
Florida State University Libraries

Electronic Theses, Treatises and Dissertations  The Graduate School

2008

An Extended Item Response Theory Model
Incorporating Item Response Time
Soo Jeong Ingrisone

Follow this and additional works at the FSU Digital Library. For more information, please contact lib-ir@fsu.edu

http://fsu.digital.flvc.org/
mailto:lib-ir@fsu.edu


 

 

 

FLORIDA STATE UNIVERSITY 

COLLEGE OF EDUCATION 

 

 

 

AN EXTENDED ITEM RESPONSE THEORY MODEL  

INCORPORATING ITEM RESPONSE TIME 

 

 

 

By 

SOO JEONG INGRISONE 

 

 

 

 

A Dissertation submitted to the  

Department of Educational Psychology and Learning Systems  

in partial fulfillment of the 

requirements for the degree of  

Doctor of Philosophy 

 

 

Degree Awarded: 

Fall Semester, 2008 

 



 ii

 

 

 

 

 

The members of the Committee approve the Dissertation of Soo Jeong Ingrisone 

defended on October 23, 2008. 

 

 

____________________________________ 

Betsy Jane Becker 

Professor Co-Directing Dissertation 

 

 

____________________________________ 

Kai-Sheng Song 

Professor Co-Directing Dissertation 

 

 

____________________________________ 

Fred W. Huffer 

Outside Committee Member 

 

 

____________________________________ 

Akihito Kamata 

Committee Member 

 

 

 

 

Approved: 

 

_______________________________________________________________________ 

Akihito Kamata, Chair, Department of Educational Psychology and Learning Systems 

 

 

The Office of Graduate Studies has verified and approved the above named committee 

members. 

 



 iii

 

 

 

 

 

 

 

 

For James and Catherine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv

 

 

 

ACKNOWLEDGEMENTS 

 

 I would like to express my gratitude to my major professors, Dr. Kai-Sheng Song 

and Dr. Betsy Becker. Dr. Song has provided many hours of discussions, advice, 

encouragement, and support that enabled me to find the direction of my research. I am 

grateful for Dr. Becker’s thoughtful comments and her dedication to editing this work 

which helped me to express my ideas clearly. I am indebted to my outside committee 

member, Dr. Fred Huffer. His devoted guidance, crucial suggestions and immense 

patience helped me to advance and complete this dissertation. I am thankful to Dr. 

Akihito Kamata for introducing me to psychometrics and his insightful comments. 

 I would like to show my appreciation to my parents for their moral and financial 

support as well as their love and patience throughout my studies. Special thanks to my 

husband James and my daughter Catherine. James is my best friend, biggest supporter, 

most trusted colleague, and best manuscript reviewer that I know. I lack the words to 

praise the love that he has bestowed upon me. And to my lovely daughter Catherine, I 

thank her for sharing this moment with me. My life is filled with blessings because of 

her. 

   

 

 

 

 

 

 

 

 

 

 



 v

 

 

 

TABLE OF CONTENTS 

 

LIST OF TABLES...........................................................................................................vii 

LIST OF FIGURES.........................................................................................................xii 

ABSTRACT....................................................................................................................xiii 

 

CHAPTER 1: INTRODUCTION.................................................................................... 1 

 

CHAPTER 2: REVIEW OF LITERATURE................................................................. 4 

 

CHAPTER 3: METHODS………………………………............................................. 16 

Item response theory for binary data……………………………………………....16   

Item response function for 2 PL……………………………………………………18 

An item response model that incorporates response time....…………………….....23 

Joint distribution of item response and response time....…………………………..23 

Response time model………………………………………………………………24 

Joint likelihood of item responses and response times…………………………….28  

Marginal maximum likelihood estimation………………………………………...34 

Maximum a posteriori estimation………………………………………………….44 

Simulation …………………………………………………………………………47  

Simulation design 1 – item parameter estimation using MML........................47 

Simulation design 2 – person parameter estimation using MAP….................51 

Simulation design 3 – person parameter recovery using MML and MAP......52 

Criteria for comparisons...........................................................................................53 

 

CHAPTER 4: RESULTS…………………................................................................... 56 

Simulation design 1 – item parameter estimation using MML……….....................57 

Simulation design 2 – person parameter estimation using MAP..............................63 



 vi

Simulation design 3 – person parameter recovery using MML and MAP…….......66 

 

CHAPTER 5: DISCUSSION ........................................................................................ 69 

Summary.................................................................................................................. 69 

Limitations and future research.…………..…………………......................…….. 70 

Conclusions………..……………..……………………………......................…….71 

Practical implications..………..…………………......................……......................72 

 

APPENDICES................................................................................................................. 73 

A. Detailed analysis of simulation design 1 – item parameter estimation using MML 

…………………………………………………………….…………..………..73 

B. Detailed analysis of simulation design 2 – person parameter estimation using 

MAP……………………………………………………………………............99 

C. Detailed analysis of simulation design 3 – person parameter recovery using 

MML and MAP………………………………………………………............102 

D. Additional analysis on person parameters…………………………………….109 

 

REFERENCES.............................................................................................................. 111 

 

BIOGRAPHICAL SKETCH....................................................................................... 116  

 

 

 

 

 

 

 

 

 

 

 



 vii

  

 

 

LIST OF TABLES 

 

Table 3.1 20 values forming a discrete approximation to a normal distribution which is 

used for both ability and person slowness parameters…………..…………...48 

 

Table 3.2 True Item Parameters ( , ,a b r ) used in Simulation for 20 items....................... 49 

Table 3.3 True Item Parameters ( , ,a b r ) used in Simulation for 40 items....................... 50 

Table 3.4 Additional parameters ( , , ,
s

gη σ σ ) used to generate the data………………..51 

Table 4.1 Across-item bias, SE and RMSE of the item discrimination parameter ( a ) 

average estimates based on 100 replications for 20 items and 1000 

examinee………………………………………………………………….….56 

 

Table 4.2 Sample variance of the item discrimination ( a ) estimates ( 2
S ) and mean of the 

variance estimates based on the Fisher information (
a

I ) and corresponding 

standard deviation (SD) over 100 simulation replications for 20 items and 

1000 examinees………………………………………………………………57 

 

Table 4.3 Across-item bias, SEE and RMSE of the item difficulty parameter (b ) average 

estimates based on 100 replications for 20 items and 1000 examinees..…….58 

 

Table 4.4 Sample variance of the item difficulty (b ) estimates ( 2
S ) and mean of the 

variance estimates based on the Fisher information (
b

I ) and corresponding 

standard deviation (SD) over 100 simulation replications for 20 items and 

1000 examinees………………………………………………………………59 

 

Table 4.5 Across-item bias, SE and RMSE of the item slowness parameter ( r ) average 

estimates based on 100 replications for 20 items and 1000 examinees……...60 

 

Table 4.6 Sample variance of the item slowness ( r ) estimates ( 2
S ) and mean of the 

variance estimates based on the Fisher information (
rI ) and corresponding 

standard deviation (SD) over 100 simulation replications for 20 items and 

1000 examinees………………………………………………………………61 

 

Table 4.7 Across-item bias, SE and RMSE of the parameter ( , , ,
s

gη σ σ ) average 

estimates based on 100 replications for 20 items and 1000 examinees……...62 

 



 viii

Table 4.8 Sample variance of the parameter ( , , ,
s

gη σ σ ) estimates ( 2
S ) and mean of the 

variance estimates based on the Fisher information ( I ) and corresponding 

standard deviation (SD) over 100 simulation replications for 20 items and 

1000 examinees………………………………………………………………63 

 

Table 4.9 Mean of the true mean abilities (θ ) from 100 replications and its variability, 

mean of the estimated mean abilities ( θ̂ ) from 100 replications and its 

variability, mean of the true mean person slowness ( s ) from 100 replications 

and its variability, and mean of the estimated person slowness ( ŝ ) from 100 
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ABSTRACT 

 

There is a growing need to use response time data to improve measurement 

quality with the increasing popularity of computerized testing. This work simultaneously 

models item response and response time to improve on current IRT models that do not 

account for response time when there is a time limit in real testing. The joint distribution 

for item response and response time is presented in this work. It is specified as the 

product of the conditional distribution of response accuracy given response time and the 

marginal distribution of response time based on the lognormal distribution. A modified 

version of Thissen’s (1983) log linear model is used to fit the response time. Marginal 

maximum likelihood estimation is developed and employed to estimate the item 

parameters. In addition, a maximum a posteriori procedure is developed and implemented 

to estimate person parameters. Three different simulation studies were conducted to 

evaluate the precision of estimation procedures. The results of item and person parameter 

estimates based on MML and MAP procedures were found to be consistent and accurate.  
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CHAPTER 1 

 

INTRODUCTION 

 

Response time data has largely been ignored in the field of educational 

measurement. The main reason is that it has been difficult to collect response time data at 

the individual item level with paper-based testing. Recently, due to the use of computer 

technology in testing, in addition to response accuracy data, response time data can be 

obtained at the item level. As a result, the amount of time examinees spend on each item 

can be investigated. Ease of measurement and the availability of the data have led to 

growing interest in the use of response time in the measurement field (Schnipke & 

Scrams, 2002; Wang, 2006; Wang & Zhang, 2006).  

The analysis of response time however has had a long history in cognitive 

psychology due to the fact that it is a ubiquitous dependent variable in the field (Luce, 

1986). In any choice of psychological experiment, there are at least two dependent 

measures, that is, the choices a subject makes and the time a subject takes. Thus, 

psychologists have speculated that response time may reveal information about mental 

processes which require different amounts of time. In other words, how long it takes a 

person to process a task reveals how the person processed it. For the most part, the 

distribution of response time has been inferred as a source of information about how the 

mind processes. In particular, the Speed-Accuracy Tradeoff Function (SATF) describes 

the compromises a subject makes between accuracy and time demands. SATF analysis 

indicates how a subject’s accuracy in performing certain tasks changes as the response 

time changes (Luce, 1986). Therefore, separate analyses of response accuracy and time 

have been shown to be misleading (Thissen, 1983).     

Most research regarding classical test theory and item response theory has been 

focused exclusively on response accuracy because it is assumed that response time and 

accuracy are measuring the same constructs, so that time limits will not affect the 
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response accuracy. Yet, the implication is that an examinee’s ability may be measured on 

the scale of accuracy, the scale of speed, or some combination of the two (Schnipke & 

Scrams, 2002). In the context of educational measurement, this is a serious issue for the 

validity of tests. Until now, the time limits have mainly been dealt with as an issue 

regarding administrative convenience in the context of aptitude and achievement testing. 

However, several studies demonstrate that speed and accuracy of complex tasks, e.g., in 

aptitude and achievement testing, do not measure same construct. The research on 

response time in testing has uncovered a rather convoluted relationship between response 

time and response accuracy among examinees (Schnipke & Scrams, 2002).  

Likewise, the application of conventional item response theory (IRT) models may 

not be appropriate for real testing settings, because item response theory implicitly 

assumes nonspeededness (Hambleton & Swaminathan, 1985). Item response theory 

fundamentally assumes that the test is a pure power test (Roskam, 1997). Unlike the pure 

speed tests which typically contain test items that are fairly easy, so examinees will 

almost always answer the items correctly with unlimited time, the pure power tests 

contain items of varying difficulty so that even if the examinee has unlimited testing 

time, the examinee will not always answer all the items correctly. Based on this 

assumption, conventional IRT models only the response accuracy, ignoring response 

time. In practice, however, pure power tests or pure speed tests are rarely employed (Lord 

& Novick, 1968). Most existing tests are “hybrid” in nature (van der Linden & 

Hambleton, 1997, p. 166). In common educational testing, most power tests involve a 

speed component, namely, time limits. Therefore, the assumption of the nonspeededness 

is likely violated to various degrees in practice (Oshima, 1994).  

Up until now studies have revealed that: Time limits have an effect on examinee 

performance (Hopkins, 1998); different time limits result in different test scores for 

examinees (Bridgeman et al., 2003; Bridgeman et al., 2004); speededness affects the 

estimation of ability and item parameters (Oshima, 1994); IRT item parameter estimates 

are distorted by speededness (Schnipke, 1996); and ignoring response time data will have 

an adverse affect in estimating examinee ability (Wang & Hanson, 2005). Schnipke and 

Scrams (2002, p. 247) confirm that “The IRT ability estimate… represents the 

examinees’ accuracy given the time constraints of the administration; this is clearly 
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confounded with response speed. This is a serious confound and a solution is needed.” 

There is a growing need to use response time data to improve measurement quality with 

the ever-increasing popularity of computer-based testing (Wang & Hanson, 2005). 

Consequently, developing a realistic model for tests which incorporates response time as 

well as applies to timed power tests is needed (van der Linden & Hambleton, 1997). By 

taking response time into account in the calibration process, this research can facilitate 

the improvement of ability and item parameter estimation. 

The primary purposes of this study are as follows: first, to suggest an item 

response model that incorporates response time that can be applied to timed power tests, 

second, to suggest the estimation procedures to calibrate item parameters and to estimate 

person parameters, and last, to use a simulation to evaluate the model and the parameter 

estimation procedures.  

We may be obligated to investigate response times in the interest of fairness and 

equity (Schnipke & Scrams, 2002). The proposed model incorporating response time is 

an important step in the field which can be an aid to enhanced measurement quality.  

 

 

 

 

 

 

 

 

 

 

 

 



 4

 

 

 

  CHAPTER 2  

 

REVIEW OF LITERATURE 

 

Most of the previous research regarding response time modeling has treated 

response time as a dependent variable (Schnipke & Scrams, 2002). Thissen (1983) also 

points out that previous response time models offered have ignored issues of response 

accuracy by not considering item responses simultaneously (Tatsuoka & Tatsuoka, 1980) 

or by dealing with relatively uncomplicated cognitive tasks (Samejima, 1973, 1974, 

1983; Schleiblechner, 1979, 1985). Otherwise, response time is not treated as a dependent 

variable, but used rather as a fixed variable in models for the prediction of item response 

(White, 1973, 1979). Likewise, item responses are not considered simultaneously. 

However, there are a few exceptions where response accuracy and response time are 

modeled simultaneously. These include Thissen (1983), Roskam (1997), Verhelst, 

Verstralen, and Jansen (1997), Wang and Hanson (2005) and Wang (2006).   

Roskam (1997) and Verhelst et al. (1997) have several similarities: First, they 

both use Rasch models. In addition, both of their promising models assume the 

Conditional Accuracy Function (CAF) mechanism. The CAF represents the probability 

of a correct response conditional on the response time within a fixed speed-accuracy 

tradeoff (SAT). By assuming CAF as an increasing function, their models show that as 

response time goes to infinity, the probability of correct response approaches one. In 

other words, if the examinee has unlimited testing time, the examinee will almost always 

answer the items correctly. Consequently, their models are only true in the context of 

speed tests.  In addition, they assume that CAF is independent of the subjects’ strategy. 

Namely, a strategy parameter is seen as influencing the response time distribution, not the 

probability of correct response. Thus, the probability of correct response is governed by 

the strategy of the subject only through the response time distribution.     
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Roskam (1997) presents a Rasch-Weibull model. In his model, response time is 

used to predict finishing time of a test. The probability of correct response is mentioned 

as a Rasch response time model where the correct response probability is conditioned on 

response time. It is expressed as  

 

( ) ( )
( )

exp
1 , ,

1 exp

j ij ij ij

ij ij

j ij i j ij i

t
P U t j i

t

ξ τ σθ
θ ε ξ τ σ

+ −
= = =

+ + + −
,       (2.1) 

where 
j

θ  is called as a mental speed, 
ij

t is response time, 
i
ε  is item difficulty, and the 

corresponding logarithms  are 
j

ξ ,
ij
τ , and 

i
σ  respectively. In the Rasch response time 

model,
j ij
tθ  is the effective ability parameter. The effective ability parameter for item i  is 

a function of mental speed as well as persistence in attempting to solve an item 

(processing time). In other words, a person’s effective ability solving an item increases as 

the time invested in solving it increases. According to Roskam (1997), the rate of that 

increase is a mental speed. Therefore, in the effective ability parameter, the task 

parameter (mental speed) and strategy parameter (Speed-Accuracy Tradeoff) are 

confounded. Moreover, Roskam (1997) shows that his CAF Rasch response time model 

coincides with SATF, in that its shape is determined by mental speed and item difficulty, 

and the actual trade-off between precision and speed is determined by the examinee’s 

persistence.     

 Roskam (1997) introduces the marginal probability of correct response. The 

marginal probability of correct response is obtained by multiplying the Rasch response 

time model by the Weibull density, and then integrating response time out. The 

probability is 

 

( ) ( )
0

1 ,
j

ij

j i

t
P U j i f t dt

t

θ
θ ε

∞
= =

+∫ .       (2.2) 

He claims that the equation 2.2 is approximately a Rasch model. It implies that the Rasch 

homogeneity can be present across persons who invest different amounts of time in each 

item. Thus, his Weibull distribution model involves test completion time for the entire 
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test rather than individual item response time. A Weibull distribution is used to specify 

the response time distribution. It is given as  

 

( ) 2exp
2

f t t
λλ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
, where 

j

i j

θ
λ

ε δ
= .      (2.3) 

The hazard function is defined as  

 

( )
j

ij

i j

h t t
θ
ε δ

= .            (2.4) 

The response time distribution is characterized by the hazard function ( )
ij

h t  which is a 

function of mental speed ( )
j

θ , examinee’s persistence ( )
j

δ  and the item difficulty ( )
i
ε . 

The model behaves such that examinees will spend more time on harder the items, 

mentally faster examinees will spend less time, and more persistent examinees will spend 

more time. In addition, a more persistent examinee will invest more time for each item 

and will increase the probability of correct responses.   

The limitation of Roskam’s (1997) approach is that his model can only be applied 

to speed tests due to his crucial assumption that the probability of correct response 

increases to unity as the response time increases to infinity. Also, he builds his model 

based on the assumption that response time at the item level is not available in the 

standard time limit tests, so that only the total test time can be considered. His model 

makes sense when all items have equal difficulty so response time at the item level is not 

important. In typical educational tests, however, items are at various item difficulty 

levels. Therefore, this model cannot be applied to many educational tests. In addition, his 

response time distribution uses only the one parameter Weibull distribution, thus, it is a 

narrow application of the Weibull distribution. It does not provide a real response time 

distribution, rather a limited scope of response time distribution possibilities. Moreover, 

the validity of his model is disputable. Roskam (1997) admits that there are currently no 

empirical examples available to exhibit the entire characteristics of Rasch-Weibull 

model. Results establishing the validity of his entire model were not presented in his 

study.  
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Verhelst et al. (1997) focuses on a Rasch model for the marginal probability of a 

correct response, integrating over response time. In the typical IRT models, the item 

response function for the binary responses ( )i jf θ  is the probability of correct response 

on item i  as a function of the latent variable θ . The item difficulty parameter 
i
ε  

corresponds to the value of the latent variable θ  where the probability of correct response 

is 0.5.  Similarly, Verhelst et al. (1997) assume that the mental activities of the examinee 

result in some value z which is from random variable Z. If the item is answered correctly, 

the value z is larger than threshold 
i
ε .  He assumes that Z belongs to a shift family, thus 

the person parameter θ  is defined to be a location parameter. It is expressed as  

 

( ) ( ) ( )
j j

i
i j if P Z g z dzθ θε
θ ε

∞
= > = ∫ ,       (2.5) 

where ( )gθ ⋅  is the logistic probability density function (pdf) which results in a logistic 

IRT model. A random variable Z  is called the momentary ability. Assuming a random 

variable Z  takes some value z , the item will be correctly answered when the examinee’s 

momentary ability exceeds item difficulty (See Equation 2.5). According to Verhelst et 

al. (1997), the amounts of time spent to answer the item will explain the variation of the 

momentary ability Z. It is stated that examinee’s momentary ability depends on 

examinee’s mental power as well as speed. In addition, the momentary ability is defined 

as an increasing function of time. Thus, as an examinee spends more time on an item, the 

probability of a correct response increases. The marginal distribution of Z with time 

integrated out is given by 

 

( ) ( ) ( )
0

g z h z t q t dtθ θ λ

∞
= ∫ .        (2.6) 

         Verhelst et al. (1997) believe that each examinee decides on the amount of time to 

spend on an item, which can be represented as a two parameter gamma distributed 

response time. The respective time distribution is given by 

 

( ) ( ) ( )1 , ,
p

p t
q t t e p

p

β
λ

β λ β− −= =
Γ

.        (2.7) 
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where the scale parameter ( )β is an examinee parameter and the shape parameter ( )p is 

considered as the item parameter. Verhelst et al. (1997) state that the momentary ability 

conditioned on response time can be represented by a generalized form of the extreme 

value distribution. Its distribution function is expressed as 

 

( ) ( )
0

1 exp exp , 0
i

h z t dt tθ

θ ε
α α

α
∞ ⎧ ⎫−⎡ ⎤⎪ ⎪= − − >⎨ ⎬⎢ ⎥

⎪ ⎪⎣ ⎦⎩ ⎭
∫ .      (2.8) 

where α  is conceived of as a constant. With gamma distributed response time 

distribution, the marginal momentary ability distribution is a generalized logistic 

function. Therefore, this model is consistent with the logistic item response function. 

