
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Theorem 25 (Forward Compatibility) [6]

The following statements are equivalent:

1. FRG : S are forward-compatible

2. F � 1 � R � G v S

Figure 9.4: Forward Compatibility

Figure 9.5: Backward Compatibility

De�nition 26 (Generalized Proteromorphisms.) [6]

Let F, R, G, S be heterogeneous relations between the setsA; B; C; D such thatF 2 R (A  

C), R 2 R (A  B), G 2 R (B  D), S 2 R (C  D) (see Fig. 5).

The condition that (for all a 2 A, b2 B, c 2 C, d 2 D)

aFc
cSd
bGd

9
=

;
=) aRb

105



will be expressed in any of the following ways:

1. FRG: S are compatible backward or backward-compatible

2. F; G respectR; S backwards

3. R; S absorbF; G backwards

4. F; G are generalized proteromorphisms fromR to S.

Theorem 27 (Backward Compatibility) [6]

The following statements are equivalent:

1. FRG:S are backward-compatible

2. F � S � G� 1 v R

Proofs of Theorems about Compatibility

Relational inequalities displayed in Figures9.4 and 9.5 give a rigorous mathematical

de�nition of generalized morphisms. If we want to use generalized morphisms either in

pure mathematics or in applications (such as knowledge engineering, scienti�c computations

etc.) we need some other theorems describing the properties of generalized morphisms[16].

For example, given any three relations chosen fromR; S; F; G we may wish to compute

the fourth remaining unknown one. In order to do so, we have to possess the solution

of inequalities that allows us to compute the unknown relation from the known ones.

Compatibility criteria provide solution for either R or S. In latter section we shall also

present the solutions forF and G.

Theorem 28 Forward Compatibility Solution [16]

FRG : S are forward compatible i� (F T � R � G) v S i� R v (F C S B GT )

Theorem 29 Backward Compatibility Solution [16]

FRG : S are backward compatible i� (F � S � GT ) v R i� S v (F T C R B G)
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Figure 9.6: Solution: Forward Compatibility

Figure 9.7: Solution: Backward Compatibility

Theorem 30 Generalized Morphisms - Forward Compatibility: Criteria forF and G[16]

FRG:S are forward compatible i�

1. F v (R C (G C ST ))

or equivalently

2. G v (RT C (F C S))

Theorem 31 Generalized Morphisms - Backward Compatibility: Criteria forF and G [16]

FRG:S are backward compatible i�

1. F v ((R B G) B ST ))

or equivalently

2. G v ((RT B F ) B S)
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Figure 9.8: Solution in F for FRG:S Forward Compatibility

Figure 9.9: Solution in G for FRG:S Forward Compatibility

Motivations to Generalized Morphism

Application of Generalized Morphismsto design and implementation of Communicating

Agents in Distributed Intelligent Systems is particularly promising, c.f. Kohout [45],

Muhammad and Kohout [64].

In Muhammad's work [82] on mobile agents, generalized morphisms are the solid

mathematical foundation that makes the collaborative diagnosis among multiple agents of

CLINAID's system [50] valid. In the process of diagnosis, when an actor (agent) does not

have the knowledge to make the diagnosis independently, it can communicate with and

make a request for collaboration from other agent(s). In order to do that, the system should

translate the symptom(s)/disease(s) from the language of one agent (say agent CMIT) to the

language of the other (say agent WTE). The translators are: (1) relationF : B(C ! W),

such that C represents the set of CMIT symptoms andW represents the set of WTE signs
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(2) relation GT : B (E ! D), such that D represents the set of CMIT diseases andE

represents the set of WTE diseases. The same relationsF and G can be used by WTE to

communicate with and request collaboration from CMIT. Figure9.10[82] provides a pictorial

representation of such a scenario.

Figure 9.10: Generalized Homomorphism in Collaborative Diagnosis of Two Agents

Translator relations F; F T ; G, and GT are the generalized homomorphic mappings which

relationally control the communication and interaction between the participating agents

within the diagnostic base model. These relations are calculated using Theorems30 and

31 (Compatibility Theorems for F and G, Bandler and Kohout). Based on these theorems,

FRG : S is forward compatible sinceF v (R C (G C ST )). Relational F is a generalized

homomorphism from relation R to relation S that provides the partial correspondence

between the two relations.G v (RT C (F C S)) also provesFRG : S is forward compatible.

