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ABSTRACT 
 
 
 

We will describe the development of a high-resolution, gridded forecast guidance product 

for warm season cloud-to-ground (CG) lightning in Florida.  Four warm seasons of analysis data 

from the 20-km Rapid Update Cycle (RUC) and lightning data from the National Lightning 

Detection Network are used to examine relationships between observed atmospheric parameters 

and the spatial and temporal patterns of CG lightning over Florida.  The most important RUC-

derived parameters then are used in a perfect prognosis (PP) technique to develop equations 

producing 3-hourly spatial probability forecasts for one or more CG flashes, as well as the 

probability of exceeding various flash count percentile thresholds.  Binary logistic regression is 

used to develop the equations for one or more flashes, while a negative binomial (NB) model is 

used to predict the amount of lightning, conditional on one or more flashes occurring.  When 

applied to the dependent sample of RUC analyses, the equations show forecast skill over a model 

containing only persistence and climatology (L-CLIPER). 

We also evaluate the lightning forecast scheme when applied to output from three 

mesoscale models during an independent test period (the 2006 warm season).  The evaluation is 

performed using output from NCEP’s 13-km RUC, the NCEP 12-km NAM-WRF, and local runs 

of WRF for a domain over South Florida that were initialized with NCEP 1/12th degree sea-

surface temperatures (SST) and data from the Local Analysis and Prediction System (LAPS) 

(WRF-LAPS).  During the most active lightning period (1800-2059 UTC), the three models 

forecast between 80-90% of the lightning events having one or more flashes, and between 30-

60% of the events with flash counts meeting or exceeding the 95th percentile.  Of the three 

mesoscale models, WRF-LAPS generally produces the best verification scores during 1800-2059 

UTC.  Forecasts from all three mesoscale models generally show positive skill with respect to L-

CLIPER and persistence through the 2100-2359 UTC period, demonstrating that the PP scheme 

is model independent.  Although the exact timing and placement of forecast lightning is not 

perfect, there generally is good agreement between the forecasts and their verification, with most 

of the observed lightning occurring within the higher forecast probability contours. 
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CHAPTER ONE 
 

OVERVIEW 
 
 
 

This dissertation consists of two manuscripts that will be submitted to Monthly Weather 

Review to describe the development and evaluation of a perfect prognosis scheme for forecasting 

warm season cloud-to-ground (CG) lightning over Florida.  The first manuscript is contained in 

Chapters two through six, while the second comprises Chapters seven through ten.  

The first objective of this study is to develop a high-resolution, gridded forecast guidance 

product for warm season CG lightning for Florida.  Four warm seasons of analysis data from the 

20-km Rapid Update Cycle (RUC20) are used to examine relationships between observed fields 

of various atmospheric parameters and the spatial and temporal patterns of CG lightning over 

Florida.  The most important RUC-derived parameters then are used in a perfect prognosis 

technique to develop equations producing 3-hourly spatial probability forecasts for one or more 

CG flashes, as well as the probability of exceeding various flash count percentile thresholds.  A 

description of the parameters comprising the models and their relationships to lightning 

occurrence is presented, as well as an evaluation of the reliability and skill of the equations when 

applied to the four warm seasons of dependent data.    

The second major objective is to evaluate the utility and skill of the perfect prognosis 

equations when applied to output from several mesoscale models during an independent test 

period.  Forecast output from the National Centers for Environmental Prediction (NCEP) 13-km 

RUC and 12-km North American Mesoscale (NAM) models are used as an independent test of 

the equations during the 2006 warm season.  The equations also are evaluated using output from 

high resolution runs of the Weather Research and Forecasting (WRF) model for a domain over 

South Florida, initialized with data from the Local Analysis and Prediction System (LAPS).   
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CHAPTER TWO 
 

INTRODUCTION TO MODEL DEVELOPMENT 
 
 
 

Cloud-to-ground (CG) lightning is one of the leading causes of weather related fatalities 

in the United States (U.S.) (Holle et al. 1999).  In fact, Curran et al. (2000) showed that only 

river and flash floods ranked higher than lightning in terms of deaths.  Aside from the loss of life, 

CG lightning damages trees, buildings, and utility lines, often leading to power outages and 

disruptions to communications.  Improved forecasts of CG lightning are of great interest to all 

persons concerned with protecting life and property. 

Florida has more than twice the number of lightning casualties of any other state (Curran 

et al. 2000).  A majority of casualties occur during the warm season (May-September), the 

climatological peak for lightning in Florida.  Studies examining lightning patterns across the U.S. 

have shown that Florida annually receives more CG strikes than any other state (Orville 1994; 

Hodanish et al. 1997; Orville and Huffines 2001; and Orville et al. 2002).    

Location and time specific forecasts of afternoon lightning for lead times longer than      

~ 30 min currently are not available.  National Weather Service (NWS) zone forecasts usually 

give little information about which specific areas will experience convection on a particular day, 

and make no mention of how much lightning is expected if convection develops.  Since Florida 

is characterized by extensive day-to-day variability in the location, timing, and amount of 

lightning during the warm season, it is difficult to develop a skillful lightning forecast product, 

especially for lead times longer than a few hours.  

It has been recognized that warm season convection over Florida is regulated by low-

level convergence associated with the sea breeze.  Complete descriptions of the sea breeze are 

given by Wexler (1946) and Simpson (1994).  Interactions between the sea breeze, the prevailing 

wind, and coastline curvature have been shown to influence lightning patterns (e.g., López and 

Holle 1987; Arritt 1993; Lericos et al. 2002). Numerical simulations also have revealed the 

effects of the synoptic flow on sea breeze convergence (e.g., Estoque 1962; McPherson 1970; 

Pielke 1974; Arritt 1993).  Studies by Hodanish et al. (1997), Camp et al (1998), and Lericos et 

al. (2002) noted the effects of coastline shape on lightning patterns.  In addition, local thermal 

circulations (e.g., water conservation areas, lakes, and rivers), urban effects (e.g., Westcott 1995; 
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Steiger et al. 2002), and thunderstorm outflows can aid in producing deep convection.  Even if 

one could pinpoint the exact locations that will experience convection, it does not necessarily 

follow that these areas will experience the most lightning, since lightning production ultimately 

is controlled by cloud microphysics.   

Determining how convective clouds become electrified remains a challenging problem in 

meteorology, and many factors influencing cloud electrification still are poorly understood 

(MacGorman and Rust 1998).  Two traditional hypotheses for electrification are the precipitation 

hypothesis (Reynolds et al. 1957) and the convection hypothesis (Vonnegut 1963).  More recent 

studies propose that cloud electrification occurs through the non-inductive ice-ice collision 

process (e.g., Williams 1985; Williams et al. 1989).  These hypotheses depend on a vigorous 

updraft and a robust ice phase for charge generation (Price and Rind 1992, Petersen and Rutledge 

1998).  Studies suggest that a persistent and strong updraft above the –10°C level, and not just 

the presence of a strong updraft, is necessary for electrification (e.g., Price and Rind 1992, 1993; 

Solomon and Baker 1994, 1998; Zipser 1994; Gremillion and Orville 1999; Ushio et al. 2001).  

 A variety of statistical techniques have been used to develop forecast models for 

thunderstorms and lightning.  For continuous predictands, the most common method is multiple 

linear regression (MLR) (e.g., Neumann and Nicholson 1972; Reap and MacGorman 1989).  

However, when the predictand is “yes” or “no,” binary logistic regression (BLR) often is 

employed (this technique is described in detail in Chapter 4).  Examples include Livingston et al. 

(1996), Mazany et al. (2002), Lambert et al. (2005), and a recent study by Shafer and Fuelberg 

(2006) for portions of the Florida Peninsula.  Statistical prediction models also have been 

developed using Classification and Regression Trees (CART) (e.g., Burrows et al. 2004).    

Many of the statistical studies described above utilized parameters derived from morning 

soundings to forecast afternoon lightning.  This approach sometimes can produce large forecast 

errors if morning conditions change, or if the sounding is not representative of the entire forecast 

area.  An alternative to soundings is data from numerical weather prediction (NWP) models.  