When the shape parameter is equal to one, the response time distribution reduces to an 

exponential distribution and the marginal momentary ability distribution reduces to the 

Rasch model. Verhelst et al. (1997) label θ α  as “mental power” which stands for the 

combination of speed and accuracy.  

 According to the simulation results presented by Verhelst et al. (1997), the 

estimation of the fundamental concept mental power is biased and θ α  is systematically 

underestimated. They also report that empirical research using their model is a 

challenging endeavor.    

Verhelst et al. (1997) take both correctness and response time simultaneously into 

account in their model. However, their model can be only applied to speed tests. They 

assume the speed-accuracy tradeoff mechanism in their proposed model. That is to say, 

the probability of correct response goes to one as the amount of time spent in answering 

an item increases without bounds. As noted above, this is only possible in the context of 

speed tests where items are relatively easy and errors are mainly caused by time pressure. 

This assumption is unrealistic in power tests. In addition, when Verhelst et al.’s (1997) 

Rasch model is compared with the Rasch-Weibull model by Roskam (1997), it is found 

to be a close approximation of the Rasch-Weibull model. However, Roskam (1997) 

indicates that the parameter α  in this model seems to be unidentifiable and lacks a clear 

interpretation.     
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Thissen (1983), Wang and Hanson (2005), and Wang (2006) proposed other 

models that apply to power tests with time limits. Thissen (1983) presented an item 

response model as a joint distribution in which the marginal distribution of correct 

responses is characterized in terms of a two parameter logistic model (2 PL) and the 

marginal distribution of response time is characterized as a lognormal model. His was the 

first attempt at incorporating response latency in the context of item response theory as a 

joint distribution in timed testing. His approach is based on the response latency theory 

developed in cognitive psychology where response latency is a central part of cognitive 

processing (Luce, 1986). Although the focus of cognitive psychologists has been the 

cognitive processes within-person relationship between speed and accuracy, Thissen’s 

(1983) model represents the across-person relationship between speed and accuracy 

which is a psychometric perspective for the speed-accuracy relationship (Scrams & 

Schnipke, 1997). His proposed model is built on a revised version of Furneaux’s (1961) 

model. 

Based on the assumption of independence of correct responses and response 

times, Thissen (1983) proposed the joint distribution between correct response and 

response time as the product of the marginal distribution of two variables. The probability 

of correct responses 
ij

r  = 1 for person i  to item j  is expressed using the logistic model 

 

( ) ( )
1

1
1 exp

ij

ij

P r
z

= =
+ −

, where 
ij j i j

z a cθ= + .                 (2.9) 

Thissen (1983) called 
i

θ  as the effective ability of person i  in order to distinguish it from 

the conventional ability estimates obtained with speeded tests, 
j

a  is the item 

discrimination parameter or slope of item j , and 
j

c  is the easiness of item j .   

Thissen (1983) assumes a lognormal distribution for the expected response time 

distribution for an examinee responding to an item. He believes that the response time of 

person i on item j , 
ij

t , must be a function of parameters representing person i  and item j  

characteristics because the response accuracy or latency or both can be contained in the 

item responses. The linear model is proposed to portray attributes of both examinees and 
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items that contribute to latency but unrelated to trait the items are intended to measure. 

The log-linear model is expressed as 

 

( )ln ij i j ij ijt s u bzυ ε= + + − + ,        (2.10) 

where the natural logarithm of response time, ( )ln
ij

t , is described as a linear function of 

examinee and item parameters. ( )2~ 0,
ij

Nε σ , υ  is the overall mean, s and u are person 

and item slowness parameters, respectively. The parameter b  denotes a regression 

coefficient representing the log-linear relationship between response time and examinee 

ability. As 
ij

z  increases (as person ability and item easiness increase), response latency 

decreases. Due to this reason, the relationship between effective ability and slowness can 

be viewed as another facet of the speed-accuracy tradeoff.  

 Thissen applied this model to a set of data. His examples illustrate the potential 

problems associated with a timed testing situation. Overall, the goodness of fit test of the 

model using 2χ  reveals that his timed testing model is correct. One interesting finding is 

that correct responses take less time than incorrect responses. That is, correct responses 

are related to shorter latencies. His results also demonstrate that there exist some 

processing differences between correct and incorrect responses. Thissen (1983) concludes 

that all analyses of the test scores in timed testing should be two dimensional. In any 

timed testing environment, a valid response variable absorbs effective ability or slowness 

or both. This leads to the conclusion that univariate analysis results regarding effective 

ability or slowness may be misleading. Therefore, the analysis of a two dimensional 

response space is needed to estimate the ability parameter.       

Although Thissen (1983) applied his model to a speed test, it can also be applied 

to timed large scale, standardized achievement and aptitude tests (Schnipke & Scrams, 

2002). He indicates that the purpose of his model is to provide a practical description of 

responses to test items rather than an explanation of the cognitive processes underlying 

these responses. He suggests that process models should be developed in future research. 

Yet the limitation of Thissen’s (1983) model is that it assumes correct responses and 

response times to be independent. His model assumption is problematic because the two 
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marginal distributions share some common parameters, such as ability, item 

discrimination and item easiness. In addition, the person slowness parameter s , the rate of 

work, can be seen as a personality trait. Thus, response time results from a person 

parameter (Schnipke & Scrams, 2002). Consequently, accuracy of response and response 

time are not independent, thus his assumption does not hold in general. van der Linden 

and van Krimpen-Stoop (2003) point out that another assumption that Thissen (1983) 

introduced in his response model is inaccurate. Namely, Thissen (1983) assumes a 

monotonically decreasing relation between slowness and ability by stating that “more 

able students work faster” (Thissen, 1983, p. 202). However, van der Linden and van 

Krimpen-Stoop (2003) found that the literature regarding response latency seems to 

imply a monotonically increasing function. When an examinee selects the option as 

accuracy rather than speed, both the value of ability and slowness parameter (that appears 

in 2.10) seem to increase. Also, empirical evidence supports that the relation between 

ability and slowness depends on the level of speededness of the test (van der Linden & 

van Krimpen-Stoop, 2003).  

Wang and Hanson (2005) offer a four parameter logistic response time (4PLRT) 

model. This model is specifically formulated for power tests. In particular, as response 

times goes to infinity, the model reduces to three parameter logistic model (3PL). In that 

regard, the 4PLRT model can be viewed as an extension of the conventional 3PL model, 

incorporating response time. In the 4 PLRT model, response time is an independent 

variable that affects the probability of a correct response, namely, via the conditional 

distribution of response accuracy given response time.  

In the 4 PLRT model, the probability of a correct response to item j by examinee i 

is given as  

 

( ) ( )1.7

1
1 , , , , , ,

1
j i i j ij j

j

ij i i j j j j ij j a d t b

c
P x a b c d t c

e
θ ρ

θ ρ
⎡ ⎤− − −⎣ ⎦

−
= = +

+
,    (2.11) 

where 
j

a , 
j

b  and 
j

c  are item discrimination, difficulty and guessing parameters 

respectively, and 
i
θ  is the person ability parameter. These four parameters are the usual 

3PL item response theory (IRT) parameters. Also, 2.10 includes 
j

d  as an item slowness 
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parameter and 
i

ρ  as a person slowness parameter, which are unique to the 4PLRT model. 

These two parameters are called slowness parameters because the larger that 
j

d  and 
i

ρ  

are, the slower the probability converges to its asymptote ( )a bθ − . According to Wang 

and Hanson (2005), the item slowness parameter shows how items behave to response 

time. It only relates to a particular item and does not vary across examinees. Similarly, 

the person slowness parameter indicates the pace of an examinee to answer any item 

correctly. It only relates to a particular examinee and does not change across items. Thus, 

there is no interaction between an examinee and an item as stated by Wang and Hanson 

(2005). Wang and Hanson (2005) assume that the product of these two slowness 

parameters determines the rate of probability change over response time for a particular 

examinee to a particular item. By putting a negative term containing the inverse of 

response time in the exponent of the logistic function, they ensure that the exponent does 

not increase to one but converges to ( )a bθ − . That is, as response time approaches to 

infinity, correct response probabilities do not converge to one, but to values less than one 

defined in the 3 PL model.  

Since time limits are common in real testing situations, the 4PLRT model 

provides promising capabilities in using response time data in time constrained power 

tests. Likewise, it may explain item response behavior more accurately than a 3PL model. 

Wang and Hanson (2005) conclude that an estimation procedure using the EM algorithm 

works well and produces reasonably accurate parameter estimates. The results based on 

real test data demonstrate that the item parameter estimates from 4PLRT are comparable 

to those from the 3PL model. Moreover, the in results from simulated data exhibit that 

when the 4PLRT model fits the data, ignoring response time data will undesirably affect 

the estimation of examinee abilities.  

The 4PLRT model proposed by Wang and Hanson (2005), however, contains 

some inherent problems. Namely, for the sake of parameter estimation, their technical 

procedure requires an assumption that the item response time is independent of person 

parameters. Their rationale is that the person slowness parameter entails how response 

time affects the probability of the correct answer. Thus, response time can be controlled 

by either examinees or the test giver. This assumption does not hold in general because 
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response time seems like to be connected to person parameters. Wang and Hanson (2005) 

realize that the model is justified only when the amount of response time spent on each 

item is not controlled by the examinees, but by the test giver. Due to that reason, the 

response time is treated as a fixed predictor rather than a random variable. Wang and 

Hanson (2005) argue that response time is usually treated as a random variable because 

when the testing process for the same group of examinees and for the same test is 

repeated, response times for these items change. Therefore, treating the fundamentally 

random variable response time as a fixed variable would introduce more bias to the 

parameter estimation. Consequently, although they avoid modeling response time with 

this assumption, it causes a serious limitation to the applicability of their model.  

To overcome this limitation of their model, Wang and Hanson (2005) suggested 

modeling the joint distribution of response accuracy and response time. They recommend 

the joint distribution as the product of the conditional distribution of correct response and 

the marginal distribution of response time. The complete model can treat response time as 

a random variable so that it can be applied to testing situations where examinees have full 

control of how much time they would like to spend on each item up to the time limit. 

Wang (2006) presents a model for the joint distribution of response accuracy and 

response time. His approach is an extension of Wang and Hanson’s (2005) 4PLRT 

model. By developing a joint distribution, Wang’s (2006) model does not assume that 

response time is independent of person parameters, like in Wang and Hanson (2005). 

Thus, his model expands the applicability of the model. Wang (2006) specifies his joint 

distribution as the product of the conditional distribution of response accuracy and the 

marginal distribution of response time. The joint distribution of 
ij

y  and 
ij

t is specified as   

 

( ) ( ) ( ), , , , , , ,
ij ij i i j ij ij i j ij i i j

f y t f y t f tθ ρ δ θ δ θ ρ δ= ,    (2.12) 

where 
ij

y  is the dichotomous item response variable, with 
ij

y = 1 for correct response and 

0 for an incorrect response, and 
ij

t is the response time variable. Here, 
i
θ  and 

i
ρ  are 

examinee ability and speed parameters respectively, and ( ), , ,j j j j ja b c dδ = are item 

discrimination, difficulty, guessing and slowness parameters for item j, respectively. The 
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specified parameters have the same characteristics as described in Wang and Hanson 

(2005) except
i

ρ .  The conditional distribution of 
ij

y given 
ij

t is given as  

 

( ) ( ) ( ) 1

, , , , 1 , ,
ijij

yy

ij ij i j ij i j ij i jf y t P t P tθ δ θ δ θ δ
−

⎡ ⎤= −⎣ ⎦ ,   (2.13) 

where the probability of a correct response to item j by examinee i is expressed by  

 

( ) ( ) ( )1.7

1
, , P 1 , ,

1
j i j ij j

j

ij i j ij ij i j j a d t b

c
P t y t c

e
θ

θ δ θ δ
⎡ ⎤− − −⎣ ⎦

−
= = = +

+
.    (2.14) 

Wang (2006) notes that in comparison to Wang and Hanson’s (2005) model the 

difference is that 
i

ρ  is omitted in the exponential function in the model.  

For the marginal distribution of response time, he uses a one parameter Weibull 

distribution. It is a special case of the three parameter Weibull distribution and is limited 

by setting the location parameter to zero and shape parameter to two. That means that he 

constrains the response time distribution to be a linear function of time. The marginal 

distribution of response time is expressed as  

 

( ) 2
, , ijt

ij i i j ij
f t t e

λθ ρ δ λ −= , where ( )2

i i jbλ ρ θ= − ,    (2.15) 

where λ  is the scale parameter that determines the mean and variance of the response 

time distribution. The underlying assumption of Wang’s (2006) λ  parameter model is 

consistent with Wang and Zhang’s (2006) finding that examinees will spend more time 

on items that correspond to their ability level. This can be shown because when λ  

becomes large the mean and variance of the response time distribution becomes small. 

Also, when 
i

ρ  or the difference between 
i
θ and 

j
b are large then λ  becomes large. 

Therefore, in Wang’s (2006) view, 
i

ρ  is a speed parameter. 

 Wang (2006) applies his model to the same real test data as Wang and Hanson 

(2005). His item parameter estimates are somewhat different from the values reported in 

Wang and Hanson (2005). As Wang (2006) admits, it should be addressed how much of 

differences are acceptable when different models are applied to the same data. His 
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simulation study showed that the calibration procedure recovered true item parameters 

pretty well except in a few cases.  

The main limitation of Wang’s (2006) model is due to his response time model.  

His one parameter Weibull distribution is an oversimplified version of the response time 

distribution, thus it does not adequately capture the realistic representation of response 

time distribution. However, his approach can be viewed as an initial step for towards 

simultaneous modeling of response time and response accuracy.  

Ingrisone (2008) developed a joint distribution which simultaneously models 

response accuracy and response time. His conditional distribution incorporates response 

time into one parameter logistic model. He extends Wang’s (2006) model and improves it 

by using a two parameter Weibull distribution for the marginal distribution of response 

time. By modeling the shape and scale parameters, the two-parameter Weibull 

distribution presents a more realistic picture of the response time relationships. 

It is challenging, but important to develop a new model regarding the response 

accuracy and response time problem. The goal of the present work is to simultaneously 

model item response accuracy and response time in the real testing context. To do this, a 

joint distribution of item response and response time is used. The proposed model in this 

work introduces an extended IRT model for the probability of correct response 

conditioned on response time. For response time distribution, the lognormal distribution 

is assumed. In addition, a modified version of Thissen’s (1983) log linear model is 

employed to fit the response time. In the following methods section, the proposed model 

is described in more detail. 
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 CHAPTER 3 

 

METHODS 

 

This chapter includes a brief overview of typical item response theory for binary 

data and item response function for the 2 PL model. Then, a new model is introduced, an 

extended item response model that incorporates response time. In the present work, a 

joint distribution for item response and response time is suggested. The model is 

specified as the product of the conditional distribution of response accuracy given 

response time and the marginal distribution of response time based on the lognormal 

distribution. In addition, a modified version of Thissen’s (1983) log linear model is 

employed to fit the response time. In addition, the joint likelihood of item responses and 

response times are derived. In order to estimate item parameters, marginal maximum 

likelihood approach is presented. Maximum a posteriori procedure is included to estimate 

person parameters. Finally, three different simulation studies are arranged to evaluate the 

precision of item and person parameter estimates. 

Item response theory for binary data 

Item response theory is a statistical model-based measurement theory to describe 

the relationship between observed examinee test performance and an underlying 

examinee ability level, known as θ , often using a logistic function of one or more item 

parameters for each item (Folk & Smith, 2002; Hambleton & Swaminathan, 1985; Weiss 

& Yoes, 1990). The mathematical form of this relationship is specified as a 

monotonically increasing item response function also known as an item characteristic 

curve (ICC) for the item (Lord, 1980). The frequency distribution of item scores with 

binary responses (1 if correct; 0 if incorrect) for fixed ability θ  is expressed as 
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( ) ( ) ( )1j ju u

j j j jf u P Qθ θ θ −= ,   thus 

 
( ) ( )
( ) ( )

1

0,

j j j j

j j j j

f u P if u

f u Q if u

θ θ

θ θ

= =

= =
        (3.1) 

where for a fixed ability θ , the value 1
j

u =  is termed a “correct” response by an 

examinee to an item and 
j

P  is referred to as the probability of correct response by an 

examinee to item j. The value 0
j

u =  is termed an “incorrect” response by an examinee to 

an item and 1
j j

Q P= −  is referred to as the probability of incorrect response by an 

examinee to item j. The curve connecting the means of the above conditional 

distributions to the fixed ability θ  is the regression of item score on ability (Hambleton 

& Swaminathan, 1985). It is referred to as item characteristic curve (ICC). Namely, as the 

ability level increases, the probability of a correct response to an item increases. The core 

of the IRT function expresses the probability of observing a particular item response, 

given an examinee’s ability value and the item parameters (Yen & Fitzpatrick, 2006). For 

example, examinees with high ability levels will have higher expected probabilities of 

answering an item correctly than do those with low ability levels.  

IRT models include a set of stringent assumptions about the binary data to which 

the model is applied (Hambleton et al., 1991; Weiss & Yoes, 1990). Item response 

models that assume a single dominant latent ability which is measured by the items and 

explains the performance on the test are referred to unidimensional. Another assumption 

equivalent to the unidimensionality assumption is called the local independence 

assumption. Local independence is that when ability is held constant, an examinee’s 

responses to any items are statistically independent. Thus, the probability of success on 

all items for a fixed ability θ  is equal to the product of the separate probabilities of 

success on each item (Lord, 1980). Let the random variable 1 2, , ,
j

U U UK  take on 

specific values 1 2, , ,
J

u u uK  (
j

u is either 1 or 0), representing the dichotomous responses 

of examinee to a set of J items. Then the local independence assumption is expressed as 

 

( ) ( ) ( )11 1 2 2

1

, , j j

J
u u

n n j j

j

P U u U u U u P Qθ θ θ −

=

= = = =∏K .      (3.2) 



 18

This is the joint probability of the responses to all J items. When unidimensionality is 

true, local independence can be obtained. In that regard, the two concepts are equivalent 

(Allen & Yen, 1979). However, local independence can be obtained without satisfying 

the assumption of unidimensionality. When these assumptions are met, item response 

theory provides invariant item parameters as well as ability estimates (Hambleton & 

Swaminathan, 1985).  

Item response function for 2 PL 

The two parameter logistic (2PL) model uses two parameters to describe each 

item, the item discrimination 
j

a and the item difficulty 
j

b . It allows differently difficult 

items as well as differently discriminating items. Thus, item characteristic curves vary in 

slope and location along the ability scale. For a dichotomous item, the item response 

function is the probability ( )ij
P θ  of a correct response to the item j  for person i . It is 

specified as 

 

( ) ( )( )
( )( )

exp 1.7
1 , ,

1 exp 1.7

j i j

ij ij

j i j

a b
P X a b

a b

θ
θ

θ

−
= =

+ −
.       (3.3) 

The probability 1 – ( )ij
P θ or ( )ij

Q θ  is the chance of person i  getting an incorrect response 

to the item j . It is given by 

 

( ) ( ) ( )
( )( )

1
1 0 , ,

1 exp 1.7
ij ij

j i j

P Q P X a b
a b

θ θ θ
θ

− = = = =
+ −

,                 (3.4) 

where 
i

θ  is the ability parameter (i= 1, 2, …, N), [ ],
i

θ ∈ −∞ ∞ , N is the number of 

examinees, and 
j

a is the item discrimination parameter (j= 1, 2, …, J) , ( ]0,ja ∈ ∞ ,which 

dictates how steeply the ICC rises at its point of maximum discrimination, at the point 

i j
bθ = . The usual range for the item discrimination parameter is from 0 to 2. High values 

of 
j

a  produce the steeper item characteristic functions associated with more 

discriminating item and low values show a more gradual increase as a function of the 

ability. J is the number of items, 
j

b is the item difficulty parameter (j = 1, 2, …, J), 
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[ ],
j

b ∈ −∞ ∞ , and denotes the point on the ability level at which an examinee has a 0.5 

probability of answering item j correctly. The value of 
j

b  locates the ICC’s inflection 

point, at which the ICC rises most sharply. Typically, values between -2 to 2 are used for 

item difficulty parameters. The lower values of 
j

b are associated with easier items. On the 

other hand, the higher values of 
j

b indicate more difficult items. Easy items appear on the 

left of any item map or ability scale, which means the lower end of the ability scale, and 

difficult items are the right, or higher end of the ability scale (Hambleton et al., 1991; 

Parshall et al., 2002).  

For item j, the conditional distribution for a fixed ability θ  of a single item 

response is 

( )
( )
( )

1

0

0

j j

j j j

P if u

L u Q if u

otherwise

θ
θ θ

=⎧
⎪= =⎨
⎪
⎩

,                  (3.5) 

The local independence assumption is guaranteed by the unidimensionality condition. 