Relation G is a generalized homomorphism that provides partial correspondence betweenR

and S. This allows compatibility/interactions between participating agentsR and S within

the system.

109



9.2.2 Experimental Results

All three versions of our theorem prover / checker, which we call BFS, DSF-v1 and DSF-

v2, successfully prove all the theorems of generalized morphisms and relational inequalities

described in9.2.1.

1. Version 1, BFS, implements the proof searching algorithm described in section8.2.3.

Although almost all of the theorems in9.2.1have been proved and validated by BFS,

the number of logical inferences and CPU time required for some cases are extremely

high. Theorem 30 for F , for example, requires 171,066,340 logical inference in 96

seconds of CPU time. One extreme was theorem31 which requires more than 17

billions logical inference. The system actually ran out of its resources before itcould

reach the conclusion. This shows that, BFS cannot be used as it is, because it could

not navigate through the huge derivation trees of BK product expressions e�ciently.

2. Version 2, DFS-v1, implements the algorithm described in section8.3. Testing results

with DFS-v1 is very promising. Not only it can prove / check all theorems in9.2.1, it

can do it very fast. Theorem30 for F now takes only 0.1 second of CPU time (versus

96 second in BFS), and theorem31 requires only 2.55 second (compare to BFS who

could not even reach an answer. There is one exception though. Theorem31in DFS-v1

takes four times longer than in BFS.

3. Version 3, DFS-v2, improves the strategy of distance-�rst-search by grouping siblings

with the same distance to the target together. That way, not only those derivations of

the hypothesis that are closer to the conclusion, will be examined �rst, but those who

have the same parent node will also be examined closely. DFS-v2 out-performs the

other two versions, reduces the number of logical inferences and CPU time neededto

tenths to hundredths of time. There is no sound explanation to this scenario, but we

think that this might be because that beside the distance DFS-v2 takes into account

another factor that children (nodes) of the same parent will be searched/examinedas

closely together as possible, and that if two terms of the theorem to be proved are

ground terms then only one direction of the theorem is needed for both terms to be

equivalent.

Numerical results of these experiments are summarized in table9.2.
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Figure 9.11: Results of Proof Checker for General Morphisms

9.3 Special property of relations

In [78, 6], Bandler and Kohout showed thatC; B; � products add the expressive power to

the mathematics of relations. The residuated BK relational products provide a universal

representation of preorders for all crisp and fuzzy relations.

Theorem 32 (Relation Transitivity) [78, 6]

1. Relation R is transitive if and only if R v R B RT .

2. Relation R is re
exive if and only if R B RT v R.

3. Hence, relationR is preorder if and only if R = R B RT .

Using our theorem prover / checker, the above mentioned theorem can be proved nicely.

Proof Our system proves that (R � R v R) � (R v R B RT ).

By de�nition, relation R is transitive if and only if R2 v R, hence, the given theorem is

true.
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Table 9.2: Experimental Results: Performance Comparisons

# of logical inferences CPU time

BFS DFS-v1 DFS-v2 BFS DFS-v1 DFS-v2

Theorem28 9,079,459 71,568 16,813 4.10s 0.04s 0.01s

Theorem29 8,840,116 66,406 15,297 4.04s 0.02s 0.00s

Theorem30 for F 171,066,340 1,332,044 34,378 96.06s 0.10s 0.01s

Theorem30 for G 5,815,625 130,270 15,512 2.59s 0.04s 0.004s

Theorem31 for F 506,130 2,795,023 11,905 0.22s 1.13s 0.01s

Theorem31 for G � 17,433,753,339 6,162,096 258,206 � 12944.67s 2.55s 0.17s

9.4 Theorems of classivalence of heterogeneous
relations

In his 2001 paper [76], Kohout pointed out that the notion of equivalence classes de�ned

in homogeneous relations can not be carried over to the case of heterogeneousrelations.

It means that, given a relation R between two distinct sets, sayA and B, equivalent

classes ofR are not well de�ned. To deal with this problem, Kohout introduced a more

general property of relation by generalizing the equivalence of homogeneous relations to

heterogeneous relations and called itclassivalenceor partial difunctionality .