Since NWP models provide input data that are more location and time specific, they may 

produce more skillful forecasts.     

Model Output Statistics (MOS) is an objective forecasting technique in which a statistical 

relationship is determined between a predictand and variables forecast by an NWP model (Glahn 

and Lowry 1972).  The primary advantage of MOS is that model biases and local climatology are 
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automatically built into the equations (Klein and Glahn 1974; Brunet et al. 1988).  Reap (1994a) 

developed MOS equations predicting the spatial distribution of CG lightning over Florida during 

different low-level flow regimes using predictors from the Nested Grid Model (NGM).  The 

MOS approach also has been used to generate objective thunderstorm guidance for stations 

across the contiguous U.S. based on output from NWP models (e.g., Reap and Foster 1979; Reap 

1994b; Hughes 2001, 2002).         

Despite its advantages, MOS has several drawbacks that can limit its forecast skill.  Since 

NWP models are constantly changing, it often is difficult to obtain a long archive of forecasts 

from the same model that will be used to implement the MOS equations. Any modifications to 

the NWP model that change (even reduce) systematic model errors requires redevelopment of 

the MOS equations (Wilks 2006).  Furthermore, a MOS scheme tends to perform best for typical 

events while rare events tend to be poorly forecast.   

An alternative to MOS is the perfect prognosis (“perfect prog”) (PP) method.  This 

approach develops statistical relationships between observed atmospheric parameters and 

observations of the predictand (Klein et al. 1959; Klein 1971).  Once the statistical relations are 

determined, forecasts are obtained by inserting NWP model forecasts of the predictors into the 

PP equation (Wilks 2006).  Bothwell (2002) used the PP method to develop lightning guidance 

for the western U.S. on a 40 × 40 km grid, using analyses from the NCEP 40-km RUC (RUC40).   

A drawback to the PP scheme is that it assumes a “perfect” forecast of the predictors by 

the NWP model and thus does not account for model biases.  Conversely, a significant advantage 

is the stability of the equations.  Since PP equations are developed without NWP information, 

any changes to the driving NWP models do not require redevelopment of the PP equations.  In 

fact, improving random or systematic errors in the NWP model should improve the statistical 

forecasts (Wilks 2006).  This advantage makes PP the method of choice for this study.       

The first major goal of this study is to use the PP method to develop a high-resolution, 

gridded forecast guidance product for warm season CG lightning over Florida on a 10 × 10 km 

grid at 3-hourly intervals.  An archive of analyses from the 20-km RUC model (RUC20) is used 

to examine relationships between observed atmospheric parameters and spatial and temporal 

patterns of CG lightning.  The most important RUC-derived parameters then are used to develop 

equations producing 3-hourly forecasts for the probability of one or more CG flashes (PROB³ 1), 

as well as the probability of exceeding various flash count percentile thresholds (PROB³ T).  
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Chapter 3 describes the study domain as well as the lightning and RUC analysis datasets.  

The model development procedure is described in Chapter 4.  Parameters comprising the models 

as well as their reliability and skill when applied to the dependent data are presented in Chapter 

5.  Finally, a summary of model development is given in Chapter 6.  Chapters 7-10 describe the 

evaluation and independent testing of the scheme using several mesoscale models. 
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CHAPTER THREE 
 

DATA 
 
 
 
 Our lightning guidance was developed for all of Florida (Fig. 1), covering the Peninsula 

and Panhandle and extending northward into southeast Alabama and southern Georgia.  Figure 1 

also shows the 10 × 10-km grid used for computing the lightning probabilities.  Since CG 

lightning over heavily populated areas is of most interest, only data for grid points over land 

were included in the model development.     

We utilized CG lightning data from the National Lightning Detection Network (NLDN) 

(Cummins et al. 1998).  This network, in operation since 1989, detects and records CG flashes 

across the contiguous U.S.  The NLDN is owned and operated by Vaisala-Global Atmospherics 

Inc. (GAI).  The network consists of 113 sensors that utilize the IMProved Accuracy from 

Combined Technology (IMPACT) method to detect CG flashes.  A more detailed description of 

sensors and methods of detection is given in Cummins et al. (1998).   

Lightning data for the 1995-2005 warm seasons were used to develop climatological 

predictors, while data for the 2002-2005 warm seasons were used to develop the PP equations.  

A system-wide NLDN upgrade was completed in 1995 which allowed a greater number of 

flashes to be detected, as well as improved location accuracy.  Through 2001, the NLDN had a 

location accuracy of ~ 500 m over most of the U.S., and a flash detection efficiency of 80-90% 

(Cummins et al. 1998).  Beginning in the spring of 2002, the network underwent its most recent 

system-wide upgrade with the installation of new IMPACT sensors.  CG detection efficiencies 

now are estimated to be 90-95% throughout the continental U.S., with location accuracy < 500 m 

(Cummins et al. 2006).  We did not apply corrections to account for the variations in detection 

efficiency and location accuracy during the 1995-2005 period.  Thus, actual CG flash counts are 

underestimated.  We also employed a quality control procedure recommended by Cummins et al. 

(1998) to remove possible cloud discharges and duplicate strikes.  This procedure is described in 

detail in Shafer and Fuelberg (2006).   

For every land grid point (Fig. 1), flash totals were tabulated for each 3-h period (e.g. 

0000-0259 UTC, …, 2100-2359 UTC) by summing the strikes that occurred within a 10 km 

radius.  The flash totals then were transformed into binary variables; “1” if one or more flashes  
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Figure 1.  Map of the study domain with array of 10 × 10 km grid points overlaid.  Only grid 
points over land were used in the study. 
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occurred during the 3-h period or “0” if no lightning occurred.  Binary variables also were 

assigned based on whether the flash total exceeded the 50th, 75th, 90th, or 95th percentiles for a 

given 3-h period (percentile thresholds are given in Table 1).  The flash totals and binary 

indicators served as the predictands for developing the lightning forecast equations.           

The fixed-radius counting method that was used has advantages and disadvantages 

compared to the more traditional grid box approach.  Figure 2 depicts a superposition of two 

counting regions with equal areas, one a box and the other a circle, centered on point P.  Also 

shown are two lightning strikes at locations A and B.  Assume that a physical process acting at P 

has some influence on the occurrence of a lightning strike within a certain distance of P.  It is 

clear that a grid box counting procedure will ignore strike B while strike A will be counted, 

irrespective of the fact that strike B is closer to P than strike A.  Conversely, with a fixed-radius 

approach, all strikes occurring within a specified radius of P are counted.  However, a 

consequence of this approach is that the counting regions must overlap to assure complete 

coverage of the study area, and this can lead to a flash being assigned to more than one grid point 

if it occurs in the overlap between two or more circular regions.  This can be advantageous since 

the degree of data smoothing can be controlled by changing the radius.  However, the lightning 

counts for adjacent grid points are not independent, which is a key assumption in many statistical 

tests.  This issue is addressed in the model development procedure described in Chapter 4.   

Observed atmospheric predictors were obtained from an archive of RUC 0-h analyses 

during the 2002-2005 warm seasons (~ 600 days).  The RUC is a mesoscale high-frequency data 

assimilation and short-range numerical prediction system (Benjamin et al. 2004).  A 20-km, 50-

level, hourly version of the RUC was implemented during April 2002, replacing the 40-km 

version (RUC40) implemented in 1998 and containing improvements in the analysis and model 

physics.  Another RUC upgrade was implemented at NCEP on 28 June 2005 with increased 

resolution (13 km- RUC13) and additional improvements.  The atmospheric parameters 

calculated from the RUC analyses are described in Chapter 4. 

 Two statistical software packages were used for the exploratory analysis and model 

development.  These are S-PLUS version 6.1 for Windows and the Statistical Package for the 

Social Sciences (SPSS) version 11.5 for Windows.  Both are powerful, state-of-the-art packages 

with a wide range of analysis and modeling capabilities. 
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Table 1. Conditional percentiles of CG flash count for each 3-h period, based on counts for all 
land grid points in the domain during the eleven warm season period 1995-2005. 
 