That is, the probability of a correct response on one item is statistically independent of 

the probability of correct responses on other items. For a fixed ability level, the joint 

distribution of all item responses is the product of the distributions of the separate items. 

Since ( )1 2
, , ,

i N
θ θ θ θ= K , ( )1 2, , ,

j J
a a a a= K , ( )1 2, , ,

j J
b b b b= K , the full likelihood of 

( )1 2
, , ,

J
U u u u= K  for all examinees is 

 

( ) ( ) 1

1 2

1 1

, , , , , , , ij ij

N J
u u

J ij ij

i j

L a b U L a b u u u P Qθ θ −

= =

≡ =∏∏K .      (3.6) 

The maximum likelihood (ML) estimates are the values of ( )1 2
, , ,

i N
θ θ θ θ= K , 

( )1 2, , ,
j J

a a a a= K , ( )1 2, , ,j Jb b b b= K , that together maximize ( ), ,L a b Uθ , which are 

denoted by ˆ ˆ,
i j

aθ  and ˆ
j

b  respectively. The log likelihood is given by  

 

( ) ( )
1 1

ln , , ln 1 ln
N J

ij ij ij ij

i j

L a b U u P u Qθ
= =

⎡ ⎤= + −⎣ ⎦∑∑ .      (3.7) 
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The ML estimate of ( ), ,a bθ  is denoted by ( )ˆˆ ˆ, ,a bθ  where ( )1 2, , ,
i N
θ θ θ θ= K , 

( )1 2, , ,
j J

a a a a= K  and ( )1 2, , ,
j J

b b b b= K . Let l  define the log-likelihood, 

 

( ) ( )

( )( )
( )( ) ( ) ( )( )
( )( ) ( )( )( )( )

( )

1 1

1 1

1 1

ln , , ln 1 ln

exp 1.7 1
ln 1 ln

1 exp 1.7 1 exp 1.7

ln exp 1.7 ln 1 exp 1.7

1 ln1 ln 1 exp 1.7

N J

ij ij ij ij

i j

N J
j i j

ij ij

i j
j i j j i j

N J

ij j i j j i j

i j

ij j i

l L a b U u P u Q

a b
u u

a b a b

u a b a b

u a

θ

θ

θ θ

θ θ

θ

= =

= =

= =

⎡ ⎤= = + −⎣ ⎦

⎡ ⎤−
⎢ ⎥= + −
⎢ ⎥+ − + −⎣ ⎦

⎡ ⎡ ⎤= − − + −⎢ ⎣ ⎦⎣

+ − − + −

∑∑

∑∑

∑∑

( )( )( ) .
j

b ⎤⎡ ⎤
⎥⎣ ⎦ ⎦

 

(3.8) 

Then,  

( ) ( ) ( ) ( )( )
( )( )

( ) ( ) ( )( )
( )( )

( )
( ) ( )( )

( )( )

( )
( )( )

1

1

1.7 exp 1.7
1.7

1 exp 1.7

1.7 exp 1.7
1

1 exp 1.7

1.7 exp 1.7
1.7

1 exp 1.7

exp 1.7
1.7

J
j j k j
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For the 2 PL model, the test score 
1

J

j j

j

a u
=
∑ is a sufficient statistic for estimating examinee 

ability 
i

θ  with known item parameters 
j

a . In this case, the test score contains the optimal 

properties of the MLE. Namely, the estimator of θ  as a function of this also we have 

sufficient statistic is consistent, efficient and asymptotically normally distributed.   
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where 1, ,q J= K . No further simplification is possible. 

 To estimate the ability parameter and item parameters simultaneously, the joint 

maximum likelihood (JML) estimation procedure and marginal maximum likelihood 

(MML) estimation procedure have been used with the 2PL model (Yen & Fitzpatrick, 

2006). Although JML estimators have desirable attributes, it has been revealed that such 

parameter estimates are biased and not consistent. MML is the most commonly used 

procedure in the field. By avoiding the estimation of the ability parameter, MML 

procedure improves the estimation of item parameters. Also, an iterative Expectation-

Maximization (EM) algorithm is employed. Although the estimators are consistent and 

asymptotically normal, the statistical properties of the MML estimators have not been 

convincingly established. Thus, further investigation is recommended (Hambleton & 

Swaminathan, 1985).          

 The 2PL IRT model can accommodate a wide variety of real items, which are 

complex to use and require substantial sample size (Yen & Fitzpatrick, 2006).  In 

particular, the 2PL model can be a valuable model choice for analyzing items with 

different discrimination as well as different difficulty levels. Thus, it fits to a set of items 
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well and parameters can be estimated accurately (Embretson & Reise, 2000). In addition, 

it contains a nice statistical property, such as the sufficient statistic, to estimate the ability 

parameter when item parameters are known. In spite of this, the standard 2 PL IRT model 

does not account for response time. In fact, when there are time restrictions in the real 

testing situations, it may not be an appropriate model to use. Therefore, a model is needed 

that incorporates response time. The 2 PL model has been utilized in the Thissen’s (1983) 

model as a marginal distribution of response accuracy. In the present work, an extended 

2PL model is employed as a conditional distribution of response accuracy, which takes 

response time into consideration.  

An item response model that incorporates response time 

The proposed model incorporates response time into a 2 PL model which can be 

applied to power tests with time limits. By taking response time into account, this model 

may provide a more realistic description of the item response mechanism than the 

conventional 2 PL model. The conditional probability of a correct response to item j  by 

examinee i  given the response time ij
t is 

( ) ( ) ( ) ( )( )
( )( )

exp 1.7
, , , , , , , , , 1 , , , ,

1 exp 1.7

j i ij j

ij ij i j j j ij ij i j j ij ij ij i j j

j i ij j

a t b
f u t a b r P t a b P u t a b

a t b

θ η
θ η θ η θ η

θ η

− −
= = = =

+ − −
, 

             (3.12) 

where 
i

θ  is the ability parameter (i = 1, 2, …, N),  
j

a  is the item discrimination 

parameter (j = 1, 2, …, J), j
b is the item difficulty parameter ( j = 1, 2, …, J), and 

ij
t  is 

response time by examinee i for this particular item j. Define η  as an unknown constant 

and a regression coefficient for the time variable. If time has no effect on the probability 

of correct response across items and examinees, then η  will be zero. On the other hand, if 

time has an effect on the probability of correct response across items and examinees, then 

η  will be non-zero.  
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Joint distribution of item response and response time 

A joint distribution for item response and response time is proposed in the present 

work. It is specified as the product of the conditional distribution of response accuracy 

and the marginal distribution of response time. This is an attempt to overcome the 

limitation of Thissen’s (1983) model where the joint distribution is represented as the 

product of two marginal distributions, namely response accuracy and response time. The 

central limitation of his model is due to the inappropriateness of the independence 

assumption between response accuracy and response time. This makes sense only when 

response time is not assumed to be independent of person parameters. Therefore, a joint 

distribution as a product of the conditional distribution of item response and the marginal 

distribution of response time should provide a more realistic model. 

The joint distribution of iju  and ij
t  is specified as 

 

( ) ( ) ( ), , , , , , , , , , , , , ,
ij ij i i j j j ij ij i j j j ij i i j j j

f u t s a b r f u t a b r f t s a b rθ θ η θ= .   (3.13) 

The conditional distribution of iju  given ij
t  is 
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θ η θ η θ η

θ η

θ η θ η

−

−

⎡ ⎤= −⎣ ⎦

⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥+ − − + − −⎣ ⎦ ⎣ ⎦

.   (3.14) 

As indicated above, if time has no effect on the probability of correct response, then η  

will be zero. Then, the joint distribution model proposed above will reduce to the usual 

2PL IRT model.  

Response time model 

The distribution of response time is known to be positively skewed and unimodal 

in general, so that lognormal, Weibull and gamma distributions seem to be the reasonable 

choices (Schnipke & Scrams, 1999; Verhelst et al., 1997; Wang, 2006). To model the 

shapes of response time distributions in this study, the lognormal distribution is chosen. 

This response time distribution captures the idea that the examinees will spend more time 

on items that correspond to their ability level and spend less time on items either too easy 
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or too difficult. This is consistent with the findings of Wang and Zhang (2006). A log 

linear model for response times has also been used by Thissen (1983). The lognormal 

distribution was selected because the parameters are fairly intuitive and thus easier to 

interpret than parameters of some other distribution (Schnipke & Scrams, 1997). That is 

to say, the parameters of the lognormal distribution are the mean and standard deviation 

of the natural logarithm of the original values in reference to a normal distribution 

(Casella & Berger, 2002). Thus, parameters can be easily estimated from sample statistics 

(Schnipke & Scrams, 1999). In addition, the lognormal model has been empirically tested 

against models based on the normal, gamma and Weibull distributions. It has been shown 

an excellent fit to the response times and outperformed other distributions that have been 

studied (Schnipke & Scrams, 1999; Storms & Delbeke, 1992; van der Linden et al., 1999; 

van der Linden et al., 2003; van der Linden, 2006). In fact, Schnipke and Scrams (1999) 

report that the lognormal distribution not only fits the best of all but also provides a very 

good fit for most items.  

In the lognormal distribution, the scale parameter μ  and the shape parameter σ  

determine the skewness of the distribution. If the response time density, ( )f t , has a 

lognormal distribution, then the natural logarithm of time t  has a normal distribution 

with mean μ  and standard deviation σ .  

In Figure 3.1, the probability density functions all start at zero, increases to their 

mode, and decrease thereafter. For a fixedμ , the degree of skewness increases as 

σ increases. For values greater than 1, e.g., σ =10, the pdf rises very sharply in the 

beginning and essentially follows the ordinate axis, peaks out, and then decreases 

sharply. In Figure 3.2, for a fixed σ , as μ increases the skewness of the probability 

density function decreases. 
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Figure 3.1 The plot of the lognormal probability density function for five values ofσ   

 

 

 

Figure 3.2 The plot of the lognormal probability density function for five values ofμ   
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In the present work, a modified version of Thissen’s (1983) log linear model will 

be employed to fit the response time. It is expressed as       

 

ln
ij i j ij ij

t s r gzυ ε= + + + + ,    (3.15) 

where ( )1.7ij j i jz a bθ= − , υ  is overall mean indicating the general response time required 

by item j , υ  is assumed to be zero. i
s is person slowness parameter which exhibits the 

slowness of examinee i . Next, jr is an item slowness parameter. It is a parameter for the 

response time required by item j . Finally, g  is an unknown constant and describes the 

log-linear relationship between response time and examinee ability. Originally, the log-

linear relationship between response time and examinee ability defined as a negative 

relationship in Thissen (1983). He assumed a monotonically decreasing relation between 

slowness and ability by stating that “more able students work faster” (Thissen, 1983, p. 

202). However, van der Linden and van Krimpen-Stoop (2003) found rather a 

monotonically increasing relation between slowness and ability. If an examinee selects 

accuracy rather than speed, both the value of ability and slowness parameter seem to 

increase. Also, empirical evidence proved that the relation between ability and slowness 

depended on the level of speededness of the test (van der Linden & van Krimpen-Stoop, 

2003). Therefore, unlike Thissen’s (1983) original version, a positive sign is used to 

describe a more general relationship between response time and examinee ability in this 

model. 
ijε is a normally distributed residual with mean 0 and variance 2σ , that is, 

( )2~ 0,ij Nε σ .  

Lognormal marginal distribution for response time is expressed as  

( )2ln ~ ,
ij i j ij

t N s r gzυ σ+ + +  

( ) ( ) 2

2

ln1
, , , , exp

22

ij i j ij

ij i j j i j

ij

t s r gz
f t a b s r

t

υ
θ

σπσ

⎛ ⎞⎡ ⎤− − + + +⎣ ⎦⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

,   (3.16) 

where i j ij
s r gzυ + + + is the scale parameter, namely, the mean of the log response time 

expressed in log seconds, and  σ is a shape parameter, that is, the standard deviation of 

the log response time expressed in log seconds.  
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Joint likelihood of the item responses and the response times 

The joint likelihood of the item responses and response times is given by 
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(3.17) 

The log-likelihood equation is 
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Taking the derivative with respect to 
k

θ , it follows that 
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(3.19) 

where 1, ,k N= K . No further simplification is possible. Next, we consider the estimator 

of 
j

a . The partial derivative is 
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where 1, ,q J= K . No further simplification is possible. Next, for the difficulty 
j

b , we 

have 
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where 1, ,m J= K . No further simplification is possible.  
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Let 0
dl
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= . Then the log likelihood is equivalent to  
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No further simplification is possible.  
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where 1, ,x N= K . No further simplification is possible.  
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where 1, ,y J= K . No further simplification is possible.  
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No further simplification is possible.  
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This is a closed form solution.    
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Marginal maximum likelihood estimation 

The simultaneous parameter estimation in the typical 2PL item response theory 

(IRT) model using joint maximum likelihood (JML) has been shown to be biased and not 

consistent (Hambleton & Swaminathan, 1985; Yen & Fitzpatrick, 2006). Thus, the 

original motivating model, joint maximum likelihood (JML) (See equation 3.17), as an 

extension of the item response model, leads to estimates with inconsistent and improper 

statistical properties. However, marginal maximum likelihood (MML) estimation using 

an iterative Expectation-Maximization (EM) algorithm has been proven to provide 

estimates that are consistent and asymptotically normal (Bock & Aitkin, 1981). 

Consequently, it has been the most commonly used procedure in the field. Therefore, 

MML estimation is derived in this work.  

Among MML estimates of item parameters for various IRT models based on EM 

algorithm, those of Bock and Aitkin (1981) and Woodruff and Hanson (1997) will be 

compared with the MML estimation given in this work. That is to say, Bock and Aitkin’s 

(1981) algorithm is most commonly utilized in IRT models (van der Linden & 

Hambleton, 1997). Also, Woodruff and Hanson’s (1997) algorithm has been utilized in 

the extended IRT models, such as the models of Wang and Hanson (2005) and Wang 

(2006), which include two person parameters and response time.  

The MML estimates of item parameters using EM algorithm have shown to utilize 

different approximation approaches. Specifically, Bock and Aitkin (1981) derived 

estimation procedures based on a continuous latent variable. Then, for computational 

purposes, EM algorithm was used to implement approximations of those procedures with 

a discrete version of the continuous latent variable. To be precise, instead of computing 

the likelihood, the likelihood was maximized individually by a simpler likelihood. In 

order to reduce the computational demands, the approximation was done by replacing the 

latent variable by its conditional expectation, namely, by sorting response vectors into 

item score patterns within the same score groups (Bock & Aitkin, 1981). Woodruff and 

Hanson (1997) specified their model by approximating a continuous latent variable with a 

discrete latent variable. The EM algorithm for finding maximum likelihood estimates of 

finite mixtures was applied to this discrete latent variable. As in a commonly applied EM 

procedure, values of the latent variables were fixed beforehand and the probabilities of 
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those values were allowed to vary. (Those probabilities are the parameters.) In the E-step, 

the expectation of the complete data likelihood was computed. Then, in the M-step, the 

expectation of the complete data likelihood was maximized over the set of item 

parameters and the probabilities. That is to say, instead of calculating observed data 

likelihood, the expected completed data was used to maximize the complete likelihood 

(Woodruff & Hanson, 1997).  

The approximation approach by discretizing the distributions for latent variables 

presented in this work is considerably different than the likelihood approximation 

obtained by Bock and Aitkin (1981) and Woodruff and Hanson (1997). When Woodruff 

and Hanson (1997) discretized the latent variable, no attempt was made for discretized 

latent variable to look like the normal distribution. In particular, if we require the latent 

variable to take ten arbitrary values with different probabilities, there is no way to make 

this look like a normal distribution. If you assume ability to have a normal distribution, 

then the Woodruff and Hanson (1997) algorithm does not guarantee this, because their 

method does not force the distribution. However, if the latent variable is allowed to be 

approximately normal, then the method presented here achieves this by using a discrete 

distribution whose values are spaced to resemble a normal distribution. In other words, 

the model approximated the normal distribution for ability parameter θ  by having K  

values with equal probability of 1/ K , with spacing chosen to resemble the normal 

distribution. The same is done for the slowness parameter s  using L  values with equal 

probability of 1/ L . This discrete distribution may be regarded as an idealized sample 

from the normal distribution.  

In addition, it is noticed that the EM way of computing is very slow. The marginal 

maximum likelihood approach presented here converges faster than EM algorithm 

because the direct likelihood is easy to compute due to the discretizing of the latent 

variables. That is, this approach uses a simple sum as suppose to integral because we 

have discretized the distribution. By using the discrete normal distributions for the latent 

variables, a computable genuine marginal maximum likelihood (Equation 3.27) is used, 

instead of the EM algorithm. Hence, the likelihood function is actually computed and 

maximized directly.  
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In summary, the approach presented in this work is unique. Instead of 

approximating integrals as in the EM algorithm, the distributions of the latent variables 

are approximated by using idealized spacing to resemble the normal distribution. Then, a 

proceeding procedure using marginal maximum likelihood incorporates this discrete 

distribution. As a result, a genuine marginal maximum likelihood is computed and 

maximized directly which leads to faster convergence than EM procedure.   

In the model presented (Equation 3.27), the ability parameter θ  and the person 

slowness parameter s are two latent variables which are taken to be discrete. In addition, 

the MML estimation is derived based on the discrete latent variables. The model is 

specified as follows: The ability parameter { }1 2, , ,
q q q K
q q qθ σ σ σ∈ K  is assumed to be 

from discrete ( )0, qN σ  where 
q

σ  is an unknown scale factor. The values 1, ,
K

q qK  are 

chosen to resemble a standard normal distribution ( ( )0,1N ). The person slowness 

parameter { }1 2, , ,
s s s L

s s s sσ σ σ∈ K  is assumed to be from discrete ( )0,
s

N σ  where 
s

σ  is 

unknown. The values 1, ,
L

s sK are known and chosen to resemble a ( )0,1N  distribution. 

It is assumed that θ  and s  are independently distributed. The two latent variables, θ  and 

s , are integrated out by summing over the discrete distribution of K and L spaced values. 

It leads the marginal maximum likelihood to only involve with observed data 
ij

u  and 
ij

t , 

where 
ij

u  is expressed as the item response accuracy by examinee i for the item j and 
ij

t  

is response time by examinee i for item j. Marginal maximum likelihood of the item 

responses and the response times is given by 

 



 37

( )

( )

( ) ( )

( )( )

1 11 1

1 11 1

1 1

, , , , , ,

1 1
, , , , , ,

1 1
, , , , , , , , ,

exp 1.71 1

1 exp 1.7

q k s l j j j

N JK L

ij ij q k s l j j j

k li j

N JK L

ij ij q k j j j ij q k s l j j j

k li j

K L
j q k ij j

k l
j q k i

L q s a b r U T

f u t q s a b r
K L

f u t q a b r f t q s a b r
K L

a q t b

K L a q t

σ σ η

σ σ η

σ η σ σ

σ η

σ η

= == =

= == =

= =

=

=

− −
=

+ −

∑∑∏ ∏

∑∑∏ ∏

∑∑ ( )( ) ( )( )
( )

1

1 1

2

2

1

1 exp 1.7

ln1
exp .

22

ij iju u

N J

i j j j j q k ij j

ij s l j ij

ij

b a q t b

t s r gz

t

σ η

υ σ

σπσ

−

= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + − −⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞⎡ ⎤− − + + +⎣ ⎦⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∏ ∏

 

(3.27) 

where 
j

a  is the item discrimination parameter (j = 1, 2, …, J), jb is the item difficulty 

parameter ( j = 1, 2, …, J). Define η  as an unknown constant and a regression coefficient 

for the time variable. Define ( )1.7ij j i jz a bθ= − , υ  is overall mean indicating the general 

response time required by item j , i
s  is the person slowness parameter which exhibits 

the slowness of examinee i . Next, 
j

r  is an item slowness parameter. It is a parameter that 

represents the time needed to respond to item j , and g  is an unknown constant that 

describes the log-linear relationship between response time and examinee ability. Finally, 

ijε is a normally distributed residual with mean 0 and variance 2σ , that is, ( )2~ 0,ij Nε σ . 

Here, s l j ij
s r gzυ σ+ + + is the scale parameter, namely, the mean of the log response time 

expressed in log seconds, and σ is a shape parameter, that is, the standard deviation of 

the log response time expressed in log seconds.  

The log-likelihood equation is 
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The partial derivative with respect to 'j
a  is 
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For the estimation procedure, the BFGS (Broyden, 1970; Fletcher, 1970; 

Goldfarb, 1970; Shanno, 1970) method is used. It is a numerical quasi-Newton algorithm. 