De�nition 33 [76] A fuzzy relation R 2 B(X ! Y ) in a t-norm residuated logic (BL) is

called&-classivalent if it satis�es the following condition:

(8a)(8b)(8a0)(8b0)(aRb&a0Rb&a0Rb0 ! aRb0)
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Figure 9.12gives a pictorial description of heterogeneous relations classivalence.

Figure 9.12: Classivalent Relation

In the same paper, Kohout de�ned the classivalency conditions that are characterized by

various relational inequalities containing BK relational products.

Theorem 34 (Classivalency Conditions of Heterogeneous Relations) [76]

The following conditions are equivalent:

1. A fuzzy relation R 2 B(X ! Y ) is &-classivalent in a t-norm residuated logic (BL).

2. R � RT v R C RT

3. R � RT v R B RT

The system proves this theorem in two reduction steps, while the original proof in [76]

conducted rigorously in the �rst order predicate fuzzy logic BL requires eight steps.

9.5 Theorem of the last of fuzzi�ed Tarskis axioms in
BL logic

The theory of crisp binary homogeneous relations is de�ned through a set of axioms in the

�rst order predicate logic by Tarski in his classical paper [83] in 1941. In order to extend

this theory to include fuzzy heterogeneous relations, Kohout [75, 84] investigated how can

Tarski's axioms be extended to fuzzy relational calculi in a rigorous axiomatic way. He did

so by looking at the extensions of Tarski's axioms obtained by replacing the crisp Boolean

algebra by the t-norm based residuated BL-algebras. In his 2001 paper [84], various proofs

of relational axioms were shown in the t-norm based residuated logic (BL). The proof of the
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last axiom is the one that we are most interested in, because it is the only one that contains

relational inequalities, and that it requires application of Modus Ponens in the proof. Since

the original knowledge base of our theorem prover / checker does not contain andreference

rule such as Modus Ponens, it is desirable to test the extensibility of the system's knowledge

base to deal with kind of proofs.

The last axiom is stated in [84] as:

RT � R � S v S

In the proof of this last axiom, a new (to our knowledge base) rewrite rule in BL, namely

(� �  ) ! ( ! � ) (1) and Modus Ponens are used to show that

(RT � R � S v S) � (R � S v (RT )T C S)

thus, by (1), we have:

(R � S v (RT )T C S) ! (RT � R � S v S)

The system, after adding the new rewrite rule (1) and Modus Ponens, is able to conduct

the proof above. This experiment is a good example that shows that our knowledge base

can be conveniently extended to accommodate new proofs of theorems.
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CHAPTER 10

Conclusions

This �nal chapter wraps up the works that have been accomplished in this dissertation. We

will �rst summarize the dissertation objectives as well as the research results according to

those objectives. The next section will discuss in detail the contribution of this dissertation

to computer science. Last but not least, we will discuss further research topics that could

be developed from our results.

10.1 Summary of Dissertation Objectives

There are three objectives that this dissertation aims at and attains.

Objective 1. To study theoretically the feasibility of symbolic transformations of relational

products,

Objective 2. To build a term rewriting system for relational products,

Objective 3. To develop an automated tool for symbolic manipulations of relational

products.

10.1.1 Theoretical study of symbolic transformations of relationa l
products

The research in this dissertation evolves around BK relational products and theirvarious

representations in computer science applications, which are many-valued logic, setbased and

predicate notations. The needs for each of these representations are clear from the point of

view of applications, as was shown in chapter5. There is, however, no complete research on

how these representations could be linked together for more complex and/or cross-domain
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applications. Furthermore, there does not exist a tool for automated transformations between

those representations of BK relational products. In this dissertation, we develop a scheme

that allows these transformations to be done automatically. A formal and uni�ed de�nition

for each notational type is presented in chapter6.

Semiotic descriptors play an important role in BK relational computations and applica-

tions. As discussed in chapter3, in many applications such as in medical system CLINAID,

value analysis, mobile agents, etc., semiotic descriptors were built and maintained as a\must

have" part in the system. It is a common scenario in practical situations that some of the

\middle" descriptors are missing, either by incomplete input or, more often, they are lacking

ability of keeping track of that information during the course of relational computations. In

our scheme, we take care of this by de�ning the semiotic descriptors together with arelation

as a whole. Thus, it does not matter how a relation or a relational product is manipulated,

this bit of information on the descriptors can always go with the relation or productitself.