 
      Percentile 

 
Time period (UTC) 50th  75th  90th  95th  Max 
 
1200 – 1459   3  10  28    50  1196 
1500 – 1759  4            14  37    60    810 
1800 – 2059   6            22  62            104            1190 
2100 – 2359  5  21  65  114  1577 
0000 – 0259   4  14  45    83  1267 
0300 – 0559   3  10  31    59    635 
0600 – 0859   2    8  25    48    991 
0900 – 1159   2    8  24    43    983 
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Figure 2.  Illustration of two counting regions (box and circle) with equal areas centered on a 
point of influence, P, with two lightning strike locations A and B. 
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CHAPTER FOUR 
 

MODEL DEVELOPMENT 
 
 
 
4.1      Climatological and Map Type Lightning Predictors 
 

Climatological and pattern type lightning frequencies were developed as candidate 

predictors to capture local enhancements due to interactions between the low-level wind, thermal 

circulations, and coastline topography (e.g., Pielke 1974; Arritt 1993; Laird et al. 1995; Lericos 

et al. 2002).  These predictors have the potential of adding detailed information about local 

effects which may not be well resolved by NWP models (Reap 1994a).     

We used a simple correlation technique described in Lund (1963) and Reap (1994a) to 

develop the map type predictors.  Based on Reap (1994a), the correlation technique was applied 

to 3-hourly observed sea level pressure (SLP) fields from RUC analyses spanning the 1998-2005 

warm seasons (~ 1224 days).  SLP implies both the direction and speed of the low-level flow.  

Although this procedure also was applied to the 950 hPa height fields, SLP produced the most 

distinct pattern types and the largest number of maps that could be classified into a type. 

The pattern classification was performed over the area shown in Fig. 3.  To capture only 

the regional scale patterns (i.e., the prevailing wind) and to smooth small scale variations, the 

RUC SLP values were interpolated to a more coarse grid (100 km) (Fig. 3).  Each smoothed SLP 

map then was correlated with every other map in the sample (9613 available maps).  The 

pressure pattern with the most maps correlated with it at a threshold of 0.70 or greater (e.g., Reap 

1994a) was denoted type A and removed from the sample along with all other type A maps.  The 

procedure was repeated to determine subsequent map types until the residual sample contained 

less than 3% of maps that were correlated at 0.70 or greater (Lund 1963; Reap 1994a).  

Table 2 shows results of the map type classification.  Five map types (A-E) were 

developed using the 0.70 correlation threshold.  Two types (A and B) comprise ~ 44% of the 

total sample, while types C-E comprise ~ 34%.  The remaining ~ 22% of the sample could not be 

classified at the 0.70 threshold.  This threshold usually is considered the smallest acceptable for 

pattern classification (Lund 1963; Reap 1994a).  Increasing the threshold produces more map 

types and more detailed map patterns, but at the expense of producing more unclassified cases. 
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Figure 3.  Map of geographical region for which the map type classification was performed.  
The RUC sea level pressure fields were interpolated to the array of 100 × 100 km grid points 
shown in the figure. 
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Table 2. Number of RUC-analyzed sea-level pressure maps classified into each type at a 
correlation threshold of 0.70, using 3-houly data from the 1998-2005 warm seasons (9613 
available maps).  For purposes of developing the equations, maps which could not be classified 
into a type were assigned the type with which they were most correlated. 

 
 

          Map Type        No. Maps      % of Sample 
 
    A  2913  30.3 
    B  1303  13.6 
    C  1260  13.1 
    D  1061  11.0 
    E  1002  10.4 
            Unclassified  2074  21.6 
 
                 Total  9613   100 
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Using the binary indicators for one or more flashes (Section 3.2), relative lightning 

frequencies were calculated for each map type and 3-h period.  Similarly, 3-h flash totals were 

used to calculate an unconditional mean number of flashes for each map type.  Only time periods 

when the SLP map could be classified at 0.70 or greater were used in preparing the map type 

predictors.  However, when developing the lightning guidance equations, the unclassified maps 

were assigned to the type with which they were most correlated.  Climatological relative 

frequencies and unconditional means also were calculated using all warm season days during 

1995-2005.  The lightning frequencies and means were submitted as candidate predictors for the 

regression analysis described later.   

Composite SLP patterns associated with each map type are shown in the left panels of 

Fig. 4, while the right panels show spatial distributions of the mean number of flashes for the 

1800-2059 UTC period.  The five map types represent distinctly different flow patterns, and are 

similar to those from previous studies (e.g., Reap 1994a; Lericos et al. 2002).  The predominant 

pattern, type A (Figs. 4a-b), is characterized by high pressure northeast of Florida that produces 

prevailing easterly and southeasterly flow across the state.  As a result, most of the lightning is 

confined to the West Coast, with maxima near Tampa Bay, Fort Myers, and east of Lake 

Okeechobee.  Map type B (Figs. 4c-d) contains a surface ridge over South Florida resulting in 

southwesterly flow across the state.  This focuses the lightning along the East Coast, with 

coastline interactions evident near the Big Bend of the Panhandle (Camp et al. 1998).  Map type 

C (Figs. 4e-f) represents a transition between types A and B, in which the east-west surface ridge 

is located over central Florida.  This pattern produces southeasterly flow over South Florida and 

south-southwesterly flow over the northern Peninsula.  Thus, the lightning patterns are a 

combination of types A and B, with maxima along both coasts.  Map type D (Figs. 4g-h) is 

characterized by high pressure north of Florida and lower pressure to the southeast, which is 

most common during May and September after a cold frontal passage.  The dry northeasterly 

flow confines most of the lightning to South Florida.  Finally, map type E (Figs. 4i-j) is a 

variation of type B, exhibiting a lobe of high pressure over the Gulf of Mexico and lower 

pressure to the northeast.  West-northwesterly flow confines most lightning to the East Coast and 

Big Bend, with generally less coverage than observed with type B. 
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a)   Type A   b)        1800-2059 UTC 

 

H 

   
c)   Type B   d)        1800-2059 UTC 

 

H 

   
e)   Type C   f)        1800-2059 UTC 

 

H 

   
 
Figure 4.  Composite sea level pressure and spatial distribution of the unconditional mean 
number of flashes for the 1800-2059 UTC period for (a-b) type A, (c-d) type B, (e-f) type C, (g-
h) type D, and (i-j) type E.  The inferred low-level wind is indicated by arrows on each map.        
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g)   Type D   h)        1800-2059 UTC 
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i)   Type E   j)        1800-2059 UTC 
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Figure 4 (continued). 
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4.2 Model-Analyzed Candidate Predictors 
 

A large number of RUC-analyzed predictors were investigated for possible inclusion in 

the candidate predictor pool, many of which have been found useful in previous studies.  The 

parameters investigated, their abbreviations, and a short description of each are listed in Table 3.  

The parameters were calculated from the 0-hour RUC-analyzed temperature, dew point, wind, 

height, and surface pressure fields valid every 3 h (e.g., 0000 UTC, 0300 UTC,…, etc.).  The 

fields were interpolated to the 10 × 10-km grid (Fig. 1) and transformed into the format of a 

vertical sounding at each grid point (Bothwell 2002).  RUC cloud hydrometeor profiles also were 

investigated; however, a documented error in the RUC cloud analysis procedure through June 

2006 (FSL 2006) rendered these fields unusable.  

An important assumption is that the model analyses give the best estimate of the state of 

the atmosphere at the analysis time, and thus, can be treated as “observations” for purposes of 

developing the PP equations.  However, Wilks (2006) cautions that the inclusion of a predictor 

based solely on the relationship of its observed values to the predictand can be detrimental if the 

NWP forecast of that predictor bears little relationship to the predictand.  Although it is 

important to investigate as many relevant predictors as possible, we focused on those that are 

well handled by today’s NWP models.  Nonetheless, some parameters that can be difficult to 

forecast on small scales (e.g., MFLXC, LCAPE, CCTHGT) were investigated, with the 

expectation that as the spatial resolution and physics of mesoscale models continue to improve, 

forecasts of these parameters also will improve.  