The likelihood is optimized by a general optimization procedure. Namely, the BFGS 

method uses repeated evaluation of function and gradient at various points, then finds the 

maximum of the likelihood function in an efficient way. In R program, BFGS method has 

been implemented as one of the input options to the optim function (R Development  

Core Team, 2007).    
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Maximum a posteriori estimation 

Maximum a posteriori (MAP) estimation is employed to estimate person 

parameters. This Baysian estimation approach is an attempt to overcome some of the 

limitations associated with the joint maximum likelihood (JML) estimation, specifically, 

the failure to estimate ability levels of examinees with all correct or all incorrect 

responses because the likelihood goes to infinity.  

The original motivating model, joint maximum likelihood (JML) (Equation 3.17), 

as an extension of the item response model, produces inconsistent and improper statistical 

properties. Many researchers in the measurement area have indicated that this limitation 

of JML estimation can be handled by incorporating prior information, with methods such 

as MAP estimation. Namely, the prior distribution of ability parameter values is used in 

conjunction with the log-likelihood function to derive an ability level estimate, based on 

maximizing the posterior distribution. It has been shown that for test lengths longer than 

20 items, the prior distribution is swamped by the likelihood function and has no effect 

on ability parameter estimation (Embretson & Reise, 2000; Hambleton & Swaminathan, 

1985). As a result, the MAP estimation of the ability parameters ( )θ and person slowness 

parameters ( )s  is applied in this work. 

The objective of MAP estimation is to find the values of ability parameters 

( )θ and person slowness parameters ( )s  that maximize the posterior distribution. The 

prior distribution assumes that θ  and s  are independent with ( )~ 0,1Nθ  and 

( )2~ 0,
s

s N σ  respectively. The posterior distribution is proportional to the product of 

prior and likelihood over one examinee: 
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Or equivalently maximizing the logarithm here, as  
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 p  now denotes the log of the posterior. Taking the derivative according to θ , therefore 

it follows that 
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(3.38) 

Taking the derivative according to s , therefore we obtain 

 

 

 (3.39) 

The ability parameters ( )θ and person slowness parameters ( )s  are maximized by 

using the general purpose optimization algorithm, BFGS (Broyden, 1970; Fletcher, 1970; 

Goldfarb, 1970; Shanno, 1970) implemented in optim R function.  
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Simulation 

Simulation studies were conducted to evaluate the precision of item and person 

parameter estimates of the proposed extended item response theory model incorporating 

item response time. Three different simulation designs are taken into consideration for 

the model presented:  item parameter estimation (Equations 3.27 – 3.35) in simulation 

design 1, person parameter estimation (Equations 3.36 – 3.39) in simulation design 2, and 

person parameter estimation based on true and estimated item parameters (Equations 3.27 

– 3.39) in simulation design 3. The simulations were performed using an R program 

which calls a Fortran program.  

Simulation design 1 – item parameter estimation using MML 

The main interest of this simulation is to determine how well the marginal 

maximum likelihood (MML) method can estimate the item parameters when the response 

accuracy and response time data are generated from assumed model with discrete 

distributions of ability and person slowness parameters.  Equations 3.27 – 3.35 are 

employed.  

In the data generation phase, the ability parameter θ  and the person slowness 

parameter s   are  two  latent  variables  which  are  taken  to  be  discrete.   The model   is   

 

 

Figure 3.3 The normal probability plot values of 1 20, ,q qK  and 1 20, ,s sK   
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specified as follows: The ability parameter { }1 2, , ,q q q Kq q qθ σ σ σ∈ K  is assumed to be 

from discrete ( )0,
q

N σ  where 
q

σ  is the known scale factor and fixed to one. The values 

1, ,
k

q qK  are chosen to resemble normal distribution ( )0,1N . The person slowness 

parameter { }1 2, , ,
s s s L

s s s sσ σ σ∈ K  is assumed to be from discrete ( )0,
s

N σ  where 
s

σ is 

an unknown scale factor. The values 1, ,
L

s sK  are known and to resemble ( )0,1N . 

Namely, the model approximated the normal distribution for ability parameter θ  by K = 

20 values with equal probability of 1/ 20  with spacing chosen to resemble to normal 

distribution. The same is done for slowness parameter s  using L  = 20 values with equal 

probability of 1/ 20 . The Figure 3.3 displays the normal probability plot of the values of 

1 20, ,q qK  and 1 20, ,s sK   showing that these 20 values may be regarded as forming an 

idealized normal sample.  The  20  values  forming  a  discrete approximation to a normal 

 

Table 3.1 20 values forming a discrete approximation to a normal distribution which is 

used for both ability and person slowness parameters 

 

 

Values 

-1.6683912 

-1.3091717 

-1.0675705 

-0.8761428 

-0.7124430 

-0.5659488 

-0.4307273 

-0.3029804 

-0.1800124 

-0.0597171 

0.0597171 

0.1800124 

0.3029804 

0.4307273 

0.5659488 

0.7124430 

0.8761428 

1.0675705 

1.3091717 

1.6683912 
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distribution which is used for both person parameters are shown in the Table 3.1. The 20 

levels of the latent variables are used because the research indicates that 20 levels of the 

latent variable are about the minimum number needed in obtaining a reasonable estimate 

for the continuous normal distribution (Titterington, Smith & Markov, 1985). It is 

assumed that ( ), sθ  are independently distributed in the simulated data (See Table D.1). 

The same set of true values of item parameters are preset to generate the response 

pattern and response time for 20 items and 40 items respectively (See Table 3.2 & Table 

3.3). The true item discrimination parameters ( )a  are fixed for 20 or 40 items and within 

range of 0.6453 to 1.78. The true item difficulty parameters ( )b  are fixed for 20 or 40 

items, lower bound -2 and upper bound 2. The item slowness parameters ( )r  are fixed 

and ranging from 0.5019 to 1.0 for 20 items or 40 items. The values of item slowness 

parameter ( )r  are chosen based on the similar values chosen by Wang and Hanson 

(2006). 

 

Table 3.2 True Item Parameters ( , ,a b r ) used in Simulation for 20 items 

          

Item      a         b        r  

1  1.0036  -2.0000  0.7055 

2  1.0650  -1.7895  0.5795 

3  0.9497  -1.5789  0.5019 

4  1.2234  -1.3684  1.0000 

5  0.9407  -1.1579  0.8145 

6  0.6576  -0.9474  0.5445 

7  0.8279  -0.7368  0.8626 

8  0.9844  -0.5263  0.7350 

9  1.5805  -0.3158  0.8714 

10  1.2155  -0.1053  0.9496 

11  0.7860   0.1053  0.5249 

12  1.3716   0.3158  0.5350 

13  1.2027   0.5263  0.6874 

14  1.5569   0.7368  0.6227 

15  1.2431   0.9474  0.8326 

16  0.6453   1.1579  0.8298 

17  1.4352   1.3684  0.7892 

18  0.8156   1.5789  0.9110 

19  1.7798   1.7895  0.6951 

20  0.9110   2.0000  0.5439 
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Table 3.3 True Item Parameters ( , ,a b r ) used in Simulation for 40 items 

          

Item      a         b        r  

1  1.0036  -2.0000  0.7055 

2  1.0320  -1.8974  0.6760 

3  1.0650  -1.7949  0.5795 

4  0.9860  -1.6923  0.5340 

5  0.9497  -1.5897  0.5019 

6  1.1230  -1.4872  0.8980 

7  1.2234  -1.3846  1.0000 

8  0.9670  -1.2821  0.9230 

9  0.9407  -1.1795  0.8145 

10  0.8760  -1.0769  0.7860 

11  0.6576  -0.9744  0.5445 

12  0.7560  -0.8718  0.6780 

13  0.8279  -0.7692  0.8626 

14  0.9340  -0.6667  0.7920 

15  0.9844  -0.5641  0.7350 

16  1.2450  -0.4615  0.8120 

17  1.5805  -0.3590  0.8714 

18  1.4350  -0.2564  0.9230 

19  1.2155  -0.1538  0.9496 

20  0.9870  -0.0513  0.6780 

21  0.7860   0.0513  0.5249 

22  1.1240   0.1538  0.5950 

23  1.3716   0.2564  0.5350 

24  1.1000   0.3590  0.6230 

25  1.2027   0.4615  0.6874 

26  1.3450   0.5641  0.6920 

27  1.5569   0.6667  0.6227 

28  1.4320   0.7692  0.7970 

29  1.2431   0.8718  0.8326 

30  0.8780   0.9744  0.8010 

31  0.6453   1.0769  0.8298 

32  1.2220   1.1795  0.7230 

33  1.4352   1.2821  0.7892 

34  0.7870   1.3846  0.8930 

35  0.8156   1.4872  0.9110 

36  1.5670   1.5897  0.7520 

37  1.7798   1.6923  0.6951 

38  1.4560   1.7949  0.5930 

39  0.9110   1.8974  0.5439 

40  0.7980   2.0000  0.6250 
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The additional parameters estimated in the simulation are , , ,gη σ and 
s

σ . True values of 

these parameters are shown in Table 3.4. Using the person parameters, item parameters 

and the additional parameters, response time data are generated under the assumption that 

the proposed lognormal marginal distribution (Equation 3.16) is the correct model. Item 

response data are then generated according to the following method: first, the probability 

of a correct response to item j  by examinee i  given the response time
ij

t , 
ij

P , is 

calculated based on the proposed conditional distribution (Equation 3.12). Then, a 

random number p  from the uniform distribution ( )0,1U  is independently generated. If 

ij
P p> ,  then   a   correct response is obtained for the item j  by examinee i  given the 

response time 
ij

t , otherwise an incorrect response is obtained. These simulated response 

data and response time data set are the target data set in the simulation studies. 

The test length in this simulation is set to be either 20 or 40 items. The number of 

simulated examinees is 1000 and 2000 in this study. Given these factors, four 

combinations are specified. 100 replications are performed for each of four simulated 

condition.  

The marginal maximum likelihood is computed and maximized directly using R 

program. In R program, BFGS method is implemented as one of the option inputs to the 

optim function (R Development of Core Team, 2007).    

Simulation design 2 – person parameter estimation using MAP 

The goal of this simulation is to test out how well the maximum a posteriori 

(MAP) procedure behaves in estimating the continuous ability and person slowness 

parameters when the item parameters are known. Equations 3.36 – 3.39 are utilized.  

 

Table 3.4 Additional parameters ( , , ,
s

gη σ σ ) used to generate the data 

 

Parameter True Value  

η  0.002  

g  0.5  

σ  1  

s
σ  1  
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Unlike simulation design 1, the continuous distribution is assumed for both ability 

and person slowness parameters to generate the data because in practice these person 

parameters of a randomly selected examinee are considered to be continuous. To check 

the effect of sampling from the whole range of the ability and person slowness 

parameters, the person parameter recoveries are investigated in the simulation studies. 

The same set of true values of item parameters and additional parameters are preset to 

generate the response pattern and response time for 20 items and 40 items respectively 

(See Table 3.2, Table 3.3 & Table 3.4). The technique of generating the data for response 

time and response pattern is equivalent to the approach explained in the simulation design 

1, but in this study the ability and person slowness are assumed to come from continuous 

distributions. 

The MAP procedure is implemented to estimate the values of ability parameters 

( )θ and person slowness parameters ( )s  that maximize the posterior distribution. The 

prior distribution assumes that θ  and s  are independent with ( )~ 0,1Nθ  and 

( )2~ 0, ss N σ  respectively, where 
s

σ  assumes to be a unit. The ability parameters 

( )θ and person slowness parameters ( )s  are maximized by using the general purpose 

optimization algorithm, BFGS (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 

1970) implemented in optim R function. 

In this simulation, the test length is set to be either 20 or 40 items. The number of 

simulated examinees is 1000 and 2000. Thus, four combinations are specified. 100 

replications are performed for each of four simulated condition. 

Simulation design 3 – person parameter recovery using MML and MAP 

This simulation intends to see how well ability and person slowness parameters 

are estimated using MAP procedure based on two scenarios, either when the true item 

parameters are known or when item parameters are estimated. Equations 3.27 – 3.39 are 

employed.  

In the data generation phase, the ability parameter θ  and the person slowness 

parameter s  are assumed to be discrete. The condition of sampling from discrete for 

person parameters are the same as stated in the simulation design 1. Discretizing the 

distributions enabled the model to be implemented in the straightforward manner. In 



 53

other words, sampling the data from discrete and fitting the model to the discrete lead to 

the finite sum and easy of integration for marginal maximum likelihood method which 

enables the ability parameter to be estimated easier and faster than when the continuous 

distribution is assumed. The set of true values of item parameters and additional 

parameters introduced in Table 3.2 and Table 3.4, respectively, are employed to generate 

the response pattern and response time. The way of generating the data for response time 

and response pattern is the same as described in the simulation design 1. 

In the estimation phase, both true and estimated item parameters are used to 

estimate person parameters. To be precise, in the first scenario where the known true item 

parameters are used to estimate person parameters, the MAP procedure (Equations 3.36 – 

3.39) is implemented to estimate person parameters. In the second scenario where the 

estimated item parameters are used to estimate person parameters, two stages are 

involved in the estimation phase: First, the MML method (Equations 3.27 – 3.35) is 

implemented to estimate the item parameters. To estimate the item parameters, the 

marginal maximum likelihood is computed and maximized directly. Then, using the 

estimated item parameters, the MAP procedure (Equations 3.36 – 3.39) is applied to 

estimate person parameters. The ability parameters ( )θ and person slowness parameters 

( )s  are maximized by using the general purpose optimization algorithm, BFGS 

(Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) implemented in R 

function optim. 

 One simulation condition – a 20 item test for 1000 examinees – is studied. The 

process is repeated 100 times for each scenario.  

Criteria for comparisons 

The simulation studies are evaluated according to the following comparison 

criteria: mean and standard deviation of the RMSE, bias, and standard error (SE), sample 

variance of the item parameter estimates and mean of the variance estimates based on the 

Fisher information and corresponding standard deviation, and means and standard 

deviations of the correlations.  

In the simulation design 1, the average of bias, average of standard error (SE) of 

estimates and average of root mean square error (RMSE) are computed for each item 

parameter and additional parameter across 100 replications. The root mean squared error 
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(RMSE) of the estimated parameters is commonly used as a criterion for the recovery of 

item parameters in simulation studies. The RMSE indicates the total error in the 

parameter recovery. It is composed of the squared bias and squared standard error of 

estimates (See Equation 3.40) 

( ) ( ) ( )2 2 2
RMSE bias SE= + .    (3.40) 

The RMSE is the square root of the average of the squared deviations of estimated 

parameters from the corresponding true values. Let 
j

ψ  represent a parameter of item j , 

i.e. , ,
j j

a b or 
j

r , and ˆ
jm

ψ  be the estimate of 
j

ψ  from the m
th

 replication for 1, ,j J= K  

and 1, ,m M= K . Here J  denotes the number of items and M  stands for the number of 

replications where 100M =  in this simulation. For each item parameter, RMSE is 

defined as 

 

                  ( ) ( )2

1

1
ˆ ˆ

M

j jm j

m

RMSE
M

ψ ψ ψ
=

= −∑ .   (3.41) 

The bias is the difference between the mean estimated item parameter values ˆ
jm

ψ  across 

100M =  replications and the true item parameter value 
j

ψ  for a particular item 

parameter. It is given as  

( )
1

1
ˆ ˆ

M

j jm j

m

Bias
M

ψ ψ ψ
=

= −∑  .    (3.42)  

The SE is the standard deviation of the estimated parameter values across 100M =  

replications, expressed as  

 

( )
2

1 1

1 1
ˆ ˆ ˆ

M M

j jm jm

m m

SE
M M

ψ ψ ψ
= =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ ∑  .   (3.43) 

In addition, the sample variance of the item parameter estimates and the mean of the 

variance estimates based on the Fisher information and corresponding standard deviation 

are compared to check the consistency of the estimates. 

In simulation designs 2 and 3, the means of the true and estimated person 

parameters and their variability with corresponding mean of standard deviations and their 
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variability from 100 replications are computed. While, four simulation conditions are 

studied in the second simulation, one simulation condition is studied in the third 

simulation. In addition, the correlations between true and estimated abilities and person 

slowness parameters are calculated for each parameter for each replication. Means and 

standard deviations of the correlations across replications are computed. Histograms are 

used to illustrate the distributions of the correlations.  
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CHAPTER 4 

 

RESULTS 

 

The results from the three simulation designs are discussed in this chapter. First, I 

present the results of the simulation design 1 – item parameter estimation, next, the 

results of the person parameter estimation in simulation design 2, followed by the results 

of the person parameter estimation based on true and estimated item parameters in 

simulation design 3. The quality of parameter estimates is investigated across various 

simulation conditions based on 100 replications.    

 

Table 4.1 Across-item bias, SE and RMSE of the item discrimination parameter ( a ) 

average estimates based on 100 replications for 20 items and 1000 examinees 

 

 

Item True   Estimate      SE      Bias  RMSE 

1 1.0036   1.0066  0.0735   0.0030  0.0732 

2 1.0650   1.0754  0.0765   0.0104  0.0768 

3 0.9497   0.9489  0.0674  -0.0008  0.0670 

4 1.2234   1.2232  0.0747  -0.0002  0.0743 

5 0.9407   0.9425  0.0771   0.0018  0.0767 

6 0.6576   0.6656  0.0687   0.0080  0.0689 

7 0.8279   0.8311  0.0702   0.0032  0.0699 

8 0.9844   0.9962  0.0692   0.0118  0.0698 

9 1.5805   1.5867  0.0870   0.0062  0.0868 

10 1.2155   1.2204  0.0695   0.0049  0.0693 

11 0.7860   0.8050  0.0658   0.0190  0.0682 

12 1.3716   1.3703  0.0816  -0.0013  0.0812 

13 1.2027   1.2079  0.0684   0.0052  0.0682 

14 1.5569   1.5494  0.0783  -0.0075  0.0782 

15 1.2431   1.2414  0.0730  -0.0017  0.0727 

16 0.6453   0.6462  0.0608   0.0009  0.0605 

17 1.4352   1.4296  0.0803  -0.0056  0.0801 

18 0.8156   0.8204  0.0696   0.0048  0.0695 

19 1.7798   1.7804  0.0954   0.0006  0.0949 

20 0.9110   0.9134  0.0694   0.0024  0.0691 
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Simulation design 1 – item parameter estimation using MML 

 Table 4.1 results show bias, SE and RMSE of the item discrimination parameter 

( a ) average estimates based on 100 replications for 20 items and 1000 examinees. The 

estimates contain the results of the average of the estimates from 100 replications. 

Comparing the values of true and estimated item discrimination parameters reveal that 

the estimates are fairly close to their corresponding true values. This is confirmed in the 

small biases for the item discrimination parameter. The RMSE of the estimated item 

discrimination parameters, which is the square root of the average of the squared 

deviations of estimated item discriminations from their corresponding true item 

discriminations based on 100 replications, are small values. The standard deviations of 

the 100 estimates (SE) are small across 20 items. In general,  the average bias,  the 

average SE and  the average  RMSE   tend  to  decrease  as  sample  size  increases  from  

 

Table 4.2 Sample variance of the item discrimination ( a ) estimates ( 2
S ) and mean of the 

variance estimates based on the Fisher information (
a

I ) and corresponding standard 

deviation (SD) over 100 simulation replications for 20 items and 1000 examinees 

 

   

        Item      2
S                         

aI  (SD)   

1  0.005401  0.005730 (0.000455) 

2  0.005850  0.005792 (0.000487) 

3  0.004539  0.005188 (0.000367) 

4  0.005583  0.006013 (0.000499) 

5  0.005938  0.004892 (0.000336) 

6  0.004726  0.004220 (0.000249) 

7  0.004922  0.004453 (0.000287) 

8  0.004784  0.004759 (0.000339) 

9  0.007569  0.007086 (0.000640) 

10  0.004825  0.005349 (0.000411) 

11  0.004335  0.004267 (0.000255) 

12  0.006666  0.005962 (0.000483) 

13  0.004676  0.005376 (0.000428) 

14  0.006126  0.007023 (0.000654) 

15  0.005333  0.005733 (0.000470) 

16  0.003702  0.004258 (0.000259) 

17  0.006445  0.006916 (0.000644) 

18  0.004851  0.004819 (0.000317) 

19  0.009099  0.009778 (0.001107) 

20  0.004823  0.005375 (0.000390) 
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1000  to 2000  examinees and number of items increases from 20 to 40 items (See Tables 

A.1, A.9 & A.17).  

In addition, a consistency check is provided in Table 4.2 where the means of the 

estimated variances based on the Fisher information (
a

I ) are pretty close to the 

corresponding sample variances of the item discrimination estimates ( 2
S ) over 100 

simulation replications for 20 items and 1000 examinees. The variability of the variance 

estimates presented as standard deviations (SD) is small. Therefore, it is concluded that 

the item discrimination parameter ( a ) average estimates based on 100 replications for 20 

items and 1000 examinees are consistent and pretty accurate. In addition, the variance 

and the variability of the variance exhibited in Tables A.2, A.10 and A.18 decrease as 

sample size increases from 1000 to 2000 examinees and the number of items increases 

from 20 to 40 items. 