In our system, transformations among BK products of relations and their three notational

forms (matrix form, set form and predicate form) are performed syntactically.

10.1.2 A term rewriting system as the theorem prover / checker
for relational products

The second objective is to build a pilot prototype for a theorem prover / checker for BK-

product generalized morphisms. The goal of such a system is to automatically validate that

a given theorem (concerning generalized morphisms theory) is true and can actually produce

a proof to show that. A term rewriting system has been built to attain this goal.

The theory of generalized morphisms for BK relational calculus, discussed in chapter8, is

a sound foundation for promising applications of BK relational products. The most current

one was Jean Muhammad's work on mobile agent, where generalized morphisms was the

foundational stone that made her mobile computation scheme work very nicely.

Our theorem prover / checker consists of (1) a knowledge base that contains aset of

rewrite rules of BK relational products, and (2) rewriting engine that �nds a derivation path

from the hypothesis to the conclusion, i.e. �nd a a proof for the theorem in question.

Set of rewriting rules

In this pilot study, we are building a rewrite system for BK products at the level of relational
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elements in product relations. It includes important properties of relational products, such as

associativity (circle product), mixed associativity (super and sub triangle products), pseudo

associativity (that shows the inter-relationship between circle and triangle products), and

equally signi�cant, the BK Bootstrap. This set of rewriting rules acts as the knowledge base

of our system, base on which the rewriting engine would look for a proof for a giventheorem.

Rewriting engine

While the set of rewriting rules is the knowledge base of the system, the rewriting engine

is the actual brain of the system. It navigates through the knowledge base to allocate

a derivation path of rewriting that leads to required conclusion formulas from a given

hypothesis. Formulas in our system are BK products expressions, represented as binary

trees. This tree representation will come in more handy in the next section, when we discuss

the system's optimized feature. Another type of tree that we have created inthe system is

the derivation tree of a formula, sayR. It contains all (possibly in�nitely many) formulas

that are derivable from R in the set of rewriting rules of the system. If there exists one

node in that derivation tree ofR (supposedly is a theorem's hypothesis) that can match that

theorem's conclusion (say formulaS), then the theorem prover / checker can validate that

the given theorem is true.

To go with the derivation trees that the system creates, we have developed a breadth-

�rst search algorithm that selects the desired derivations while generating derivation trees

of hypotheses. We have also proved that this algorithm is complete in the sense that if a

theorem is true in our theory, then the system will always be able to �nd a proof for it and

thus validate it.

Optimizing feature for an heuristic algorithm of the rewriting engine

There are twelve rewrite rules in the system's knowledge base, so when constructing a

derivation tree for a given formula, the number of nodes in that tree can possibly grow

exponentially. For a derivation with n levels, that number could reach up to 12n . Thus,

without any optimizing feature, for a long enough proof, the system might exhaust its

resource even before reaching its conclusion. A concrete example is the theoremon the

criteria for F and G for a generalized morphism to be backward compatibility (theorem 31,

chapter 8). This theorem, when proved by hand, required nine steps. But when checked /

validated by the system, it required more than seventeen billion logical inferences, which took
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over three and a half hours of CPU time. The system actually ran out of its argument stack

before reaching the conclusion. To over come this obstacle, we have added an optimizing

feature that helped speed up the process of proof checking. Instead of randomlypicking

an element from the derivation tree of the hypothesis, we select the one thatis closest to

the target, i.e. the conclusion. To measure the closeness between two formulas, we have

introduced a notion of subtree-distance. The smaller this distance is, the "closer" the two

formulas are to each other. We have also proved that this heuristic algorithm is complete in

the sense that all theorems that can be proved from the knowledge base will be proved, and

hence validated by our system.