 

4.3 Generalized Linear Models 
 

MLR has been used in the majority of previous statistical lightning studies (e.g., 

Neumann and Nicholson 1972; Reap and Foster 1979; Reap and MacGorman 1989; Reap 1994a; 

Hughes 2001).  However, unless the assumptions of constant variance and Gaussian residuals are 

met (which is rarely the case with count data), these methods can lead to undesirable and 

sometimes nonsensical results.  Thus, we considered alternative regression methods; namely, the 

family of generalized linear models (GLMs). 
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Table 3. RUC-analyzed parameters investigated for inclusion in the candidate predictor pool.  
The name of each variable, a description (where needed), and abbreviations are included.  
 

Abbrev. Name Description/levels 
LTHICK 
TADV 
TCONV 
CCTHICK 

Layer thickness 
Temperature advection 
Convective temperature 
Cold cloud thickness 

1000-850 hPa, 850-500 hPa, 700-400 hPa, 500-300 hPa 
10 m and each 25 hPa surface 
 
Thickness between 0°C level and cloud top (equil. level) 

MFLXC 
THEADV 
PRECPW 
LAYRH 
RHFRZL 
WBZP 
LCLP 

Moisture flux convergence 
Theta-e advection 
Precipitable water 
Layer mean relative humidity 
Relative humidity at 0°C level 
Wet bulb zero pressure 
Pressure at LCL 

10 m and each 25 hPa surface 
10 m and each 25 hPa surface 
Entire depth of sounding (surface-100 hPa) 
45 layers between 1000 hPa and 100 hPa 
 
 
Lifting condensation level 

MUCAPE 
 
LCAPE1 
LCAPE2 
LCAPE3 
LCAPE4 
LCAPE5 
NCAPE(1-5) 
CIN 
 
BESTLI 
 
SSI 
TT 
KI 
SWEAT 
TLAPSE 
THELAPSE 
CCTHGT 
PRFREQ 

Most unstable CAPE 
 
MUCAPE in various layers 
 
 
 
 
Normalized LCAPE 
Convective inhibition 
 
Best Lifted Index (LI) 
 
Showalter Stability Index 
Total Totals Index 
K-index 
Severe Weather Threat Index 
Temperature lapse rate 
Theta-e lapse rate 
Convective cloud top height 
Price & Rind frequency 

Largest CAPE obtained when each parcel between the 
surface and 700 hPa is lifted. 

Cloud base to cloud top (Solomon and Baker 1994) 
Cloud base to –20°C (Bothwell 2002) 
Mixed phase region: 0°C to –40°C (Randell et al. 1994) 
Charging zone: -10°C to –25°C (Solomon and Baker 1994) 
Between –15°C and –20°C (Bothwell 2002) 
Layer CAPE divided by the geometric thickness of the layer 
Negative area between the surface and 700 hPa by lifting the 

surface parcel.  
Most unstable LI obtained when each parcel between the 

surface and 700 hPa is lifted.  
Lifted index based on parcel originating at 850 hPa 
(as defined in the AMS Glossary of Meteorology) 
(as defined in the AMS Glossary of Meteorology) 
(as defined in the AMS Glossary of Meteorology) 
300-hPa layers between 1000 hPa and 100 hPa  
300-hPa layers between 1000 hPa and 100 hPa 
Geometric height of equilibrium level 
Price & Rind function for lightning frequency based on 

cloud top height: F = (3.44 x 10-5) x CCTHGT4.9 
DIV 
VORT 
VORTADV 
MEANU 
MEANV 
MEANSP 
SHEAR 

Wind divergence 
Vorticity 
Vorticity advection 
Layer average u component 
Layer average v component 
Layer average speed 
Layer wind shear 

10 m and each 25 hPa surface 
10 m and each 25 hPa surface 
10 m and each 25 hPa surface 
45 layers between 1000 hPa and 100 hPa 
45 layers between 1000 hPa and 100 hPa 
45 layers between 1000 hPa and 100 hPa 
45 layers between 1000 hPa and 100 hPa 
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When the predictand is either “yes” or “no”, one such method is binary logistic 

regression (BLR).  Logistic regressions are fit to binary predictands according to the nonlinear 

equation 
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where pi is the predicted probability resulting from the i th set of predictors (x1, x2, …., xK).  The 

quantity on the left of (1) is the logit link function which relates the log of the odds ratio (p/1-p) 

to a linear combination of predictors.  In BLR, the regression parameters (b0, b1, …., bK) are 

estimated by maximizing a log-likelihood function using iterative methods (Wilks 2006 gives a 

thorough description of these methods).  Unlike MLR, (2) guarantees that the probabilities are 

bounded within the interval (0,1).  BLR does not assume a direct linear relationship between the 

predictors and the response and accommodates the non-Gaussian (Bernoulli) distributions of the 

regression residuals (Lehmiller et al. 1997).      

We used BLR to develop equations giving the probability of one or more flashes 

(PROB³ 1) within a 10-km radius of each grid point (Fig. 1) to produce spatial probability 

forecasts for each 3-h period.  BLR has been used successfully in previous lightning forecasting 

studies (e.g., Bothwell 2002; Mazany et al. 2002; Lambert et al. 2005; Shafer and Fuelberg 

2006).  The procedure used to develop the equations is described in section 4.4. 

Our second objective was to develop equations for the amount of lightning during each 3-

h period, conditional on one or more flashes occurring.  For reasons previously stated, the most 

appropriate model for count data is the Poisson family of GLMs (Elsner and Schmertmann 1993; 

Gardner et al. 1995; Elsner and Jagger 2004).  As in BLR, this approach employs a log link 

function to linearize the expected value (m) of the dependent variable (y):   

 KKi xbxbbx +++= ...])[ln( 110m       (3) 
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where m[xi] is the mean response resulting from the i th set of predictors (x1, x2, …., xK).  If one 

assumes that events occur randomly and at a constant average rate (m) with Var(y) = m, then the 

events are said to be generated by a Poisson process with the probability model 

!
)exp(

)|Pr(
y

y
ymm

m
-

= .       (5) 

A histogram of the conditional count distribution for our most active lightning period 

(1800-2059 UTC) is shown in Fig. 5.  It is clear that the counts are strongly skewed, with the 

majority having 10 or fewer flashes and few cases having 100 or more.  Since the variance of the 

distribution is very large, ~80 times greater than the mean (m ~23 flashes), the data do not fit the 

Poisson assumption that Var(y) = m.  The most likely explanation is that the counts were 

generated by an inhomogeneous Poisson process (also known as a Cox process), whereby the 

number of storms over a given region and the number of flashes produced per storm are both 

approximately Poisson.  This “mixed” Poisson process results in the lightning counts having 

much more dispersion than is accounted for by a homogeneous Poisson model (personal 

communication with Dr. Thomas Jagger, Department of Geography, FSU).   

  An alternative probability model is the negative binomial (NB).  As in Poisson 

regression, the mean (m) is modeled by (4); however, Var(y) now is a quadratic function of m :  

Var(yi | m[xi] ) = m[xi] + q -1m[xi]
 2 ,     (6) 

where q -1 is the shape parameter (estimated by maximum likelihood).  The resulting probability 

model for the number of flashes, y, as a function of m and q  is given by 
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where G is the gamma function (Crawley 2002). 

 Figure 6 shows the probability distribution implied by the Poisson (5) and NB (7) models 

with only the intercept term (b0) included for m = 23.15 and q = 0.342 (estimated from the 

observed data using the S-PLUS software).  Also shown is the observed frequency distribution.  

It is clear that the Poisson model is a poor choice for representing the count distribution since too 

little probability is assigned to the smallest lightning counts while too much is assigned to counts  
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Figure 5.  Histogram of the distribution of flash counts during the 1800-2059 UTC period for all 
cases when one or more flashes occurred.  The histogram has been truncated at 200 flashes to 
emphasize the lower part of the distribution.  Histogram bins are 5 flashes.   
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Figure 6.  Flash count probability distribution for the 1800-2059 UTC period implied from the 
Poisson and negative binomial regression models.  The observed frequency also is shown for 
comparison.    
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near the mean.  The NB model is a much better fit to the data, capturing the large number of 

cases with 10 or fewer flashes and more closely representing the tail of the observed distribution.   