 

Table 4.3 Across-item bias, SE and RMSE of the item difficulty parameter (b ) average 

estimates based on 100 replications for 20 items and 1000 examinees 

 

 

Item True  Estimates     SE      Bias  RMSE 

1 -2.0000  -2.0005  0.1519  -0.0005  0.1512 

2 -1.7895  -1.7833  0.1334   0.0062  0.1328 

3 -1.5789  -1.5893  0.1254  -0.0104  0.1252 

4 -1.3684  -1.3760  0.0904  -0.0075  0.0902 

5 -1.1579  -1.1532  0.1088   0.0047  0.1084 

6 -0.9474  -0.9454  0.1313   0.0020  0.1307 

7 -0.7368  -0.7346  0.1037   0.0022  0.1032 

8 -0.5263  -0.5218  0.0760   0.0045  0.0757 

9 -0.3158  -0.3025  0.0554   0.0132  0.0567 

10 -0.1053  -0.0960  0.0604   0.0093  0.0608 

11  0.1053   0.1200  0.0841   0.0147  0.0850 

12  0.3158   0.3114  0.0622  -0.0044  0.0620 

13  0.5263   0.5300  0.0690   0.0036  0.0688 

14  0.7368   0.7415  0.0618   0.0046  0.0617 

15  0.9474   0.9616  0.0797   0.0142  0.0805 

16  1.1579   1.1682  0.1290   0.0103  0.1287 

17  1.3684   1.3740  0.0899   0.0056  0.0896 

18  1.5789   1.5889  0.1245   0.0099  0.1242 

19  1.7895   1.8208  0.1020   0.0313  0.1062 

20  2.0000   2.0140  0.1769   0.0140  0.1766 
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The tendencies shown in Tables 4.1 and 4.2 are demonstrated similarly in three 

other conditions, i.e. in Tables A.1 and A.2 for 20 items and 2000 examinees, in Tables 

A.9 and A.10 for 40 items and 1000 examinees, and in Tables A.17 and A.18 for 40 items 

and 2000 examinees. Across the four simulation conditions, it is noted that the effect of 

number of examinees on the item discrimination parameter ( a ) average estimates is 

larger than the effect of test length.  

Across-item bias, SE and RMSE of the item difficulty parameter (b ) average 

estimates based on 100 replications for 20 items and 1000 examinees are shown in Table 

4.3. Comparing the values of true and estimated item difficulty parameters uncover that 

the estimates are reasonably close to their corresponding true values. The obtained 

average bias, average SE and average RMSE are fairly small. Similar findings are shown  

 

Table 4.4 Sample variance of the item difficulty (b ) estimates ( 2
S ) and mean of the 

variance estimates based on the Fisher information (
b

I ) and corresponding standard 

deviation (SD) over 100 simulation replications for 20 items and 1000 examinees 

 

                   

        Item      2
S                         

b
I  (SD)   

1  0.012071  0.011872 (0.002317) 

2  0.009504  0.008680 (0.001477) 

3  0.008578  0.008725 (0.001501) 

4  0.004076  0.004584 (0.000457) 

5  0.005412  0.005888 (0.000840) 

6  0.008556  0.009269 (0.001685) 

7  0.005469  0.005202 (0.000769) 

8  0.003629  0.003336 (0.000320) 

9  0.001681  0.001615 (0.000073) 

10  0.001927  0.002129 (0.000128) 

11  0.003676  0.004096 (0.000436) 

12  0.001676  0.001891 (0.000091) 

13  0.002757  0.002449 (0.000193) 

14  0.002071  0.002012 (0.000124) 

15  0.002934  0.003148 (0.000313) 

16  0.013395  0.011765 (0.002877) 

17  0.003683  0.003730 (0.000383) 

18  0.012292  0.011272 (0.002327) 

19  0.004014  0.004510 (0.000450) 

                                     20   0.014045   0.013638 (0.002906) 
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in three other simulation conditions in Tables A.3, A.11 and A.19. Comparing results 

from the three other simulation conditions displayed in Tables A.3, A.11 and A.19, the 

bias, SE and RMSE tend to decrease as sample size and number of items increase. 

The consistency is shown in Table 4.4 where the means of the estimated variances 

based on the Fisher information (
b

I ) are pretty close to the corresponding sample 

variances of the item difficulty (b ) estimates over 100 simulation replications for 20 

items and 1000 examinees. Also, the variability of the variance estimates presented in 

standard deviations (SD) is very small. As a result, this indicates that average item 

difficulty (b ) estimates based on 100 replications for 20 items and 1000 examinees are 

pretty precise. Typically, the greater the number of examinees and the longer the test 

length, the better the estimated item difficulty parameters (b ) are. However, increasing 

the number of examinees is a more effective way to produce better item difficulty 

parameters (b ) average estimates than increasing the test length.  

 

Table 4.5 Across-item bias, SE and RMSE of the item slowness parameter ( r ) average 

estimates based on 100 replications for 20 items and 1000 examinees 

 

Item True  Estimates  SE  Bias  RMSE 

1  0.7055 0.6976   0.0899  -0.0079  0.0898 

2  0.5795 0.5667   0.0881  -0.0128  0.0886 

3  0.5019 0.4936   0.0740  -0.0083  0.0741 

4  1.0000 0.9890   0.0744  -0.0110  0.0748 

5  0.8145 0.8121   0.0640  -0.0024  0.0637 

6  0.5445  0.5383  0.0590  -0.0062  0.0590 

7  0.8626  0.8595  0.0543  -0.0031  0.0542 

8  0.7350  0.7315  0.0606  -0.0035  0.0604 

9  0.8714  0.8762  0.0593   0.0048  0.0592 

10  0.9496  0.9519  0.0472   0.0023  0.0471 

11  0.5249  0.5295  0.0531   0.0046  0.0530 

12  0.5350  0.5298  0.0547  -0.0052  0.0547 

13  0.6874  0.6920  0.0569   0.0046  0.0568 

14  0.6227  0.6246  0.0608   0.0019  0.0605 

15  0.8326  0.8412  0.0588   0.0086  0.0591 

16  0.8298  0.8389  0.0617   0.0091  0.0620 

17  0.7892  0.7947  0.0757   0.0055  0.0755 

18  0.9110  0.9211  0.0625   0.0101  0.0630 

19  0.6951  0.7360  0.1000   0.0409  0.1076 

20  0.5439  0.5591  0.0882   0.0152  0.0890 
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Results similar to those shown in Tables 4.3 and 4.4 are obtained in three other 

simulation conditions, i.e. in Tables A.3 and A.4 for 20 items and 2000 examinees, in 

Tables A.11 and A.12 for 40 items and 1000 examinees, and in Tables A.19 and A.20 for 

40 items and 2000 examinees. 

Across-item bias, SE and RMSE of the item slowness parameter ( r ) average 

estimates based on 100 replications for 20 items and 1000 examinees are given in Table 

4.5. The item slowness parameter ( r ) average estimates are pretty close to their 

corresponding true values. This is supported by the small average bias, SE and RMSE.  

Similar findings of the item slowness parameter ( r ) are given in three other simulation 

conditions (See Tables A.5, A.13 & A.21). Across all four simulation conditions, the 

bias, SE and RMSE are likely to decrease as sample size as well as number of items 

increase (See Tables 4.5, A.5, A.13 and A.21). 

 

Table 4.6 Sample variance of the item slowness ( r ) estimates ( 2
S ) and mean of the 

variance estimates based on the Fisher information (
rI ) and corresponding standard 

deviation (SD) over 100 simulation replications for 20 items and 1000 examinees 

 

     

        Item      2
S                         

r
I (SD)   

1  0.003560  0.003729 (0.000271) 

2  0.003676  0.003464 (0.000245) 

3  0.002778  0.002667 (0.000174) 

4  0.002964  0.002961 (0.000201) 

5  0.001978  0.002084 (0.000115) 

6  0.001469  0.001577 (0.000071) 

7  0.001521  0.001602 (0.000076) 

8  0.001979  0.001560 (0.000071) 

9  0.001934  0.001648 (0.000069) 

10  0.001515  0.001460 (0.000055) 

11  0.001136  0.001375 (0.000049) 

12  0.001234  0.001561 (0.000064) 

13  0.001387  0.001647 (0.000074) 

14  0.001956  0.002092 (0.000111) 

15  0.002519  0.002149 (0.000114) 

16  0.002075  0.001675 (0.000082) 

17  0.002903  0.003334 (0.000193) 

18  0.002512  0.002330 (0.000142) 

19  0.006648  0.005921 (0.000422) 

                                     20   0.002761   0.003277 (0.000213) 
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The consistency is assessed in Table 4.6 where the means of the estimated 

variances based on the Fisher information are pretty close to their corresponding sample 

variances of the item slowness parameter ( r ) estimates. The obtained standard deviation 

is very small, providing support that item slowness parameter ( r ) average estimates 

based on 100 replications for 20 items and 1000 examinees are pretty precise. Similar 

trends in Tables 4.6 are shown in three other simulation conditions (See Tables A.6, A.14 

& A.22). The greater the number of examinees and the longer the test length, the better 

the estimated item slowness parameters ( r ) are. The influence of number of examinees 

on the item slowness parameter ( r ) average estimates is larger than the influence of test 

length.  

Across-item bias, SE and RMSE of the parameter ( , , ,
s

gη σ σ ) average estimates 

based on 100 replications for 20 items and 1000 examinees are given in Table 4.7. The 

parameter ( , , ,
s

gη σ σ ) average estimates are pretty close to their corresponding true 

values. This is supported by the small average bias, average SE and average RMSE.  

Similar findings are reported in three other simulation conditions (See Tables A.7, A.15 

& A.23). Given Tables 4.7, A.7, A.15 and A.23, the bias, SE and RMSE are likely to 

decrease as sample size and number of items increase. 

Table 4.8 shows that the means of the estimated variances based on the Fisher 

information are pretty close to the corresponding sample variances of the , , ,
s

gη σ σ  

parameter estimates for 20 items and 1000 examinees. The SD is small. It gives support 

that , , ,
s

gη σ σ  parameter average estimates based on 100 replications for 20 items and 

1000 examinees are consistent and accurate. Similar tendencies are found in the three 

other simulation conditions (See Tables A.8, A.16 & A.24). 

 

Table 4.7 Across-item bias, SE and RMSE of the parameter ( , , ,
s

gη σ σ ) average 

estimates based on 100 replications for 20 items and 1000 examinees 

 

Parameter True Estimates  SE  Bias  RMSE 

η  0.002 0.0020    0.0010  -0.00003 0.0010 

g  0.5 0.5050  0.0284   0.0050 0.0287 

σ  1 0.9995  0.0054  -0.0005 0.0054 

s
σ  1 0.9954  0.0195  -0.0046 0.0199 
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Table 4.8 Sample variance of the parameter ( , , ,
s

gη σ σ ) estimates ( 2
S ) and mean of the 

variance estimates based on the Fisher information ( I ) and corresponding standard 

deviation (SD) over 100 simulation replications for 20 items and 1000 examinees 

 

            

  Parameter      2
S     I  (SD)   

η   0.00000051   0.00000056 (0.00000011) 

g   0.00043301  0.00042891 (0.00003321)   

σ   0.00001249  0.00001327 (0.00000009) 

            
s

σ   0.00023050  0.00021386 (0.00000816) 

 

Generally, the greater the number of examinees and the longer the test length, the 

better the estimated parameter ( , , ,
s

gη σ σ ) are. However, the parameter ( , , ,
s

gη σ σ ) 

average estimates are affected more by the number of examinees than by the test length. 

In summary, the marginal maximum likelihood (MML) method estimated the 

item parameters and additional parameters fairly well when the response accuracy and 

response time data were generated from the assumed model with discrete distributions of 

ability and person slowness parameters. The bias, SE and RMSE were reasonably small 

across all four simulation conditions. The observed variances of the estimates indicated 

that the parameter average estimates based on 100 replications were consistent and 

accurate across four simulation conditions. In general, the greater the number of 

examinees and the longer the test length, the better the parameter estimates. However, it 

was found that the impact of number of examinees on the parameter average estimates 

was larger than the impact of test length. 

Simulation design 2 – person parameter estimation using MAP 

To determine how well the maximum a posteriori (MAP) procedure behaves in 

estimating the continuous ability and person slowness parameters when the true item 

parameters are known, firstly, various means and standard deviations of two person 

parameters from 100 replications were observed. In Table 4.9, Mean (SD) columns are 

obtained as followings: True or estimated mean person parameters ( )ˆ ˆ, , ,s sθ θ  based on 

1000 or 2000 examinees are computed per iteration, this process repeats 100 times. Then, 

the mean and its variability (SD) based on 100 replications are reported. The SD(SD) is 
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obtained in the same way. As a result, the means of the mean parameters ( )ˆ ˆ, , ,s sθ θ  and 

their variability with corresponding means of the mean standard deviations and their 

variability (SD(SD)) from 100 replications are reported for four simulation conditions. 

 Because both abilities and person slowness parameters are assumed to be from 

standard normal distributions, the obtained means and standard deviations of the two 

person parameters across all four simulations conditions are fairly close to the assumed 

values, i.e. means of zero and standard deviations of one. Based on small variability 

values, it is conclude that the obtained mean values are consistent and pretty accurate. As 

the number of examinees and the test length increase, the obtained values are closer to the 

true values. However, the test length does not influence the parameter average estimates 

as much as the number of examinees across all four simulation conditions. 

 

Table 4.9 Mean of the mean true abilities (θ ) from 100 replications and its variability, 

mean of the estimated mean abilities (θ̂ ) from 100 replications and its variability, mean 

of the mean true person slowness ( s ) from 100 replications and its variability, and mean 

of the estimated person slowness ( ŝ ) from 100 replications and its variability (Mean 

(SD)). Mean of the standard deviations and its variability (SD (SD)) from 100 

replications with corresponding parameters ( ˆ ˆ, , ,s sθ θ ) across four simulation conditions 

 

  

Item Examinee Parameter Mean (SD)  SD (SD)   

 20 1000  θ   0.0020 (0.0307) 1.0015 (0.0221)  

    θ̂   0.0064 (0.0273) 0.8939 (0.0199) 

    s             -0.0015 (0.0303) 1.0016 (0.0232) 

  ŝ                     -0.0036 (0.0288) 0.9516 (0.0223) 

  2000  θ   0.0015 (0.0240) 1.0014 (0.0165)  

   θ̂   0.0068 (0.0205) 0.8933 (0.0141) 

    s             -0.0012 (0.0226) 0.9996 (0.0151) 

    ŝ                     -0.0044 (0.0218) 0.9513 (0.0135) 

 40 1000  θ             -0.0023 (0.0342) 0.9992 (0.0197)  

    θ̂   0.0027 (0.0315) 0.9370 (0.0191) 

    s             -0.0040 (0.0281) 0.9998 (0.0230) 

  ŝ                     -0.0068 (0.0261) 0.9730 (0.0221) 

  2000  θ             -0.0020 (0.0205) 0.9998 (0.0163)  

   θ̂   0.0013 (0.0199) 0.9369 (0.0147) 

    s              0.0028 (0.0205) 1.0005 (0.0168) 

    ŝ                      0.0010 (0.0202) 0.9736 (0.0163) 
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Table 4.10 Correlation and standard deviation (SD) between true and estimated ability 

parameter ( ˆ,θ θ ) and between true and estimated person slowness parameter ( ˆ,s s ) across 

100 replications 

 

Correlation (SD) Correlation (SD) 

Item Examinee  ˆ,θ θ    ˆ,s s  

20 1000  0.9085 (0.0053) 0.9502 (0.0034) 

2000  0.9083 (0.0038) 0.9501 (0.0021) 

40 1000  0.9484 (0.0029) 0.9728 (0.0020) 

            2000  0.9481 (0.0022) 0.9727 (0.0013) 

 

In Table 4.10, the correlations between true and estimated ability and person 

slowness parameters are reported. The correlations are obtained as follows: For each 

replication, the correlations are calculated between true and estimated person parameters. 

The means and standard deviations of these correlations across replications are computed. 

Across four simulation conditions, the mean correlations between true and 

estimated ability parameters ranged from 0.9083 to 0.9484 and the correlations between 

true and estimated person slowness parameters ranged from 0.9501 to 0.9728. Overall, 

the correlations between true and estimated person slowness parameters are larger than 

the correlations of ability parameters across all four simulation conditions. In addition, 

the standard deviations of correlations are reasonably small for both person parameters 

across four simulation conditions. As the number of examinees and the number of items 

increase, the standard deviations of correlations decrease in both person parameter cases. 

The distributions of the correlations for ability and person slowness parameters are 

depicted in the histograms in Figures B.1 and B.2. Mostly, bell-shaped histograms are 

observed and many of the observations are around the obtained mean of correlations 

reported in Table 4.10. The high values of correlations and histograms indicate that the 

correlations are pretty consistent. Overall, the standard deviations of correlations for 

person slowness parameters are smaller than the standard deviations of correlations 

obtained for ability parameters. This demonstrates that in MAP procedures the person 

slowness parameters are estimated better than the ability parameters.  

In general, the longer the test length, the better the correlations. It was found that 

the impact of test length on the average correlation estimates was larger than the impact 

of number of examinees. The standard deviations of correlations got smaller as the 
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number of examinees and the number of items increase. However, it was discovered that 

the impact of number of examinees on the standard deviations of correlations was larger 

than the impact of test length.   

In summary, the maximum a posteriori (MAP) procedure successfully estimates 

the continuous ability and person slowness parameters when the true item parameters are 

known. This is confirmed by the high and consistent values of correlations with 

correspondingly small variability.  

Simulation design 3 – person parameter recovery using MML and MAP 

Under the simulation condition with 20 items and 1000 examinees, two scenarios 

are considered to see how well ability and person slowness parameters are estimated 

using the MAP procedure: first, when the true item parameters are known, followed by 

when item parameters are estimated.  

 Across-item bias, SE and RMSE of the item discrimination ( a ), item difficulty 

(b ) and item slowness ( r ) parameters based on 100 replications for 20 items and 1000 

examinees are presented in Tables C.1, C.2 and C.3 respectively.  

Comparing the values of true and estimated item parameters based on the MML 

procedure shows that in general the estimates are reasonably close to their corresponding 

true values. The obtained average bias, average SE and average RMSE are small across 

20 items from all three item parameters displayed in Tables C.1, C.2 and C.3, 

respectively. The standard deviations of the extreme item difficulty (b ) values seem to be 

slightly larger than those around in the middle. The results for the additional parameters 

shown in Table C.4 also reveal small bias, SE and RMSE. The parameter estimates 

presented in Tables C.1, C.2, C.3 and C.4 are used to obtain person parameter estimations 

in scenario 2. 

 

Table 4.11 Mean of true (θ ) and estimated mean abilities (θ̂ ) from 100 replications and 

its variability and mean of the standard deviations and its variability (SD(SD)) from 100 

replications for 20 items and 1000 examinees 

       θ̂           θ̂  

True θ    Using True  Using Estimated  

   Mean (SD)   Item Parameters Item Parameters 

Mean (SD)  -0.0034 (0.0280) 0.0020 (0.0262) 0.0026 (0.0061)  

SD (SD)   0.8663 (0.0164) 0.8061 (0.0142) 0.8093 (0.0037)  
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Table 4.12 Mean of true ( s ) and estimated mean person slowness ( ŝ ) from 100 

replications and its variability (Mean (SD)). Mean of the standard deviations and its 

variability (SD(SD)) from 100 replications for 20 items and 1000 examinees 

 

ŝ    ŝ  

True s    Using True  Using Estimated  

   Mean (SD)   Item Parameters Item Parameters 

Mean (SD)  0.0057 (0.0256) 0.0037 (0.0262)         -0.0036 (0.0092)  

SD (SD)  0.8693 (0.0152) 0.8377 (0.0141) 0.8383 (0.0179) 

 

In Tables 4.11 and 4.12 the means of the true and estimated mean ability and 

person slowness parameters respectively from 100 replications and their variability for 20 

items and 1000 examinees are reported. In Table 4.11, comparing the estimated mean 

ability with corresponding true mean ability indicates that means are very close and the 

variability of the means are fairly small. The means of standard deviations are 

comparable and their variability is quite small. In Table 4.12, comparing the estimated 

mean person slowness with corresponding true mean person slowness indicates that 

means are very close and the variability of the means are somewhat small. The means of 

standard deviations and its variability are alike. The variability of standard deviations 

seem to be very small. It implies that the obtained mean values are consistent and pretty 

accurate.  