10.1.3 A tool for symbolic transformations of relational products

In terms of implementation, we have built an automated tool for symbolic manipulations of

BK relational products. We have chosen Prolog as the programming language to develop the

system, because it possesses advantages that our system can bene�t from. We should note

here that most of the advantages of Prolog that we have found related with our research

strongly agree with those that the author of CTADEL had pointed out. The di�erences would

lay in the part where each of Prolog's features was concretely used in the two system (e.g.

CTADEL and our system). Not only that Prolog terms can be used to represent any of the

BK relational algebra, but they can also be used to represent internal data structures for the

system. Beside that, Prolog term uni�cation is a very useful pattern matching technique that

works well in the process of transformations. Last but not least, the backtracking mechanism

of Prolog makes the generate-and-match procedure in our theorem prover / checker be able

to exhaustively look for possible proof of a given theorem.

There are two levels in our implementation. In the higher level, BK relational products

are transformed syntactically in a purely logical way. It means that all transformations at

this level are done without any speci�c semantics of the logic system. At this level,we

have de�ned one tree-type data structure for each kind of BK products representations,

called a notational tree. The algorithm that transforms those notational trees among each

other which we have designed, allows automating transformations between all BK relational

products formulas and their three distinctive representations. The system has been tested

for di�erent sets of input data, ranging from simple formulas to more complex nested

formulas that contain multiple products. We have performed tests on direct transformations,
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i.e. from one representation to another, as well as those that yield a chain of continuous

transformations.

On the second level, we have implemented a system for a theorem prover / checker for

theorems of generalized morphisms and relational inequalities. Rewriting rules of the system

are represented internally using Prolog terms. Derivation trees of BK product formulas are

represented using Prolog lists. Using agenerate-and-matchmechanism, we have implemented

in our �rst version of the system a breadth-�rst search strategy for allocating a derivation

path from hypothesis to the conclusions of the theorem in checking, thus validating it. Even

though it was not an original objective of the dissertation, we have achieved optimizing

our theorem prover / checker. The breadth-�rst-search strategy in version one is enhanced

by taking an optimizing factor into account, which creates a new proof searchingstrategy

that we named distance-�rst-search. We have even advanced the development further, to

a third version of the system which is an improved version of the second one. Ituses an

improved-distance-�rst-searchstrategy that groups together \sibling" expressions with the

same distance to the target. In each optimized version, both the number of logical inferences

and the number of CPU time needed for all theorems, have been reduced to a fraction of

tens to hundreds times.

10.2 Contributions

The primary contribution of this research is the development of an automated toolfor BK

relational products manipulations. At a higher level of generic fuzzy logic systems, it allows

users to have various representations of BK products transformed automatically. At a lower

level of particular fuzzy logic systems, the system works as a theorem prover / checker

that can verify and generate proofs for theorems of generalize morphisms and relational

inequalities.

Even though the original objectives did not include the task of optimizing the tool, the

author has been able to optimize the theorem prover / checker module. This signi�cantly

improved the performance of the tool .
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10.3 Further Research

The research and results contained in this dissertation have opened further directions to

future work on these topics.

1. Relational computational methods have to be supported by adequate computing tools.

Such tools have to be compatible with new Internet technologies that have been

revolutionizing computerized handling of information, both data and knowledge. These

tools need to be integrated into a distributed computing environment.

Several tools for relational computations and data analysis have been developed,

namely Trisys [12] for testing local and global relational properties,Gmorph for

computing generalized relational morphisms [85],[73] and a tool calledFire (Fuzzy

Relational Interval Evaluator) [86] implemented in JAVA. It consists of Relational

Properties Analyzer (RPA) and Fuzzy Interval Ranking Generator (FIRG).

2. Collaboration with other systems, such as MathML, Ctadel, GUHA method. Inthis

scheme, we would gather these completely developed systems and utilize them in

parallel to provide services to users. For each desired functionality, users can choose

to select the appropriate sub-system, i.e. the one that can performs the requiredtasks

most e�ciently.

3. There are other theorem provers for equational logic systems such as EQP (EQuational

Prover) [87, 88] which is an automated prover for �rst-order classical equational logic,

or Maude, a high-performance equational and rewriting logic language and system.

Since our theorem prover is built for an equational-logic-like system (of BK relations),

it would be desirable to see how other mentioned systems can deal with theorems

proved in our system, and if so, to compare the performances among these provers.
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