Since the NB provides a much better fit to the observed frequency distribution (Fig. 6), it 

was our method of choice.  The NB has been used in previous studies to model thunderstorm 

activity at Kennedy Space Center (KSC) (e.g., Falls et al. 1971, Williford et al. 1974) as well as 

thunderstorm and hail days probabilities in Nevada (Sakamoto 1973).  However, to the best of 

our knowledge no prior study has used the NB as the probability model for lightning counts.  

Since the count distribution (Fig. 5) is left-truncated at one flash, the distribution is not strictly 

NB since (7) includes y = 0.  However, if we treat y-1 as having a NB distribution, then (7) can 

be used to estimate the probability for each y-1.  Since (7) is a probability density function, the 

individual probabilities (y = 1,…,¥ ) must sum to 1.  Thus, the probability of meeting or 

exceeding any count threshold, T, can be obtained from 
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4.4 Equation Development 
 

We determined whether relationships between observed predictors and lightning were 

generally the same for the entire study area or if they varied significantly from one portion of the 

state to another.  We first subdivided the domain into nine areas (Fig. 7).  Then, separate sets of 

equations were developed for each area, with the results compared to those obtained using a 

global model (i.e., using data for all grid points).  We found that the best verification scores were 

achieved by consolidating the nine areas into four larger regions (Fig. 7): East Coast, West 

Coast, Panhandle, and Alabama/Georgia.  To minimize spatial discontinuities at the boundaries, 

the regions were permitted to overlap by 30 km, and the probabilities for grid points within the 

overlapping regions were averaged.  

Parameters calculated from the RUC analyses (Table 3), as well as the map type and 

climatological frequencies (section 4.1) for each 3-h period, comprised the initial set of candidate 

predictors.  However, it is clear (Table 3) that many of the predictors contain redundant 

information.  Including predictors with strong mutual correlation in a prediction equation can 

lead to poor estimates of the regression parameters (Wilks 2006).  This problem was addressed  
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Figure 7.  Map of the original nine areas for which equations first were developed.  The shaded 
areas represent the final four regions used to develop equations. 
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by performing a Principal Component Analysis (PCA) to examine inter-correlations among the 

predictors (Table 3) and to aid in choosing a smaller subset to retain for the regression analysis.  

This procedure, using data for all grid points, is described in detail in Shafer and Fuelberg 

(2006).  The principal component groupings, in conjunction with Pearson correlations between 

the predictors and the lightning predictands (Chapter 3), were used as an objective method to 

select a subset of the most physically relevant predictors containing less mutual correlation.   

The final list of candidate predictors is given in Table 4.  To allow the possibility that one 

predictor may be more important than another in conjunction with others already in the model, 

several  parameters with mutual correlation were retained for possible selection (e.g., KI and 

PRECPW, several LCAPEs, etc.).  Also shown in Table 4 are Pearson correlations between each 

predictor and the binary indicator for one or more flashes during the 1800-2059 UTC period for 

the East Coast (EC) region.  The correlations are low, meaning that no single observed predictor 

is a good indicator of lightning (Bothwell 2002; Shafer and Fuelberg 2006).  Correlations for the 

amount of lightning (not shown) also were found to be low.  However, it is important to note that 

a Pearson correlation indicates the degree of linear association between two variables, while 

highly non-linear relationships still may exist.  To account for possible non-linear and interaction 

effects, power terms up to the fourth degree and two-way cross products were calculated for each 

parameter (Table 4) and included in the final predictor pool.  Finally, the 3-h change in each 

parameter also was calculated and submitted as candidate predictors.    

As mentioned in Chapter 3, the fixed-radius approach requires that the counting regions 

overlap.  The main drawback of this approach is that different locations in the domain are not 

covered by the same number of counting regions.  With a counting radius of 10 km and centers 

on a 10 km grid, a particular location could be covered by as few as two or as many as four 

regions.  As a result, a lightning strike could be used as few as two or as many as four times in 

the data analysis.  While this would not be a problem if each region were modeled separately, the 

assumption of independence may be violated if data for all grid points comprise the 

developmental sample (as done in this study).  As a precaution, only data for non-overlapping 

(disjoint) regions were used for each screening regression sample (illustrated in Fig. 8).  Each 

sample of non-overlapping data contains ~ 1/4 of the available data points, resulting in four 

separate data samples for use in the regression analysis.  It should be noted, however, that the  

 



 26 

Table 4.  Final list of RUC-derived candidate predictors used to develop the regression models.  
Power terms and two-way cross products for each parameter also were included in the final 
predictor pool (not listed).  Pearson correlations with the binary (yes/no) lightning predictands 
for the 1800-2059 UTC period also are shown for the East Coast region.  
    
 

Abbrev. Name Correlation 
LTHICK1 
LTHICK4 
TADV4 
CCTHICK 
MFLXC2 
THEADV5 
KI 
PRECPW 
LCLP 
LCAPE2 
LCAPE4 
LCAPE5 
CIN 
BESTLI 
SSI 
TT 
TLAPSE2 
THELAPSE6 
DIV2 
DIV34 
VORT2 
MEANU3 
MEANV3 
MEANSP3 

1000-850 hPa thickness 
700-400 hPa thickness 
950 hPa temperature advection 
Cold cloud thickness 
1000 hPa Moisture flux convergence 
925 hPa Theta-e advection 
K-index 
Precipitable water 
Pressure at LCL 
MUCAPE cloud base to -20°C 
MUCAPE -10°C to -25°C 
MUCAPE -15°C to -20°C 
Convective inhibition 
Best Lifted Index (LI) 
Showalter Stability Index 
Total Totals Index 
900-600 hPa temperature lapse rate 
500-200 hPa theta-e lapse rate 
1000 hPa wind divergence 
200 hPa wind divergence 
1000 hPa vorticity 
1000-700 hPa u component 
1000-700 hPa v component 
1000-700 hPa wind speed 

0.23 
0.08 
0.13 
0.24 
0.19 
0.10 
0.31 
0.33 
0.16 
0.27 
0.25 
0.24 
0.08 
-0.26 
-0.28 
0.24 
-0.23 
-0.20 
-0.15 
0.11 
0.10 
0.09 
0.12 
-0.13 
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Figure 8.  Illustration of the 10 ´  10 km grid with disjoint circular counting regions used in the 
regression analysis.  RUC-derived predictors are defined at each 10 km grid point.  
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variables selected for inclusion in each model and their respective coefficients generally were 

found to be the same even if data for all grid points comprised the regression sample.        

A combination of forward stepwise selection and cross-validation was used to develop 

the BLR equations for each region (Fig. 7) and 3-h period using the SPSS software.  This 

procedure is similar to that described in Shafer and Fuelberg (2006).  Each database of non-

overlapping data first was subdivided into two samples of ~ 300 days, one containing even years 

(2002 and 2004) and the other odd years (2003 and 2005).  Data for even years were used as a 

“learning” sample for screening the variables for selection, while the odd years were used as an 

“evaluation” sample to test the model each time a variable was added or removed during the 

stepwise selection process.  Thorough discussions of stepwise selection procedures are given in 

Hosmer and Lemeshow (1989) and Wilks (2006).  The predictors comprising the model at the 

step with the highest percentage of correctly classified events for the evaluation sample were 

noted.  Only parameters for which the sign of the coefficient made physical sense were retained 

in the model in any screening sample.  The stepwise selection procedure was repeated for each 

sample of non-overlapping data, and the predictors chosen for each sample were noted.  This 

procedure identified the combination of predictors that is most likely to generalize to 

independent data and not over-fit the dependent sample.  The set of “best” predictors from this 

process then was re-entered using data for all grid points and all years to determine the final 

coefficients for each model. 