In Table 4.13, correlations and standard deviations (SD) between true and 

estimated person parameters across 100 replications. Comparing the correlations of 

person parameters based on true item parameters and estimated item parameters, 

correlations of the person parameters using true item parameters are almost same as those 

using estimated item parameters. The correlation between true and estimated ability 

parameter ( ˆ,θ θ ) across 100 replications using true item parameters is 0.8881 whereas 

using estimated item parameters is 0.8873. Also, the correlation between true and 

estimated person slowness parameter ( ˆ,s s ) across 100 replications using true item 

parameters is 0.9384, meanwhile using estimated item parameters is 0.9380. However, 

standard deviations are almost identical in both scenarios, using true item parameters or 

using estimated item parameters.   
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Table 4.13 Correlation and standard deviation (SD) between true and estimated ability 

parameter ( ˆ,θ θ ) and between true and estimated person slowness parameter ( ˆ,s s ) across 

100 replications for 20 items and 1000 examinees 

 

Using True  Using Estimated  

                                                           Item Parameters Item Parameters 

Correlation of ˆ,θ θ  (SD) 0.8881 (0.0060) 0.8873 (0.0060) 

Correlation of ˆ,s s (SD) 0.9384 (0.0036) 0.9380 (0.0038)   

 

The distributions of the correlations for ability and person slowness parameters 

are illustrated in the histograms in Figure C.1 and C.2 respectively. For ability 

parameters, the bell-shaped histograms show many observations around the mean of the 

correlations given in Table 4.13. For person slowness parameters, the histograms given in 

Table 4.13 are slightly left skewed, which indicates that many correlation values are high. 

The high values of correlations and histograms indicate that the correlations are relatively 

consistent and precise. 

Therefore, it is concluded that ability and person slowness parameters are 

reasonably well estimated using the MAP procedure, not only when the true item 

parameters are known, but also when item parameters are estimated.          
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CHAPTER 5 

 

DISCUSSION 

 

Summary 

The results derived in the preceding chapters suggest that the joint distribution of 

the item responses and response times is an effective approach. The estimation 

procedures work well and produce reasonably accurate parameter estimates. In particular, 

the findings based on the marginal maximum likelihood (MML) procedure employed to 

estimate the item parameters, as well as the maximum a posteriori (MAP) procedure 

implemented to estimate person parameters, were consistent and accurate. Overall, 

parameter recovery in the simulations was substantial. Hence, the extended IRT model 

incorporating response time suggested in this work is a successful model.  

In the first simulation study, it was found that the MML method used in this study 

was successful at parameter estimation across all four simulation conditions, which were 

the combinations of 20 and 40 items with 1000 and 2000 examinees. The item parameters 

and additional parameters were estimated fairly well when the response accuracy and 

response time data were generated from the assumed model with discrete distributions of 

ability and person slowness parameters. The bias, SE and RMSE were reasonably small 

across all four simulation conditions. The observed variances of the estimates indicated 

that the parameter average estimates based on 100 replications were consistent and 

accurate across four simulation conditions. In general, the greater the number of 

examinees and the longer the test length, the better the parameters estimates. However, it 

was found that the impact of number of examinees on the parameter average estimates 

was larger than the impact of test length. 

The findings of the second simulation were that the maximum a posteriori (MAP) 

procedure effectively estimated the continuous ability and person slowness parameters 

when the true item parameters were known. The means and standard deviations of two 
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person parameters across all four simulation conditions were fairly close to the assumed 

true values. The small variability indicates that obtained means were consistent and pretty 

accurate. This was confirmed by the high and consistent values of correlations with 

correspondingly small variability. In general, the longer the test length, the better the 

correlations. It was found that the impact of test length on the average correlation 

estimates was larger than the impact of number of examinees. The standard deviations of 

correlations got smaller as the number of examinees and the number of items increased. 

However, it was discovered that the impact of number of examinees on the standard 

deviations of correlations was larger than the impact of test length.   

As the third simulation study demonstrated, ability and person slowness 

parameter estimations were successfully estimated using the MAP procedure not only 

when the true item parameters were known but also when item parameters were 

estimated for a simulation condition of 20 items and 1000 examinees. Comparing the 

correlations of person parameters based on known true item parameters and on estimated 

item parameters, the correlations of person parameters using true item parameter case 

were almost same as those of the estimated item parameter case. Means and standard 

deviations of person parameters were comparable and their corresponding variability 

seemed to be very small. The high correlation values and stable distributions of the 

correlations indicated that the obtained correlations for person parameters were relatively 

consistent and precise.  

Limitations and Future Research 

This work leaves a number of issues for future research. It should be noted that 

this study does not explicitly delve into the model fit issue due to its limited scope. Future 

research may focus on the test of the model fit. Specifically, a model fit statistic should 

be developed for this model to assess the model fit. From a practical perspective, the 

suggested model should be applied to real test data with response time at the item level, 

to evaluate how well the model fits the data.  

Future research is also needed in validity studies in order to address the utility of 

the scores from response time models. The impact of such a utility of the scores has to be 

carefully investigated.  
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Some cautions should be mentioned with respect to the assumption of the discrete 

normal distribution for person parameters. In the present study, due to the straightforward 

model implementation, the ability and person slowness parameters are simulated based 

on discrete normal distributions. In other words, sampling the data from discrete and 

fitting the model to the discrete results in the finite sum, and the ease of integration for 

marginal maximum likelihood method which enables the ability parameter to be 

estimated easier than when the continuous distribution is assumed. In order to more 

closely represent the continuous normal distribution, it is recommended to increase the 

number of discrete spacing values to 40 or 80. However, this will create substantial 

computational burdens. In addition, a sequence of explorations could be also undertaken 

to investigate item parameter recovery assuming continuous ability parameters.   

 Simultaneously modeling response accuracy and response time is an intriguing 

but challenging endeavor. There are various ways to model the joint distribution of 

response accuracy and response time. Modeling the response time distribution in relation 

to other person and item parameters is a complicated undertaking. In particular, the 

relationship between ability and person slowness is unknown to us. In this study, the 

independence is assumed. Further work on alternative models is needed to consider this 

issue more thoroughly. Of particular of interest would be to investigate a different log 

linear model within a lognormal distribution family which assumes various correlations 

between ability and person slowness parameters.  

Conclusions 

The joint distribution of item response and response time suggested in this work 

incorporates an important source of educational measurement data, examinee’s response 

time, which became available by computerized testing. This work attempted to improve 

on current IRT models that do not account for the response time when there is a time 

limit in the real testing context. As a consequence, on behalf of fairness and equity, the 

proposed model incorporating response time is an important step in the field to improve 

measurement quality.  

In conclusion, the extended IRT model incorporating response time suggested in 

this work is a successful model. Overall, the model performance and the parameter 

recovery in the simulations were satisfactory. In summary, the suggested model and 
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parameter estimation procedures are promising and represent a unique contribution to the 

field. Furthermore, this work should be viewed as a noteworthy step in exploring 

appropriate response time models and parameter estimation procedures. Obviously much 

work remains. 

Practical Implications 

The examinee behavior in testing is usually observed by the examinee’s test score 

based on the accuracy of the test items (Schnipke & Scrams, 2002). That is to say, in 

psychometrics, the relatively simple scores are derived from classical test theory or item 

response theory. This is a rather narrow perspective about how examinees process 

information. Traditionally, among cognitive psychologists, response time has been 

considered as a source of information about how the mind processes information. The 

developed model in this work is a scoring model which uses response time in the scoring 

process. Therefore, this model will offer benefits to the field of psychometrics and 

provide a more accurate estimation of the examinee’s ability.   
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APPENDIX A 

 

DETAILED ANALYSIS OF SIMULATION DESIGN 1  

– ITEM PARAMETER ESTIMATION USING MML  

 

 The results of parameter recoveries for three additional simulation conditions are 

presented. They involve 20 items and 2000 examinees, 40 items and 1000 examinees, and 

40 items and 2000 examinees.   

 Tables A.1, A.9, and A.17 include bias, SE and RMSE and average estimates 

based on 100 replications of the item discrimination parameters ( a ) for 20 items and 

2000 examinees, 40 items and 1000 examinees, and 40 items and 2000 examinees, 

respectively. Tables A.3, A.11, and A.19 show bias, SE and RMSE and average estimates 

based on 100 replications of item difficulty parameter (b ) for 20 items and 2000 

examinees, 40 items and 1000 examinees, and 40 items and 2000 examinees, 

respectively. Tables A.5, A.13, and A.21 show bias, SE and RMSE and average estimates 

based on 100 replications of item slowness parameter ( r ) for 20 items and 2000 

examinees, 40 items and 1000 examinees, and 40 items and 2000 examinees, 

respectively. The additional model parameter ( , , ,
s

gη σ σ ) estimates are contained in 

Tables A.7, A.15, and A.23 for the conditions with 20 items and 2000 examinees, 40 

items and 1000 examinees, and 40 items and 2000 examinees, respectively.  

 In addition, consistency is assessed based on sample variances of the parameter 

estimates ( 2
S ) and means of the variance estimates from the Fisher information ( I ) and 

corresponding standard deviations (SD) over 100 simulation replications. Tables A.2, 

A.10, and A.18 display the consistency checks of the item discrimination parameters ( a ) 

for the conditions with20 items and 2000 examinees, 40 items and 1000 examinees, and 

40 items and 2000 examinees, respectively. Tables A.4, A.12, and A.20 display the 

consistency checks of the item difficulty parameter (b ) for the conditions with 20 items 

and 2000 examinees, 40 items and 1000 examinees, and 40 items and 2000 examinees, 
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respectively. Tables A.6, A.14, and A.22 exhibit the consistency checks of the item 

slowness parameter ( r ) for the conditions with 20 items and 2000 examinees, 40 items 

and 1000 examinees, and 40 items and 2000 examinees, respectively. The consistency 

check of the additional model parameter ( , , ,
s

gη σ σ ) estimates are contained in Tables 

A.8, A.16, and A.24 for the conditions with 20 items and 2000 examinees, 40 items and 

1000 examinees, and 40 items and 2000 examinees, respectively. 
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Table A.1 Across-item bias, SE and RMSE of the item discrimination parameter ( a ) 

average estimates based on 100 replications for 20 items and 2000 examinees 

 

 

Item True  Estimates     SE     Bias  RMSE 

1 1.0036   0.9989  0.0554  -0.0047  0.0553 

2 1.0650   1.0662  0.0565   0.0012  0.0563 

3 0.9497   0.9416  0.0517  -0.0081  0.0521 

4 1.2234   1.2297  0.0485   0.0063  0.0486 

5 0.9407   0.9384  0.0491  -0.0023  0.0489 

6 0.6576   0.6517  0.0435  -0.0059  0.0436 

7 0.8279   0.8203  0.0499  -0.0076  0.0502 

8 0.9844   0.9800  0.0500  -0.0044  0.0499 

9 1.5805   1.5780  0.0598  -0.0025  0.0596 

10 1.2155   1.2092  0.0523  -0.0063  0.0525 

11 0.7860   0.7817  0.0492  -0.0043  0.0491 

12 1.3716   1.3692  0.0497  -0.0024  0.0495 

13 1.2027   1.2116  0.0542   0.0089  0.0547 

14 1.5569   1.5529  0.0569  -0.0040  0.0568 

15 1.2431   1.2470  0.0591   0.0039  0.0589 

16 0.6453   0.6481  0.0460   0.0028  0.0459 

17 1.4352   1.4415  0.0649   0.0063  0.0649 

18 0.8156   0.8190  0.0450   0.0034  0.0449 

19 1.7798   1.7709  0.0641  -0.0089  0.0644 

20 0.9110   0.9153  0.0548   0.0043  0.0547 
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Table A.2 Sample variance of the item discrimination ( a ) estimates ( 2
S ) and mean of 

the variance estimates based on the Fisher information (
aI ) and corresponding standard 

deviation (SD) over 100 simulation replications for 20 items and 2000 examinees 

 

          

        Item      2
S                         

a
I  (SD)   

1  0.003070  0.002889 (0.000172) 

2  0.003197  0.002909 (0.000171) 

3  0.002676  0.002614 (0.000145) 

4  0.002349  0.003045 (0.000173) 

5  0.002413  0.002466 (0.000131) 

6  0.001889  0.002119 (0.000093) 

7  0.002486  0.002235 (0.000108) 

8  0.002499  0.002377 (0.000125) 

9  0.003576  0.003552 (0.000237) 

10  0.002740  0.002679 (0.000150) 

11  0.002421  0.002132 (0.000097) 

12  0.002471  0.002997 (0.000165) 

13  0.002938  0.002716 (0.000156) 

14  0.003241  0.003549 (0.000229) 

15  0.003493  0.002895 (0.000178) 

16  0.002116  0.002144 (0.000098) 

17  0.004209  0.003523 (0.000269) 

18  0.002027  0.002425 (0.000120) 

19  0.004103  0.004868 (0.000349) 

20  0.003003  0.002713 (0.000148) 
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Table A.3 Across-item bias, SE and RMSE of the item difficulty parameter (b ) average 

estimates based on 100 replications for 20 items and 2000 examinees 

 

 

Item True  Estimates     SE     Bias  RMSE 

1  -2.0000 -2.0128  0.1099  -0.0128  0.1101 

2  -1.7895 -1.7956  0.0975  -0.0061  0.0972 

3  -1.5789 -1.5881  0.0926  -0.0092  0.0926 

4  -1.3684 -1.3658  0.0638   0.0026  0.0636 

5  -1.1579 -1.1705  0.0736  -0.0127  0.0743 

6  -0.9474 -0.9401  0.0925   0.0073  0.0923 

7  -0.7368 -0.7513  0.0740  -0.0144  0.0750 

8  -0.5263 -0.5342  0.0602  -0.0079  0.0605 

9  -0.3158 -0.3101  0.0410   0.0057  0.0412 

10  -0.1053 -0.1028  0.0439   0.0024  0.0437 

11   0.1053   0.1120  0.0606   0.0067  0.0607 

12   0.3158  0.3183  0.0409   0.0025  0.0408 

13   0.5263  0.5300  0.0525   0.0036  0.0524 

14   0.7368  0.7427  0.0455   0.0058  0.0456 

15   0.9474  0.9508  0.0542   0.0034  0.0540 

16   1.1579  1.1570  0.1157  -0.0009  0.1152 

17   1.3684  1.3724  0.0607   0.0040  0.0605 

18   1.5789  1.5802  0.1109   0.0012  0.1103 

19   1.7895  1.7971  0.0634   0.0076  0.0635 

20   2.0000  1.9878  0.1185  -0.0122  0.1185 
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Table A.4 Sample variance of the item difficulty (b ) estimates ( 2
S ) and mean of the 

variance estimates based on the Fisher information (
bI ) and corresponding standard 

deviation (SD) over 100 simulation replications for 20 items and 2000 examinees 

 

          

        Item      2
S                         

b
I  (SD)   

1  0.012071  0.011872 (0.002317) 

2  0.009504  0.008680 (0.001477) 

3  0.008578  0.008725 (0.001501) 

4  0.004076  0.004584 (0.000457) 

5  0.005412  0.005888 (0.000840) 

6  0.008556  0.009269 (0.001685) 

7  0.005469  0.005202 (0.000769) 

8  0.003629  0.003336 (0.000320) 

9  0.001681  0.001615 (0.000073) 

10  0.001927  0.002129 (0.000128) 

11  0.003676  0.004096 (0.000436) 

12  0.001676  0.001891 (0.000091) 

13  0.002757  0.002449 (0.000193) 

14  0.002071  0.002012 (0.000124) 

15  0.002934  0.003148 (0.000313) 

16  0.013395  0.011765 (0.002877) 

17  0.003683  0.003730 (0.000383) 

18  0.012292  0.011272 (0.002327) 

19  0.004014  0.004510 (0.000450) 

20  0.014045  0.013638 (0.002906) 
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Table A.5 Across-item bias, SE and RMSE of the item slowness parameter ( r ) average 

estimates based on 100 replications for 20 items and 2000 examinees 

 

 

Item True  Estimates     SE     Bias  RMSE 

1  0.7055  0.7081  0.0597   0.0026  0.0594 

2  0.5795  0.5801  0.0606   0.0006  0.0603 

3  0.5019  0.5064  0.0527   0.0045  0.0526 

4  1.0000  1.0003  0.0544   0.0003  0.0542 

5  0.8145  0.8132  0.0445  -0.0013  0.0443 

6  0.5445  0.5539  0.0383   0.0094  0.0393 

7  0.8626  0.8655  0.0390   0.0029  0.0389 

8  0.7350  0.7340  0.0445  -0.0010  0.0443 

9  0.8714  0.8793  0.0440   0.0079  0.0445 

10  0.9496  0.9556  0.0389   0.0060  0.0392 

11  0.5249   0.5302  0.0337   0.0053  0.0339 

12  0.5350  0.5330  0.0351  -0.0020  0.0350 

13  0.6874  0.6912  0.0372   0.0038  0.0372 

14  0.6227  0.6280  0.0442   0.0053  0.0443 

15  0.8326  0.8378  0.0502   0.0052  0.0502 

16  0.8298  0.8333  0.0456   0.0035  0.0455 

17  0.7892  0.7991  0.0539   0.0099  0.0545 

18  0.9110  0.9129  0.0501   0.0019  0.0499 

19  0.6951  0.6930  0.0815  -0.0021  0.0812 

20  0.5439  0.5398  0.0525  -0.0041  0.0524 
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Table A.6 Sample variance of the item slowness ( r ) estimates ( 2
S ) and mean of the 

variance estimates based on the Fisher information (
rI ) and corresponding standard 

deviation (SD) over 100 simulation replications for 20 items and 2000 examinees 

 

          

        Item      2
S                         

r
I  (SD)   

1  0.003560  0.003729 (0.000271) 

2  0.003676  0.003464 (0.000245) 

3  0.002778  0.002667 (0.000174) 

4  0.002964  0.002961 (0.000201) 

5  0.001978  0.002084 (0.000115) 

6  0.001469  0.001577 (0.000071) 

7  0.001521  0.001602 (0.000076) 

8  0.001979  0.001560 (0.000071) 

9  0.001934  0.001648 (0.000069) 

10  0.001515  0.001460 (0.000055) 

11  0.001136  0.001375 (0.000049) 

12  0.001234  0.001561 (0.000064) 

13  0.001387  0.001647 (0.000074) 

14  0.001956  0.002092 (0.000111) 

15  0.002519  0.002149 (0.000114) 

16  0.002075  0.001675 (0.000082) 

17  0.002903  0.003334 (0.000193) 

18  0.002512  0.002330 (0.000142) 

19  0.006648  0.005921 (0.000422) 

20  0.002761  0.003277 (0.000213) 
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Table A.7 Across-item bias, SE and RMSE of the parameter ( , , ,
s

gη σ σ ) average 

estimates based on 100 replications for 20 items and 2000 examinees 

 

 

 Parameter True Estimates     SE     Bias  RMSE 

η  0.002 0.0019    0.0007  -0.00004 0.0007 

g  0.5 0.4999  0.0208  -0.00002 0.0207   

σ  1 0.9998  0.0035  -0.0001 0.0035 

            
s

σ  1 0.9983  0.0151  -0.0016 0.0151 
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Table A.8 Sample variance of the parameter ( , , ,
s

gη σ σ ) estimates ( 2
S ) and mean of the 

variance estimates based on the Fisher information ( I ) and corresponding standard 

deviation (SD) over 100 simulation replications for 20 items and 2000 examinees 

 

          

  Parameter      2
S     I  (SD)   

η   0.00000051   0.00000056 (0.00000011) 

g   0.00043302  0.00042891 (0.00003321)   

σ   0.00001249  0.00001327 (0.00000009) 

            
s

σ   0.00023050  0.00021384 (0.00000816) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 83

Table A.9 Across-item bias, SE and RMSE of the item discrimination parameter ( a ) 

average estimates based on 100 replications for 40 items and 1000 examinees 

 

 

Item True  Estimates     SE    Bias  RMSE 

1   1.0036 1.0100  0.0671   0.0064  0.0670 

2   1.0320 1.0378  0.0712   0.0058  0.0711 

3   1.0650 1.0614  0.0686            -0.0036  0.0684 

4   0.9860 0.9890  0.0652   0.0030  0.0649 

5   0.9497 0.9577  0.0655   0.0080  0.0656 

6   1.1230 1.1164  0.0703            -0.0066  0.0702 

7   1.2234 1.2321  0.0623   0.0087  0.0626 

8  0.9670 0.9672  0.0648   0.0002  0.0645 

9   0.9407 0.9413  0.0608   0.0006  0.0605 

10   0.8760 0.8753  0.0642            -0.0007  0.0639 

11  0.6576 0.6609  0.0587   0.0033  0.0585 

12  0.7560 0.7533  0.0603            -0.0027  0.0600 

13   0.8279 0.8370  0.0583   0.0091  0.0587 

14   0.9340 0.9385  0.0647   0.0045  0.0645 

15   0.9844 0.9876  0.0746   0.0032  0.0743 

16   1.2450 1.2434  0.0699            -0.0016  0.0695 

17   1.5805 1.5763  0.0798            -0.0042  0.0795 

18  1.4350 1.4341  0.0703            -0.0009  0.0700 

19  1.2155 1.2144  0.0746            -0.0011  0.0743 

20  0.9870 0.9837  0.0587            -0.0033  0.0585 

21  0.7860 0.7896  0.0524   0.0036  0.0523 

22  1.1240 1.1334  0.0646   0.0094  0.0649 

23  1.3716 1.3621  0.0676            -0.0095  0.0679 

24  1.1000 1.1032  0.0627   0.0032  0.0625 

25  1.2027 1.2087  0.0619   0.0060  0.0619 

26  1.3450 1.3424  0.0643            -0.0026  0.0640 

27  1.5569 1.5595  0.0753   0.0026  0.0750 

28  1.4320 1.4263  0.0629            -0.0057  0.0628 

29  1.2431 1.2457  0.0745   0.0026  0.0742 

30  0.8780 0.8785  0.0575   0.0005  0.0572 

31  0.6453 0.6473  0.0536   0.0020  0.0533 

32  1.2220 1.2303  0.0686   0.0083  0.0688 

33  1.4352 1.4440  0.0753   0.0088  0.0754 

34  0.7870 0.7828  0.0708            -0.0042  0.0706 

35  0.8156 0.8259  0.0601   0.0103  0.0606 

36  1.5670 1.5636  0.0716            -0.0034  0.0713 

37  1.7798 1.7772  0.0903            -0.0026  0.0899 

38  1.4560 1.4479  0.0683            -0.0081  0.0684 

39  0.9110 0.9149  0.0727   0.0039  0.0725 

40  0.7980 0.8036  0.0668   0.0056  0.0667 
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Table A.10 Sample variance of the item discrimination ( a ) estimates ( 2
S ) and mean of 

the variance estimates based on the Fisher information (
aI ) and corresponding standard 

deviation (SD) over 100 simulation replications for 40 items and 1000 examinees 

     

        Item      2
S                         

a
I  (SD)   

1  0.004498  0.004906 (0.000310) 

2  0.005073  0.004928 (0.000321) 

3  0.004707  0.004899 (0.000313) 

4  0.004249  0.004633 (0.000325) 

5  0.004284  0.004503 (0.000281) 

6  0.004936  0.004857 (0.000331) 

7  0.003884  0.005070 (0.000299) 

8  0.004198  0.004350 (0.000264) 

9  0.003702  0.004233 (0.000261) 

10  0.004126  0.004058 (0.000252) 

11  0.003445  0.003683 (0.000187) 

12  0.003633  0.003791 (0.000196) 

13  0.003399  0.003886 (0.000212) 

14  0.004188  0.004024 (0.000236) 

15  0.005569  0.004091 (0.000263) 

16  0.004880  0.004642 (0.000303) 

17  0.006371  0.005691 (0.000435) 

18  0.004947  0.005158 (0.000369) 

19  0.005569  0.004518 (0.000322) 

20  0.003441  0.004000 (0.000225) 

21  0.002745  0.003699 (0.000180) 

22  0.004172  0.004309 (0.000287) 

23  0.004569  0.004916 (0.000348) 

24  0.003935  0.004265 (0.000246) 

25  0.003830  0.004545 (0.000307) 

26  0.004134  0.004947 (0.000326) 

27  0.005670  0.005712 (0.000439) 

28  0.003956  0.005289 (0.000346) 

29  0.005557  0.004795 (0.000336) 

30  0.003310  0.004009 (0.000245) 

31  0.002869  0.003694 (0.000184) 

32  0.004707  0.004914 (0.000311) 

33  0.005670  0.005673 (0.000400) 

34  0.005014  0.004018 (0.000217) 

35  0.003606  0.004142 (0.000246) 

36  0.005121  0.006404 (0.000513) 

37  0.008149  0.007493 (0.000649) 

38  0.004666  0.006128 (0.000471) 

39  0.005287  0.004583 (0.000306) 

40  0.004460  0.004397 (0.000265) 
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Table A.11 Across-item bias, SE and RMSE of the item difficulty parameter (b )   

average estimates based on 100 replications for 40 items and 1000 examinees 

 

 

Item True  Estimates     SE     Bias  RMSE 

1  -2.0000 -1.9935  0.1479   0.0065  0.1473 

2  -1.8974 -1.9099  0.1346  -0.0124  0.1345 

3  -1.7949 -1.8049  0.1299  -0.0101  0.1297 

4  -1.6923 -1.6830  0.1142     0.0093  0.1140 

5  -1.5897 -1.6039  0.1291  -0.0142  0.1292 

6  -1.4872 -1.5220  0.0999  -0.0348  0.1053 

7  -1.3846 -1.3675  0.0818   0.0171  0.0831 

8  -1.2821 -1.2901  0.1213  -0.0081  0.1210 

9  -1.1795 -1.1880  0.1142  -0.0085  0.1140 

10  -1.0769 -1.0831  0.1090  -0.0061  0.1087 

11  -0.9744 -0.9779  0.1253  -0.0035  0.1247 

12  -0.8718 -0.8895  0.1319  -0.0177  0.1324 

13  -0.7692 -0.7846  0.1012  -0.0154  0.1019 

14  -0.6667 -0.6746  0.0820  -0.0079  0.0820 

15  -0.5641 -0.5696  0.0842  -0.0055  0.0839 

16  -0.4615 -0.4584  0.0673   0.0031  0.0670 

17  -0.3590 -0.3627  0.0586  -0.0037  0.0584 

18  -0.2564 -0.2618  0.0538  -0.0054  0.0538 

19  -0.1538 -0.1552  0.0554  -0.0013  0.0551 

20  -0.0513 -0.0435  0.0743   0.0078  0.0743 

21   0.0513  0.0446  0.0857  -0.0067  0.0856 

22   0.1538  0.1492  0.0639  -0.0047  0.0638 

23   0.2564  0.2548  0.0582  -0.0016  0.0579 

24   0.3590  0.3511  0.0784  -0.0078  0.0784 

25   0.4615  0.4548  0.0629  -0.0067  0.0630 

26   0.5641  0.5670  0.0674   0.0029  0.0671 

27   0.6667  0.6606  0.0562  -0.0061  0.0563 

28   0.7692  0.7706  0.0563   0.0013  0.0560 

29   0.8718  0.8672  0.0808  -0.0046  0.0806 

30   0.9744  0.9768  0.0991   0.0024  0.0986 

31   1.0769  1.0719  0.1427  -0.0050  0.1421 

32   1.1795  1.1728  0.0881  -0.0067  0.0879 

33   1.2821  1.2733  0.0861  -0.0087  0.0861 

34   1.3846  1.4089  0.1404   0.0243  0.1417 

35   1.4872  1.4814  0.1343  -0.0058  0.1338 

36   1.5897  1.5877  0.0815  -0.0020  0.0811 

37   1.6923  1.6895  0.0871  -0.0028  0.0867 

38   1.7949  1.8000  0.0902   0.0052  0.0899 

39   1.8974  1.8963  0.1436  -0.0011  0.1429 

40   2.0000  2.0099  0.1709   0.0099  0.1703 
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Table A.12 Sample variance of the item difficulty (b ) estimates ( 2
S ) and mean of the 

variance estimates based on the Fisher information (
bI ) and corresponding standard 

deviation (SD) over 100 simulation replications for 40 items and 1000 examinees 

          

        Item      2
S                         

b
I  (SD)   

1  0.021876  0.021057 (0.004994) 

2  0.018112  0.018683 (0.004293) 

3  0.016879  0.016284 (0.003546) 

4  0.013034  0.016266 (0.003198) 

5  0.016660  0.016056 (0.003674) 

6  0.009979  0.011481 (0.001988) 

7  0.006684  0.008549 (0.001127) 

8  0.014722  0.011826 (0.002422) 

9  0.013048  0.011293 (0.002138) 

10  0.011889  0.011733 (0.002314) 

11  0.015707  0.018059 (0.004800) 

12  0.017394  0.013187 (0.003140) 

13  0.010246  0.009984 (0.001788) 

14  0.006722  0.007615 (0.001084) 

15  0.007085  0.006614 (0.000963) 

16  0.004525  0.004436 (0.000417) 

17  0.003437  0.003181 (0.000212) 

18  0.002893  0.003450 (0.000213) 

19  0.003067  0.004190 (0.000365) 

20  0.005519  0.005595 (0.000508) 

21  0.007351  0.007951 (0.000872) 

22  0.004085  0.004593 (0.000380) 

23  0.003387  0.003658 (0.000238) 

24  0.006139  0.005043 (0.000507) 

25  0.003958  0.004599 (0.000364) 

26  0.004539  0.004206 (0.000345) 

27  0.003162  0.003652 (0.000280) 

28  0.003170  0.004362 (0.000338) 

29  0.006533  0.005651 (0.000731) 

30  0.009814  0.010751 (0.001753) 

31  0.020368  0.020803 (0.006353) 

32  0.007765  0.007308 (0.001035) 

33  0.007406  0.006353 (0.000842) 

34  0.019699  0.019734 (0.005730) 

35  0.018038  0.018858 (0.004456) 

36  0.006646  0.007662 (0.000887) 

37  0.007579  0.007358 (0.000960) 

38  0.008141  0.010433 (0.001493) 

39  0.020630  0.023078 (0.006101) 

40  0.029195  0.032237 (0.009373) 
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Table A.13 Across-item bias, SE and RMSE of the item slowness parameter ( r ) average 

estimates based on 100 replications for 40 items and 1000 examinees 

 

 

Item True  Estimates     SE     Bias  RMSE 

1  0.7055  0.6956  0.0832  -0.0099  0.0833 

2  0.6760  0.6552  0.0788  -0.0208  0.0811 

3  0.5795  0.5787  0.0802  -0.0008  0.0798 

4  0.5340  0.5322  0.0591  -0.0018  0.0589 

5  0.5019  0.4787  0.0691  -0.0232  0.0726 

6  0.8980  0.8825  0.0645  -0.0155  0.0660 

7  1.0000  0.9989  0.0803  -0.0011  0.0799 

8  0.9230  0.9151  0.0662  -0.0079  0.0663 

9  0.8145  0.8010  0.0652  -0.0135  0.0662 

10  0.7860  0.7782  0.0573  -0.0078  0.0575 

11  0.5445  0.5340  0.0517  -0.0105  0.0525 

12  0.6780  0.6727  0.0547  -0.0053  0.0547 

13  0.8626  0.8479  0.0601  -0.0147  0.0616 

14  0.7920  0.7806  0.0593  -0.0114  0.0601 

15  0.7350  0.7286  0.0540  -0.0064  0.0541 

16  0.8120  0.8161  0.0556   0.0041  0.0555 

17  0.8714  0.8712  0.0609  -0.0002  0.0606 

18  0.9230  0.9162  0.0633  -0.0068  0.0633 

19  0.9496  0.9467  0.0556  -0.0029  0.0554 

20  0.6780  0.6766  0.0458  -0.0014  0.0456 

21  0.5249  0.5196  0.0556  -0.0053  0.0556 

22  0.5950  0.5889  0.0554  -0.0061  0.0555 

23  0.5350  0.5349  0.0532  -0.0001  0.0530 

24  0.6230  0.6191  0.0581  -0.0039  0.0579 

25  0.6874  0.6836  0.0536  -0.0038  0.0535 

26  0.6920  0.6935  0.0562   0.0015  0.0559 

27  0.6227  0.6190  0.0591  -0.0037  0.0589 

28  0.7970  0.7980  0.0618   0.0010  0.0615 

29  0.8326  0.8338  0.0633   0.0012  0.0630 

30  0.8010  0.8039  0.0596   0.0029  0.0594 

31  0.8298  0.8316  0.0567   0.0018  0.0564 

32  0.7230  0.7282  0.0641   0.0052  0.0640 

33  0.7892  0.7916  0.0694   0.0024  0.0691 

34  0.8930  0.8982  0.0647   0.0052  0.0646 

35  0.9110  0.9179  0.0610   0.0069  0.0611 

36  0.7520  0.7618  0.0914   0.0098  0.0914 

37  0.6951  0.6993  0.0946   0.0042  0.0942 

38  0.5930  0.5929  0.0786  -0.0001  0.0782 

39  0.5439  0.5466  0.0662   0.0027  0.0660 

40  0.6250  0.6367  0.0731   0.0117  0.0737 
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Table A.14 Sample variance of the item slowness ( r ) estimates ( 2
S ) and mean of the 

variance estimates based on the Fisher information (
rI ) and corresponding standard 

deviation (SD) over 100 simulation replications for 40 items and 1000 examinees 

          

        Item      2
S                         

r
I  (SD)   

1  0.006918  0.006142 (0.000586) 

2  0.006208  0.005995 (0.000518) 

3  0.006431  0.005761 (0.000497) 

4  0.003498  0.005007 (0.000345) 

5  0.004781  0.004662 (0.000360) 

6  0.004163  0.005089 (0.000405) 

7  0.006441  0.005030 (0.000417) 

8  0.004381  0.004006 (0.000297) 

9  0.004248  0.003744 (0.000262) 

10  0.003281  0.003440 (0.000218) 

11  0.002676  0.002991 (0.000168) 

12  0.002991  0.003039 (0.000172) 

13  0.003614  0.003046 (0.000162) 

14  0.003514  0.003047 (0.000157) 

15  0.002917  0.002989 (0.000141) 

16  0.003092  0.003077 (0.000152) 

17  0.003710  0.003203 (0.000165) 

18  0.004006  0.003020 (0.000141) 

19  0.003089  0.002851 (0.000116) 

20  0.002095  0.002736 (0.000116) 

21  0.003096  0.002674 (0.000113) 

22  0.003069  0.002805 (0.000125) 

23  0.002832  0.002954 (0.000140) 

24  0.003375  0.002883 (0.000139) 

25  0.002874  0.003030 (0.000153) 

26  0.003155  0.003266 (0.000185) 

27  0.003495  0.003636 (0.000219) 

28  0.003821  0.003724 (0.000240) 

29  0.004011  0.003674 (0.000250) 

30  0.003551  0.003287 (0.000213) 

31  0.003210  0.003026 (0.000171) 

32  0.004114  0.004369 (0.000364) 

33  0.004811  0.005268 (0.000439) 

34  0.004187  0.003663 (0.000260) 

35  0.003725  0.003905 (0.000283) 

36  0.008346  0.007221 (0.000655) 

37  0.008945  0.008923 (0.000819) 

38  0.006180  0.007916 (0.000625) 

39  0.004388  0.005197 (0.000396) 

40  0.005342  0.004869 (0.000429) 
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Table A.15 Across-item bias, SE and RMSE of the parameter ( , , ,
s

gη σ σ ) average 

estimates based on 100 replications for 40 items and 1000 examinees 

 

 

Parameter True Estimates     SE     Bias  RMSE 

η  0.002 0.0019   0.0008  -0.0001  0.0008 

g  0.5 0.5045   0.0230   0.0045  0.0233 

σ  1 0.9997   0.0036  -0.0003  0.0036 

s
σ  1 0.9978   0.0169  -0.0022  0.0170 
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Table A.16 Sample variance of the parameter ( , , ,
s

gη σ σ ) estimates ( 2
S ) and mean of 

the variance estimates based on the Fisher information ( I ) and corresponding standard 

deviation (SD) over 100 simulation replications for 40 items and 1000 examinees 

 

          

  Parameter      2
S     I  (SD)   

η   0.00000059   0.00000056 (0.00000012) 

g   0.00052898  0.00053307 (0.00005824)   

σ   0.00001299  0.00001287 (0.00000009) 

            
s

σ   0.00028720  0.00028950 (0.00001715) 
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Table A.17 Across-item bias, SE and RMSE of the item discrimination parameter ( a ) 

average estimates based on 100 replications for 40 items and 2000 examinees 

 

 

Item True  Estimates     SE     Bias  RMSE 

1  1.0036 1.0073   0.0468   0.0037  0.0467 

2  1.0320 1.0267   0.0488  -0.0053  0.0488 

3  1.0650 1.0742   0.0488   0.0092  0.0494 

4  0.9860 0.9927   0.0448   0.0067  0.0451 

5  0.9497 0.9475   0.0508  -0.0022  0.0505 

6  1.1230 1.1194   0.0498  -0.0036  0.0497 

7  1.2234 1.2279   0.0537   0.0045  0.0536 

8  0.9670 0.9693   0.0514   0.0023  0.0512 

9  0.9407 0.9440   0.0481   0.0033  0.0479 

10  0.8760  0.8763  0.0502   0.0003  0.0500 

11  0.6576  0.6562  0.0378  -0.0014  0.0376 

12  0.7560  0.7616  0.0442   0.0056  0.0443 

13  0.8279  0.8285  0.0451   0.0006  0.0448 

14  0.9340  0.9352  0.0411   0.0012  0.0410 

15  0.9844  0.9859  0.0450   0.0015  0.0448 

16  1.2450  1.2505  0.0425   0.0055  0.0427 

17  1.5805  1.5869  0.0460   0.0064  0.0462 

18  1.4350  1.4441  0.0463   0.0091  0.0469 

19  1.2155  1.2253  0.0552   0.0098  0.0558 

20  0.9870  0.9895  0.0442   0.0025  0.0441 

21  0.7860  0.7881  0.0422   0.0021  0.0420 

22  1.1240  1.1221  0.0419  -0.0019  0.0418 

23  1.3716  1.3737  0.0463   0.0021  0.0461 

24  1.1000  1.1046  0.0529   0.0046  0.0528 

25  1.2027  1.1984  0.0465  -0.0043  0.0464 

26  1.3450  1.3438  0.0486  -0.0012  0.0484 

27  1.5569  1.5611  0.0521   0.0042  0.0520 

28  1.4320  1.4420  0.0554   0.0100  0.0560 

29  1.2431  1.2473  0.0483   0.0042  0.0482 

30  0.8780  0.8784  0.0435   0.0004  0.0433 

31  0.6453  0.6427  0.0480  -0.0026  0.0478 

32  1.2220  1.2271  0.0506   0.0051  0.0506 

33  1.4352  1.4472  0.0476   0.0120  0.0489 

34  0.7870  0.7894  0.0438   0.0024  0.0436 

35  0.8156  0.8163  0.0514   0.0007  0.0511 

36  1.5670  1.5697  0.0598   0.0027  0.0596 

37  1.7798  1.7786  0.0663  -0.0012  0.0660 

38  1.4560  1.4601  0.0522   0.0041  0.0521 

39  0.9110  0.9169  0.0468   0.0059  0.0469 

40  0.7980  0.7935  0.0395  -0.0045  0.0396 
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Table A.18 Sample variance of the item discrimination ( a ) estimates ( 2
S ) and mean of 

the variance estimates based on the Fisher information (
aI ) and corresponding standard 

deviation (SD) over 100 simulation replications for 40 items and 2000 examinees 

     

        Item      2
S                         

a
I  (SD)   

1  0.002189  0.002489 (0.000104) 

2  0.002381  0.002486 (0.000115) 

3  0.002383  0.002502 (0.000109) 

4  0.002005  0.002359 (0.000100) 

5  0.002576  0.002271 (0.000102) 

6  0.002479  0.002447 (0.000110) 

7  0.002880  0.002567 (0.000126) 

8  0.002639  0.002203 (0.000084) 

9  0.002309  0.002151 (0.000093) 

10  0.002521  0.002053 (0.000071) 

11  0.001427  0.001864 (0.000061) 

12  0.001951  0.001922 (0.000074) 

13  0.002030  0.001957 (0.000069) 

14  0.001693  0.002035 (0.000075) 

15  0.002026  0.002067 (0.000078) 

16  0.001810  0.002355 (0.000089) 

17  0.002116  0.002889 (0.000138) 

18  0.002140  0.002627 (0.000123) 

19  0.003050  0.002300 (0.000110) 

20  0.001956  0.002032 (0.000078) 

21  0.001779  0.001874 (0.000068) 

22  0.001759  0.002169 (0.000083) 

23  0.002140  0.002508 (0.000115) 

24  0.002795  0.002166 (0.000101) 

25  0.002159  0.002290 (0.000101) 

26  0.002364  0.002506 (0.000112) 

27  0.002718  0.002895 (0.000137) 

28  0.003067  0.002705 (0.000138) 

29  0.002332  0.002435 (0.000117) 

30  0.001894  0.002032 (0.000073) 

31  0.002301  0.001872 (0.000065) 

32  0.002558  0.002492 (0.000110) 

33  0.002270  0.002883 (0.000145) 

34  0.001918  0.002044 (0.000087) 

35  0.002640  0.002095 (0.000091) 

36  0.003576  0.003256 (0.000171) 

37  0.004401  0.003796 (0.000245) 

38  0.002728  0.003142 (0.000166) 

39  0.002187  0.002330 (0.000089) 

40  0.001561  0.002218 (0.000093) 
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Table A.19 Across-item bias, SE and RMSE of the item difficulty parameter (b ) average 

estimates based on 100 replications for 40 items and 2000 examinees 

 

 