The NB models for PROB³ T  were developed using S-PLUS.  We found that the 

overnight and early morning periods did not contain a sufficient number of events in the upper 

percentiles to allow stable, reliable models to be developed.  Thus, NB models were developed 

only for the four most active periods (1500-1759 UTC, 1800-2059 UTC, 2100-2359 UTC, and 

0000-0259 UTC).  The same sampling procedure (i.e., even and odd years) described above was 

used to develop the models; however, the S-PLUS software does not permit stepwise selection 

for NB regression.  Instead, the predictors were entered simultaneously into the model.  Those 

predictors contributing the greatest reduction of deviance (usually 8 or 10) then were re-entered, 

and the resulting model was tested on the evaluation sample (odd years).  Predictors were 

removed from the model one at a time until the optimal set of predictors that produced the 

greatest reduction of deviance for the evaluation sample was identified.  As with the BLR 

models, the set of “best” predictors then was re-entered using all data to determine the final 
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coefficients for each region and 3-h period.  The predictors comprising the models and their 

physical relationships to lightning are described in Chapter 5.   

We used a model containing only climatology and persistence (L-CLIPER) as a 

benchmark for assessing forecast skill.  Climatology consisted of the lightning frequencies and 

unconditional means for each 3-h period, as well as the sine of the day number.  Persistence 

consisted of a binary indicator for whether one or more flashes occurred during the same 3-h 

period the previous day, as well as the previous day flash count.  Separate L-CLIPER models 

were developed for each region and 3-h period.  Skill scores relative to L-CLIPER and a model 

containing persistence alone are given in Chapter 5. 

To the best of our knowledge, Bothwell (2002, 2005) was the first to use the PP method 

to develop spatial probabilistic guidance for CG lightning.  Although the methodology described 

herein has some similarities to that of Bothwell, there are several major differences.  First, our 

use of pattern type predictors differs from Bothwell, who included only climatological predictors 

for different pentads.  Our NB approach for forecasting the amount of lightning requires only one 

model to calculate PROB³ T for any count threshold, and provides a good fit to the underlying 

count distribution and variance structure.  Conversely, Bothwell used separate BLR models for 

each threshold.  Lastly, our guidance is produced on a higher resolution grid (10 ´  10 km vs. 

Bothwell’s 40 ́  40 km).  Other than the 12 ´  12 km grid used by Reap (1994a) for 12-h 

forecasts, it appears that ours provides the highest resolution guidance that is capable of 

producing more detailed and skillful forecasts than any product currently available.  We consider 

these differences to be an enhancement to Bothwell’s procedure, and represents the first effort to 

develop guidance for CG lightning that is specifically designed for use with high-resolution 

models.      
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CHAPTER FIVE 
 

RESULTS OF MODEL DEVELOPMENT 
 
 
 
5.1 Discussion of Model Parameters 
 

This section describes the parameters selected for the BLR and NB models as well as 

their relationships to lightning occurrence.  Since the equations for each 3-h period are variations 

on a similar theme, the physical reasoning presented here can be extended to all times.  

Therefore, this discussion focuses on the most active lightning period (1800-2059 UTC).   

The BLR models giving PROB³ 1 and the NB models for PROB³ T during the 1800-2059 

UTC period are shown in Tables 5 and 6, respectively, for the four study regions (Fig. 7).  The 

predictors and standardized coefficients are listed in order of importance.  A series of diagrams 

displaying the frequency of one or more flashes (FREQ³ 1) and the unconditional mean number 

of flashes (MEANNF) as a function of several important predictors is shown in Figs. 9-12.  The 

acronyms used to describe the predictors were defined in Tables 3 and 4. 

PRECPW is the most important predictor for one or more flashes (Table 5 and Fig. 9a), 

while KI, a measure of 850-700 hPa moisture, was selected in 3 out of the 4 NB models 

estimating the amount of lightning (Table 6 and Fig. 9b).  This finding agrees with numerous 

studies indicating that deep layer moisture provides the most favorable large-scale environment 

for warm season thunderstorms over Florida (e.g., Lopez et al. 1984; Reap and MacGorman 

1989; Watson et al. 1995; Mazany et al. 2002).  The inclusion of a second-order term (Table 5) 

implies that this relationship is non-linear (Fig. 9a), with a peak in FREQ³ 1 for PRECPW ~ 5.5 

cm, followed by a decline for even greater values.  Largest PRECPW usually is associated with 

widespread shallow convection from tropical systems which tends to lack the vigorous updrafts 

and ice processes necessary for lightning formation (Price and Rind 1992; Zipser 1994). 

BESTLI was selected as the second most important parameter in the BLR models (Table 

5 and Fig. 10a) and also is important for predicting the amount of lightning (Table 6 and Fig. 

10b).  The negative coefficients and the relationships depicted in Fig. 10 imply that FREQ³ 1 and 

MEANNF increase with increasing instability (i.e., as BESTLI becomes more negative).  Many 

studies have shown that sufficient instability leading to a persistent and strong updraft is  
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Table 5.  Logistic regression models for the probability of one or more flashes during the 1800-
2059 UTC period.  Standardized coefficients for each of the four regions are shown.  Parameters 
not selected for inclusion in each model are indicated by -----.      
 

Predictor East Coast West Coast Panhandle AL & GA 
PRECPW 
(PRECPW)2 
BESTLI 
MFLXC2 
MTFREQ 
THEADV5 
TLAPSE2 
DIV34 
(MEANU3) x (DISTEC) 
(MEANU3)2 x (DISTEC) 
(MEANU3) x (DISTWC) 
MEANU3 
MEANV3 
MEANSP3 
SINDAY 
Constant 

1.628 
-0.400 
-0.357 
0.312 
0.296 

----- 
-0.546 

----- 
-0.385 
0.131 

----- 
----- 
----- 

-0.228 
0.100 

-2.160 

1.461 
-0.387 
-0.641 
0.218 
0.242 
0.132 

----- 
----- 
----- 
----- 

0.116 
----- 
----- 

-0.418 
0.181 

-1.881 

1.396 
-0.474 
-0.633 
0.321 
0.400 
0.103 

----- 
0.152 

----- 
----- 
----- 
----- 

-0.093 
----- 

0.066 
-1.898 

1.326 
-0.491 
-0.563 
0.385 
0.216 

----- 
----- 

0.133 
----- 
----- 
----- 

0.237 
0.097 

----- 
0.123 

-1.940 
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Table 6.  Negative Binomial regression models for the number of flashes during the 1800-2059 
UTC period.  Standardized coefficients and the estimated shape parameter for each of the four 
regions are shown.  Parameters not selected for inclusion in each model are indicated by -----. 
 

Predictor East Coast West Coast Panhandle AL & GA 
MTMEAN 
BESTLI 
KI 
MFLXC2 
TLAPSE2 
THELAPSE6 
THEADV5 
DIV2 
DIV34 
MEANU3 
(MEANU3)2 
MEANV3 
MEANSP3 
SINDAY 
Constant 
Shape parameter (q) 

0.156 
-0.188 
0.126 
0.139 

-0.235 
----- 

0.112 
----- 
----- 

0.147 
-0.099 

----- 
----- 

0.114 
3.083 
0.369 

0.165 
-0.238 
0.153 
0.069 

----- 
----- 

0.083 
----- 
----- 
----- 
----- 
----- 

-0.280 
0.055 
2.992 
0.373 

0.325 
-0.252 
0.106 
0.107 

----- 
----- 
----- 
----- 

0.122 
----- 
----- 

-0.247 
----- 
----- 

3.028 
0.368 

0.414 
-0.216 

----- 
----- 

-0.156 
-0.102 

----- 
-0.158 

----- 
0.056 

----- 
-0.174 

----- 
----- 

3.113 
0.377 

 
 

 

 
 
 
 
 
 



 33 

a)  

b)  

 
Figure 9.  Plots for a) the frequency of one or more flashes as a function of precipitable water for 
the 1800-2059 UTC period., and b) the unconditional mean number of flashes as a function of K-
index for the same period. 
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a)  

b)   

 
Figure 10.  Plots for a) the frequency of one or more flashes as a function of Best Lifted Index 
for the 1800-2059 UTC period, and b) the unconditional mean number of flashes for the 1800-
2059 UTC period. 
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a)  

b)  

 
Figure 11.  Plots for a) the frequency of one or more flashes, and b) the unconditional mean 
number of flashes as a function of 1000 hPa moisture flux convergence for the 1800-2059 UTC 
period. 
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a) 

b) 

 
Figure 12.  Plots for a) the frequency of one or more flashes, and b) the unconditional mean 
number of flashes, as a function of 1000-700 hPa mean u-wind component for the East Coast 
region (1800-2059 UTC period). 
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necessary for charge generation (e.g., Price and Rind 1992; Solomon and Baker 1994; Zipser 

1994; Petersen and Rutledge 1998).  Other stability parameters such as LCAPE and SSI were 

selected for other time periods. 

Coincident areas of abundant moisture (PRECPW) and instability (BESTLI) are expected 

to be regions of high thunderstorm probability; however, storms will not develop without a 

source of lift.  The selection of MFLXC2 in the BLR and NB models (Tables 5 and 6) indicates 

that boundary layer forcing is important for lightning formation (e.g., Watson et al. 1987; Reap 

and MacGorman 1989; Watson et al. 1991).  Large MFLXC2 usually is associated with low-

level convergence due to the sea breeze and other boundaries (e.g., lake/river breezes, outflows, 

etc.).  The relationships in Figs. 11a-b show that FREQ³ 1 and MEANNF generally increase with 

greater MFLXC2.  However, a non-linear effect is evident for large negative values, possibly due 

to lightning occurring in the divergent stratiform regions of decaying cells. 

First and second-order terms of 1000-700 hPa mean wind (MEANU3, MEANV3) were 

selected in several equations (Tables 5 and 6).  This relationship is non-linear for the EC region 

(Figs. 12a-b), with peak lightning for offshore speeds between 2 and 4 m s-1, and a decline for 

increasing MEANU3.  Weak offshore flow produces a better developed sea breeze and greater 

convergence, while strong offshore flow may prevent the sea breeze from penetrating inland 

(McPherson 1970; Pielke 1974; Arritt 1993).  Interaction terms involving MEANU3 and the 

distance from the coast (DISTEC, DISTWC) also were selected, implying that this relationship is 

modulated by proximity to the coast.   

Finally, the pattern type predictors (MTFREQ and MTMEAN) enter all of the equations.  

Although MTFREQ does not rank highly in the BLR models during the 1800-2059 UTC period, 

it usually is among the first selected for other time periods.  Conversely, MTMEAN consistently 

is the most important predictor in the NB models, implying that the prevailing wind greatly 

influences locations where storms are most likely to persist over an area and produce large 

lightning counts (López and Holle 1987; Lericos et al. 2002).  

Forecast maps of  PROB³ 1 are shown in Fig. 13 for 4-5 June 2004.  The left panels 

indicate the 3-hourly PROB³ 1 based on the RUC analyses valid at the beginning of each 3-h 

period, while the right panels show the lightning strike verification.  This example, which begins 

at 1200 UTC on the 4th and ends at 0300 UTC on the 5th, was a very active day with over 36,000 

flashes observed.  The sequence of probability maps shows the expected diurnal trend in  
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a)      b) 

     
c)      d) 

    
e)      f) 

    
 
Figure 13.  Probability of one or more flashes based on RUC analyses, and lightning strike 
verification for 4-5 June 2004: (a-b) 1200-1459 UTC, (c-d) 1500-1759 UTC, (e-f) 1800-2059 
UTC, (g-h) 2100-2359 UTC, (i-j) 0000-0259 UTC. 
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g)      h) 

    
i)      j) 

   
 

Figure 13 (continued). 
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lightning, peaking during the afternoon and then diminishing.  More importantly, the agreement 

between the forecasts and the verification is good, with most of the observed lightning contained 

within the higher probability contours.  A forecast example also is presented in Chapter 9 for the 

2006 independent test period. 

 

5.2  Reliability and Skill for Dependent Data  
 

  Reliability is a measure of the quality of probabilistic forecasts, indicating how well the 

probabilities correspond with the observed frequency of the predictand (Wilks 2006).  Figure 14 

plots FREQ³ 1 as a function of PROB³ 1 for all regions combined during the 1800-2059 UTC 

period.  Similarly, Figs. 15a-d show reliability plots for unconditional PROB³ T for the 50th, 75th, 

90th, and 95th percentiles during the 1800-2059 UTC period (Table 1).  The unconditional 

probabilities for each threshold, Pr(y ³  T ), were calculated using Bayes’ rule: 

Pr(y ³  T ) = Pr(y ³  T | y ³  1) * Pr(y ³  1) ,   (9) 

where Pr(y ³  T | y ³  1) is PROB³ T conditional on one or more flashes occurring (7), and Pr(y ³  

1) is PROB³ 1 obtained from (2).  Figs. 14 and 15 show that the forecasts exhibit good reliability 

and are well calibrated, meaning that the event relative frequencies are nearly identical to the 

forecast probabilities.  Reliability for other time periods (not shown) also is very good. 

 Equations (2) and (9) provide probabilities between 0 and 1.  To make a deterministic 

forecast, a probability threshold must be determined.  If the probability exceeds the chosen 

threshold, the event is forecast to occur; otherwise, the event is not forecast.  To determine the 

optimum threshold, we examined several verification scores obtained from 2 ´  2 contingency 

tables for the joint distribution of forecasts and observations.  The scores examined include the 

probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), bias ratio 

(BR), and the Peirce Skill Score (PSS).  Wilks (2006) gives a complete description of these 

quantities, and  a sample 2 ´  2 contingency table containing formulas for the scores is shown in 

Table 7.  The PSS has several appealing characteristics compared to CSI.  First, random or 

constant forecasts (e.g., always forecasting no lightning) receive the same zero score.  Second, 

the contribution to PSS by a correct forecast increases as the event becomes less likely.  Since 

PSS is more suitable for forecasting rare events, we chose to maximize PSS to determine the 

optimum probability thresholds for each model (Wilks 2006). 
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Figure 14.  Reliability diagram for the logistic models predicting the probability of one or more 
flashes.  The results are for all regions combined during the 1800-2059 UTC period.  
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a) 

 

b) 

Figure 15.  Reliability diagrams for the unconditional probability of a) ³  50th, b) ³  75th, c) ³  90th, 
and d) ³  95th percentiles of flash count.  The results are for all regions combined during the 
1800-2059 UTC period. 
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c) 

d) 

Figure 15 (continued). 
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Table 7.  Sample 2 ́ 2 contingency table and formulas for computing verification scores. 
 
 

     Observed     POD = a / (a + c) 
       

Predicted Yes No  Total   FAR = b / (a + b) 
 

Yes  a    b  a + b   BR = (a + b) / (a + c) 
     

No  c    d  c + d   CSI = a / (a + b + c) 
     

Total         a + c       b + d         a + b + c + d  
))(( dbca

bcad
PSS

++
-

=  
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Table 8 shows results for forecasting one or more flashes during the 1800-2059 UTC 

period using the RUC analysis valid at 1800 UTC.  The results in Table 8 are for the four regions 

combined.  Scores for L-CLIPER also are shown.  The scores are good, with POD = 0.813, CSI 

= 0.370, and PSS = 0.498.  Scores for forecasting the amount of lightning are shown in Table 9 

using the optimum threshold of unconditional probability.  Since forecasting the amount of 

lightning is a much more difficult task than forecasting only its occurrence, CSIs only range from 

0.239 for the 50th percentile to 0.045 for the 95th percentile.  One should note the large BRs, 

especially for forecasting the 90th and 95th percentiles.  However, these scores improve if only 

cases with one or more flashes are considered (Table 10), with CSIs ranging from 0.486 to 0.110 

and more reasonable BRs.   

Figures 16 and 17 plot the skill score for each 3-hourly model expressed as a percent 

improvement in CSI and PSS over L-CLIPER and persistence for all regions combined.  The 

scores for each time period are positive, indicating forecast skill over L-CLIPER and persistence.  

When forecasting one or more flashes, the models are a 6-12% CSI improvement over L-

CLIPER and a 7-18% improvement over persistence (Fig. 16a).  Scores with respect to PSS are 

greater (Fig. 16b), with the highest scores achieved during periods when lightning is less likely.  