Item True  Estimates     SE     Bias  RMSE 

1 -2.0000  -1.9868  0.1016   0.0132  0.1020 

2 -1.8974  -1.9138  0.0954  -0.0164  0.0963 

3 -1.7949  -1.7863  0.0833   0.0086  0.0833 

4 -1.6923  -1.6928  0.0933  -0.0005  0.0928 

5 -1.5897  -1.5924  0.0908  -0.0026  0.0904 

6 -1.4872  -1.4813  0.0654   0.0059  0.0653 

7 -1.3846  -1.3802  0.0596   0.0045  0.0595 

8 -1.2821  -1.2813  0.0724   0.0008  0.0720 

9 -1.1795  -1.1869  0.0820  -0.0074  0.0820 

10 -1.0769  -1.0768  0.0742   0.0001  0.0738 

11 -0.9744  -0.9756  0.0811  -0.0012  0.0807 

12 -0.8718  -0.8772  0.0751  -0.0054  0.0749 

13 -0.7692  -0.7669  0.0683   0.0023  0.0680 

14 -0.6667  -0.6607  0.0656   0.0060  0.0656 

15 -0.5641  -0.5669  0.0611  -0.0028  0.0609 

16 -0.4615  -0.4619  0.0436  -0.0003  0.0434 

17 -0.3590  -0.3549  0.0385   0.0041  0.0385 

18 -0.2564  -0.2524  0.0375   0.0041  0.0376 

19 -0.1538  -0.1581  0.0452  -0.0042  0.0452 

20 -0.0513  -0.0462  0.0562   0.0051  0.0562 

21  0.0513  0.0533  0.0715   0.0021  0.0711 

22  0.1538   0.1479  0.0476  -0.0059  0.0478 

23  0.2564  0.2555  0.0431  -0.0009  0.0429 

24  0.3590  0.3654  0.0562   0.0064  0.0562 

25  0.4615  0.4635  0.0457   0.0020  0.0455 

26  0.5641  0.5708  0.0425   0.0067  0.0428 

27  0.6667  0.6661  0.0391  -0.0005  0.0389 

28  0.7692  0.7660  0.0484  -0.0033  0.0482 

29  0.8718  0.8766  0.0498   0.0048  0.0498 

30  0.9744  0.9657  0.0745  -0.0086  0.0746 

31  1.0769  1.0891  0.0981   0.0121  0.0984 

32  1.1795  1.1813  0.0620   0.0018  0.0618 

33  1.2821  1.2747  0.0576  -0.0073  0.0578 

34  1.3846  1.3860  0.0947   0.0014  0.0942 

35  1.4872  1.4827  0.0934  -0.0045  0.0931 

36  1.5897  1.5941  0.0666   0.0044  0.0664 

37  1.6923  1.6893  0.0580  -0.0030  0.0578 

38  1.7949  1.8104  0.0657   0.0155  0.0672 

39  1.8974  1.8943  0.1132  -0.0032  0.1127 

40  2.0000  2.0108  0.1136   0.0108  0.1135 
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Table A.20 Sample variance of the item difficulty (b ) estimates ( 2
S ) and mean of the 

variance estimates based on the Fisher information (
bI ) and corresponding standard 

deviation (SD) over 100 simulation replications for 40 items and 2000 examinees 

     

        Item      2
S                         

b
I  (SD)   

1  0.010328  0.010459 (0.001804) 

2  0.009101  0.009469 (0.001473) 

3  0.006941  0.007825 (0.001165) 

4  0.008700  0.008140 (0.001260) 

5  0.008244  0.008044 (0.001308) 

6  0.004278  0.005478 (0.000658) 

7  0.003552  0.004345 (0.000468) 

8  0.005235  0.005802 (0.000846) 

9  0.006728  0.005591 (0.000796) 

10  0.005499  0.005787 (0.000919) 

11  0.006578  0.008942 (0.001380) 

12  0.005637  0.006282 (0.000899) 

13  0.004669  0.004980 (0.000689) 

14  0.004310  0.003770 (0.000358) 

15  0.003736  0.003276 (0.000291) 

16  0.001901  0.002190 (0.000123) 

17  0.001481  0.001568 (0.000058) 

18  0.001408  0.001700 (0.000071) 

19  0.002044  0.002060 (0.000128) 

20  0.003159  0.002758 (0.000191) 

21  0.005105  0.003968 (0.000357) 

22  0.002269  0.002316 (0.000128) 

23  0.001861  0.001802 (0.000081) 

24  0.003154  0.002519 (0.000196) 

25  0.002085  0.002330 (0.000144) 

26  0.001808  0.002097 (0.000127) 

27  0.001530  0.001825 (0.000093) 

28  0.002341  0.002144 (0.000151) 

29  0.002477  0.002823 (0.000221) 

30  0.005552  0.005314 (0.000706) 

31  0.009628  0.010531 (0.002219) 

32  0.003850  0.003690 (0.000391) 

33  0.003318  0.003163 (0.000273) 

34  0.008970  0.009308 (0.001549) 

35  0.008732  0.009598 (0.001772) 

36  0.004435  0.003848 (0.000407) 

37  0.003360  0.003672 (0.000322) 

38  0.004321  0.005225 (0.000519) 

39  0.012810  0.011372 (0.001998) 

40  0.012901  0.016212 (0.003169) 
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Table A.21 Across-item bias, SE and RMSE of the item slowness parameter ( r ) average 

estimates based on 100 replications for 40 items and 2000 examinees 

 

 

Item True  Estimates     SE     Bias  RMSE 

1  0.7055  0.7133  0.0578   0.0078  0.0580 

2  0.6760  0.6761  0.0545   0.0001  0.0543 

3  0.5795  0.5834  0.0499   0.0039  0.0498 

4  0.5340   0.5312  0.0511  -0.0028  0.0509 

5  0.5019  0.5112  0.0489   0.0093  0.0495 

6  0.8980  0.9063  0.0513   0.0083  0.0517 

7  1.0000  1.0015  0.0491   0.0015  0.0489 

8  0.9230  0.9298  0.0476   0.0068  0.0478 

9  0.8145  0.8153  0.0449   0.0008  0.0447 

10  0.7860  0.7899  0.0413   0.0039  0.0413 

11  0.5445  0.5483  0.0388   0.0038  0.0388 

12  0.6780  0.6726  0.0358  -0.0054  0.0360 

13  0.8626  0.8681  0.0383   0.0055  0.0385 

14  0.7920  0.7979  0.0384   0.0059  0.0386 

15  0.7350  0.7383  0.0375   0.0033  0.0374 

16  0.8120  0.8079  0.0399  -0.0041  0.0399 

17  0.8714  0.8734  0.0434   0.0020  0.0432 

18  0.9230  0.9280  0.0425   0.0050  0.0426 

19  0.9496  0.9434  0.0435  -0.0062  0.0437 

20  0.6780  0.6835  0.0357   0.0055  0.0360 

21  0.5249  0.5281  0.0396   0.0032  0.0396 

22  0.5950  0.5923  0.0374  -0.0027  0.0373 

23  0.5350  0.5354  0.0382   0.0004  0.0380 

24  0.6230  0.6277  0.0405   0.0047  0.0405 

25  0.6874  0.6897  0.0428   0.0023  0.0427 

26  0.6920  0.6956  0.0400   0.0036  0.0399 

27  0.6227  0.6174  0.0367  -0.0053  0.0369 

28  0.7970  0.7946  0.0443  -0.0024  0.0441 

29  0.8326  0.8389  0.0426   0.0063  0.0429 

30  0.8010  0.7988   0.0434  -0.0022  0.0433 

31  0.8298  0.8274  0.0369  -0.0024  0.0367 

32  0.7230  0.7306  0.0457   0.0076  0.0461 

33  0.7892  0.7882  0.0487  -0.0010  0.0484 

34  0.8930  0.8938  0.0382   0.0008  0.0380 

35  0.9110  0.9050  0.0425  -0.0060  0.0428 

36  0.7520  0.7498  0.0559  -0.0022  0.0557 

37  0.6951  0.6858  0.0634  -0.0093  0.0638 

38  0.5930  0.6103  0.0592   0.0173  0.0614 

39  0.5439  0.5435  0.0591  -0.0004  0.0588 

40  0.6250  0.6186  0.0479  -0.0064  0.0481 
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Table A.22 Sample variance of the item slowness ( r ) estimates ( 2
S ) and mean of the 

variance estimates based on the Fisher information (
rI ) and corresponding standard 

deviation (SD) over 100 simulation replications for 40 items and 2000 examinees 

          

        Item      2
S                       

r
I  (SD)   

1  0.003341  0.003002 (0.000165) 

2  0.002973  0.002932 (0.000157) 

3  0.002493  0.002838 (0.000145) 

4  0.002607  0.002494 (0.000144) 

5  0.002392  0.002264 (0.000109) 

6  0.002629  0.002452 (0.000116) 

7  0.002412  0.002487 (0.000114) 

8  0.002265  0.001967 (0.000096) 

9  0.002013  0.001848 (0.000076) 

10  0.001709  0.001694 (0.000069) 

11  0.001507  0.001474 (0.000055) 

12  0.001282  0.001500 (0.000051) 

13  0.001465  0.001491 (0.000050) 

14  0.001473  0.001496 (0.000050) 

15  0.001405  0.001475 (0.000045) 

16  0.001594  0.001523 (0.000048) 

17  0.001880  0.001578 (0.000048) 

18  0.001805  0.001489 (0.000044) 

19  0.001893  0.001411 (0.000039) 

20  0.001275  0.001353 (0.000037) 

21  0.001570  0.001322 (0.000035) 

22  0.001400  0.001384 (0.000041) 

23  0.001460  0.001462 (0.000045) 

24  0.001637  0.001431 (0.000049) 

25  0.001835  0.001498 (0.000053) 

26  0.001598  0.001617 (0.000063) 

27  0.001347  0.001804 (0.000075) 

28  0.001962  0.001845 (0.000083) 

29  0.001815  0.001827 (0.000083) 

30  0.001886  0.001619 (0.000072) 

31  0.001358  0.001502 (0.000059) 

32  0.002091  0.002165 (0.000116) 

33  0.002370  0.002610 (0.000144) 

34  0.001458  0.001807 (0.000085) 

35  0.001810  0.001920 (0.000100) 

36  0.003127  0.003602 (0.000238) 

37  0.004020  0.004411 (0.000280) 

38  0.003506  0.003978 (0.000264) 

39  0.003495  0.002579 (0.000180) 

40  0.002291  0.002385 (0.000140) 
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Table A.23 Across-item bias, SE and RMSE of the parameter ( , , ,
s

gη σ σ ) average 

estimates based on 100 replications for 40 items and 2000 examinees 

 

 

Parameter True Estimates     SE     Bias  RMSE 

η  0.002 0.0020   0.0005  -0.00001  0.0005 

g  0.5 0.4990   0.0145  -0.0010  0.0144 

σ  1 0.9998   0.0027  -0.0002  0.0027 

s
σ  1 0.9997   0.0123  -0.0003  0.0123 
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Table A.24 Sample variance of the parameter ( , , ,
s

gη σ σ ) estimates ( 2
S ) and mean of 

the variance estimates based on the Fisher information ( I ) and corresponding standard 

deviation (SD) over 100 simulation replications for 40 items and 2000 examinees 

 

     

  Parameter      2
S     I  (SD)   

η   0.00000029   0.00000028 (0.00000004) 

g   0.00020889  0.00026227 (0.00001927)   

σ   0.00000724  0.00000643 (0.00000003) 

            
s

σ   0.00015216  0.00014445 (0.00000676) 
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APPENDIX B 

 

DETAILED ANALYSIS OF SIMULATION DESIGN 2  

– PERSON PARAMETER ESTIMATION USING MAP 

 

The histograms of the distribution of correlations between true and estimated 

person parameters for all four simulation conditions are presented. Figure B.1 displays 

the histograms of correlations between true and estimated ability parameters ( )ˆ,θ θ  from 

100 replications across four simulation conditions, (a) 20 items for 1000 examinees, (b) 

20 items for 2000 examinees, (c) 40 items for 1000 examinees, and (d) 40 items for 2000 

examinees. Figure B.2 exhibits the histograms of correlations of between true and 

estimated person slowness parameters ( )ˆ,s s  from 100 replications across four simulation 

conditions, (a) 20 items for 1000 examinees, (b) 20 items for 2000 examinees, (c) 40 

items for 1000 examinees, and (d) 40 items for 2000 examinees. 
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(a)      (b) 

 
 

(c)      (d) 

 
 

Figure B.1 Histograms of correlations between true and estimated ability parameters 

( ˆ,θ θ ) from 100 replications across four simulation conditions, (a) 20 items for 1000 

examinees, (b) 20 items for 2000 examinees, (c) 40 items for 1000 examinees, and (d) 40 

items for 2000 examinees 
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(a)      (b) 

      

(c)      (d) 

 
 

Figure B.2 Histograms of correlations between true and estimated person slowness 

parameters ( )ˆ,s s  from 100 replications across four simulation conditions, (a) 20 items 

for 1000 examinees, (b) 20 items for 2000 examinees, (c) 40 items for 1000 examinees, 

and (d) 40 items for 2000 examinees 
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APPENDIX C 

 

DETAILED ANALYSIS OF SIMULATION DESIGN 3  

– PERSON PARAMETER RECOVERY USING MML AND MAP  

 

 In simulation design 3 – person parameter recovery, two scenarios were 

investigated to see how well ability and person slowness parameters are estimated using 

MAP procedure. Scenario 1 is when the true item parameters are known. Scenario 2 is 

when item parameters are estimated. A simulation for 20 items and 1000 examinees is 

performed. Here, Tables C.1, C.2 and C.3 contain the item parameter estimation results 

from scenario 2. In addition, from scenario 2, additional parameter estimation results are 

given in Table C.4.     

 Tables C.1, C.2 and C.3 contain bias, SE and RMSE and average estimates of 

item discrimination parameter ( a ), item difficulty parameter (b ) and item slowness 

parameter ( r ) based on 100 replications for 20 items and 1000 examinees. Table C.4 

include bias, SE and RMSE of the parameter ( , , ,
s

gη σ σ ) average estimates based on 100 

replications for 20 items and 1000 examinees. 

The histograms of the distribution of correlations between true and estimated 

person parameters for all four simulation conditions are presented. In Figure C.1, 

histograms of correlations between true and estimated ability ( )ˆ,θ θ  parameters from 100 

replications across two simulation conditions for 20 items for 1000 examinees. (a) item 

parameters are known and (b) item parameters are estimated. In Figure C.2, histograms of 

correlations between true and estimated person slowness ( )ˆ,s s  parameters from 100 

replications across two simulation conditions for 20 items for 1000 examinees. (a) item 

parameters are known and (b) item parameters are estimated.  

 

  

 



 103

Table C.1 Across-item bias, SE and RMSE of the item discrimination parameter ( a ) 

average estimates based on 100 replications for 20 items and 1000 examinees 

 

 

Item True  Estimates     SE     Bias  RMSE 

1  1.0036  1.0018  0.0843  -0.0018  0.0838 

2  1.0650  1.0553  0.0760  -0.0097  0.0762 

3  0.9497  0.9566  0.0660   0.0069  0.0660 

4  1.2234  1.2164  0.0672  -0.0070  0.0672 

5  0.9407  0.9370  0.0816  -0.0037  0.0813 

6  0.6576  0.6543  0.0609  -0.0033  0.0607 

7  0.8279  0.8310  0.0695   0.0031  0.0692 

8  0.9844  0.9921  0.0708   0.0077  0.0709 

9  1.5805  1.5802  0.0834  -0.0003  0.0830 

10  1.2155  1.2162  0.0747   0.0007  0.0743 

11  0.7860  0.7744  0.0649  -0.0116  0.0656 

12  1.3716  1.3727  0.0817   0.0011  0.0813 

13  1.2027  1.2012  0.0775  -0.0015  0.0771 

14  1.5569  1.5489  0.0801  -0.0080  0.0801 

15  1.2431  1.2460  0.0800   0.0029  0.0797 

16  0.6453  0.6321  0.0609  -0.0132  0.0620 

17  1.4352  1.4486  0.0819   0.0134  0.0826 

18  0.8156  0.8168  0.0730   0.0012  0.0726 

19  1.7798  1.7796  0.1020  -0.0002  0.1014 

20  0.9110  0.9014  0.0737  -0.0096  0.0740 
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Table C.2 Across-item bias, SE and RMSE of the item difficulty parameter (b ) average 

estimates based on 100 replications for 20 items and 1000 examinees 

 

 

Item True  Estimates     SE     Bias  RMSE 

1  -2.0000  -2.0085  0.1632  -0.0085  0.1626 

2  -1.7895  -1.8008  0.1155  -0.0113  0.1154 

3  -1.5789  -1.5749   0.1247   0.0041  0.1241 

4  -1.3684  -1.3895  0.1006  -0.0211  0.1023 

5   -1.1579  -1.1815  0.1197  -0.0236  0.1215 

6  -0.9474  -0.9647   0.1404  -0.0173  0.1407 

7  -0.7368  -0.7399  0.1011  -0.0030  0.1007 

8  -0.5263  -0.5192  0.0764   0.0071  0.0764 

9  -0.3158  -0.3139  0.0548   0.0019  0.0546 

10  -0.1053  -0.0955  0.0589   0.0097  0.0594 

11   0.1053   0.1148  0.0832   0.0095  0.0833 

12   0.3158   0.3285  0.0537   0.0127  0.0549 

13   0.5263   0.5328  0.0709   0.0064  0.0708 

14   0.7368   0.7400  0.0573   0.0032  0.0571 

15   0.9474   0.9412  0.0797  -0.0062  0.0795 

16   1.1579   1.1848  0.1665   0.0269  0.1679 

17   1.3684   1.3661  0.0826  -0.0023  0.0822 

18   1.5789   1.5900  0.1517   0.0111  0.1513 

19   1.7895   1.8098  0.0898   0.0203  0.0917 

20   2.0000   2.0243  0.1803   0.0243  0.1810 
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Table C.3 Across-item bias, SE and RMSE of the item slowness parameter ( r ) average 

estimates based on 100 replications for 20 items and 1000 examinees 

 

 

Item True  Estimates     SE     Bias  RMSE 

1  0.7055  0.7248  0.0887   0.0193  0.0904 

2  0.5795  0.6046  0.0815   0.0251  0.0849 

3  0.5019  0.5206  0.0773   0.0187  0.0791 

4  1.0000  1.0146  0.0764   0.0146  0.0774 

5  0.8145  0.8157  0.0660   0.0012  0.0657 

6  0.5445  0.5568  0.0554   0.0123  0.0565 

7  0.8626  0.8753  0.0583   0.0127  0.0594 

8  0.7350  0.7494  0.0574   0.0144  0.0589 

9  0.8714  0.8836  0.0610   0.0122  0.0619 

10  0.9496  0.9661  0.0598   0.0165  0.0617 

11  0.5249  0.5320  0.0497   0.0071  0.0500 

12  0.5350  0.5498  0.0576   0.0148  0.0592 

13  0.6874  0.6903  0.0582   0.0029  0.0580 

14  0.6227  0.6210  0.0653  -0.0017  0.0650 

15  0.8326  0.8286  0.0599  -0.0040  0.0598 

16  0.8298  0.8292  0.0518  -0.0006  0.0515 

17  0.7892  0.7887  0.0741  -0.0005  0.0737 

18  0.9110  0.9130  0.0681   0.0020  0.0678 

19  0.6951  0.6951  0.1155   0.00001  0.1149 

20  0.5439  0.5377  0.0855  -0.0062  0.0853 
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Table C.4 Across-item bias, SE and RMSE of the parameter ( , , ,
s

gη σ σ ) average 

estimates based on 100 replications for 20 items and 1000 examinees 

 

 

 Parameter True Estimates     SE     Bias  RMSE 

η  0.002  0.0019  0.0010  -0.00007  0.0010 

g  0.5  0.4934  0.0299  -0.00657  0.0305  

σ  1  0.9991  0.0053  -0.00088  0.0054 

            
s

σ  1  0.9988  0.0183  -0.00116  0.0183 
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(a) 

 
 

 

(b) 

 
 

 

Figure C.1 Histograms of correlations between true and estimated ability ( ˆ,θ θ ) 

parameters from 100 replications across two simulation conditions for 20 items for 1000 

examinees. (a) item parameters are known and (b) item parameters are estimated 
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(a) 

 
 

 

(b) 

 
 

 

Figure C.2 Histograms of correlations between true and estimated person slowness ( )ˆ,s s  

parameters from 100 replications across two simulation conditions for 20 items for 1000 

examinees. (a) item parameters are known and (b) item parameters are estimated 
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APPENDIX D 

 

ADDITIONAL ANALYSIS ON PERSON PARAMETERS 

 

 

An additional analysis on person parameters, i.e. ability ( )θ  and person slowness 

( )s , is included in Appendix D. Table D.1 shows the correlation between true ability and 

true person slowness parameters for four simulation conditions, 20/ 40 items for 1000/ 

2000 examinees. In the Table D.1, the correlation values are close to zero. It means that 

the simulated true ability and true person slowness data are not correlated for four 

simulation conditions. Thus, it corresponds with the independence assumption between 

ability and person slowness parameters.      
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Table D.1 Correlation between true ability and true person slowness parameters ( , sθ ) 

 

        Correlation   

Item Examinee    , sθ     

20 1000    0.0380  

2000    0.0314  

40 1000   -0.0406 

2000   -0.0046 
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