Figures 17a-b show similar plots for forecasting ³  95th percentile.  The CSI improvement is 

modest (3-4%); however, improvements in PSS are quite high (32-49%).  Individual monthly 

scores (not shown) indicate little difference in skill between months.  Thus, separate equations 

for each month were not required. 

 These results (Tables 8-10 and Figs. 14-17) are for the four warm seasons of dependent 

data.  That is, they show the predictive skill of the equations when applied to the same data that 

were used to derive them based on RUC analyses.  Chapter 9 describes results when the 

equations are applied to forecast output from several mesoscale models during an independent 

test period. 
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Table 8. 2 ́  2 contingency table and verification scores for forecasting one or more flashes 
during the 1800-2059 UTC period, using the probability threshold that maximizes PSS (0.214).  
These results are for the 2002-2005 developmental sample using the RUC analysis valid at 1800 
UTC.  Scores for the BLR model and L-CLIPER are shown.  

 
 
   Observed                Model   L-CLIPER   
       

Predicted Yes No  Total  POD =  0.813     0.677  
 

Yes       229590 339007 568597 FAR =  0.596     0.644  
     

No         52834 736292 789126 BR =   2.013     2.014  
     

Total       282424    1075299          1357723 CSI =   0.370     0.289 

Probability threshold = 0.214    PSS =  0.498     0.329 
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Table 9. Verification scores for forecasting the amount of lightning during the 1800-2059 UTC 
period, using a threshold of unconditional probability that maximizes PSS.  These results are for 
the 2002-2005 developmental sample using the RUC analysis valid at 1800 UTC.  Scores for the 
BLR model and L-CLIPER are shown.  

   
 ³  50th Percentile ³  75th Percentile ³  90th Percentile ³  95th Percentile 
Score Model L-CLIP Model L-CLIP Model L-CLIP Model L-CLIP 
POD 
FAR 
BR 
CSI 
PSS 
P-thresh 

0.794 
0.745 
3.113 
0.239 
0.451 
0.510 

0.686 
0.800 
3.428 
0.183 
0.279 
0.543 

0.811 
0.850 
5.398 
0.145 
0.493 
0.247 

0.664 
0.888 
5.938 
0.106 
0.298 
0.290 

0.829 
0.922 

10.638 
0.077 
0.541 
0.077 

0.700 
0.947 

13.302 
0.051 
0.328 
0.101 

0.838 
0.954 

18.367 
0.045 
0.576 
0.030 

0.715 
0.971 

24.692 
0.029 
0.355 
0.041 
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Table 10. Verification scores for forecasting the amount of lightning during the 1800-2059 UTC 
period for cases in which one or more flashes occurred, using a threshold of conditional 
probability that maximizes PSS.  These results are for the 2002-2005 developmental sample 
using the RUC analysis valid at 1800 UTC.  Scores for the BLR model and L-CLIPER are 
shown.   
 

 ³  50th Percentile ³  75th Percentile ³  90th Percentile ³  95th Percentile 
Score Model L-CLIP Model L-CLIP Model L-CLIP Model L-CLIP 
POD 
FAR 
BR 
CSI 
PSS 
P-thresh 

0.617 
0.305 
0.887 
0.486 
0.165 
0.552 

0.475 
0.340 
0.719 
0.382 
0.067 
0.562 

0.685 
0.600 
1.711 
0.338 
0.215 
0.285 

0.516 
0.640 
1.433 
0.269 
0.096 
0.307 

0.755 
0.802 
3.822 
0.186 
0.262 
0.093 

0.532 
0.825 
3.034 
0.152 
0.129 
0.116 

0.742 
0.886 
6.488 
0.110 
0.299 
0.041 

0.591 
0.905 
6.210 
0.089 
0.157 
0.048 
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a) 

b) 

 
Figure 16.  Percent improvement in a) Critical Success Index, and b) Peirce Skill Statistic 
compared to L-CLIPER and persistence alone.  These results are for the logistic (yes/no) models 
applied to the 2002-2005 dependent data sample. 
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a) 

 
b)  

 
Figure 17.  Percent improvement in a) Critical Success Index, and b) Peirce Skill Statistic 
compared to L-CLIPER and persistence alone.  These results are for the negative binomial 
models for Prob(�  95th percentile) applied to the 2002-2005 dependent data sample. 

Percent Improvement in Critical Success Index 
over CLIPER and Persistence

Negative Binomial Models for Prob(>= 95th percentile)
2002-2005 Dependent Sample

0

1

2

3

4

5

6

7

8

9

10

1500-1759 1800-2059 2100-2359 0000-0259

Time Period (UTC)

P
er

ce
nt

 Im
pr

ov
em

en
t 

CLIPER

Persistence Only

Percent Improvement in Peirce Skill Statistic 
over CLIPER and Persistence

Negative Binomial Models for Prob(>= 95th percentil e)
2002-2005 Dependent Sample

0

10

20

30

40

50

60

1500-1759 1800-2059 2100-2359 0000-0259

Time Period (UTC)

P
er

ce
nt

 Im
pr

ov
em

en
t 

CLIPER

Persistence Only



 51 

CHAPTER SIX 
 

SUMMARY AND CONCLUSIONS  
OF MODEL DEVELOPMENT 

 
 
 

The major objective of this study was to develop a high resolution, gridded forecast 

guidance product for warm season CG lightning over Florida using the PP method.  Four warm 

seasons of NLDN data and an archive of RUC20 analyses were used to develop equations for 

PROB³ 1, as well as PROB³ T, for each 3-h period on a 10 ´  10 km grid.  RUC-analyses of sea-

level pressure and a map-typing technique were used to develop lightning frequencies for five 

dominant flow types to capture small scale enhancements due to local forcing that are not well 

resolved by NWP models.  The map type frequencies as well as RUC-analyzed parameters 

describing temperature, moisture, stability and wind were used as candidate predictors. 

BLR was used to develop the equations for PROB³ 1, while NB regression was used to 

model the number of flashes conditional on one or more flashes occurring.  The NB distribution 

provides the best fit to the underlying count distribution, enabling PROB³ T for any count 

threshold (T) to be calculated.  A combination of stepwise screening and cross-validation was 

used to select the best combination of predictors that is most likely to generalize to independent 

data.  Five variables were found to have the greatest influence on the likelihood of one or more 

flashes and the amount of lightning.  They are deep layer moisture (PRECPW), instability 

(BESTLI/ LCAPE), boundary layer forcing (MFLXC2), pattern type (MTFREQ/ MTMEAN), 

and the low-level wind (MEANU3/MEANV3).   

The forecast equations show skill over persistence and climatology (L-CLIPER) when 

applied to the dependent sample of RUC analyses.  The models for PROB³ 1 produce a 6-12% 

improvement in CSI over L-CLIPER and a 7-18% improvement over persistence, with even 

greater improvements with respect to PSS.  The models for the amount of lightning also are 

skillful.  Although the results based on the dependent sample are encouraging, a more rigorous 

test is required to determine the true skill of the scheme when applied to independent data.  

Results for an independent test period using model forecasts are presented in Chapter 9. 
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CHAPTER SEVEN 
 

INTRODUCTION TO MODEL EVALUATION 
 
 
 

Improved forecasts of CG lightning would have many potential societal benefits.  Skillful 

probabilistic guidance in the 3-12 h time frame would allow the public to better assess the CG 

lightning threat and thereby support better decision-making regarding the protection of life and 

property.  Some of the economic sectors that would benefit include organizers of outdoor 

sporting events, the fire weather community, aviation, the maritime industry, outdoor 

construction, and electric utilities.  A product that produces accurate and timely CG lightning 

threat information should lead to reduced fatalities and injuries. 

Chapters 2-6 of this dissertation described the development of a perfect prognosis (PP) 

scheme to produce 3-hourly spatial probability forecasts of CG lightning on a 10 ´  10 km grid 

encompassing all of Florida and southern portions of Alabama and Georgia (Fig. 1).  We used an 

archive of 0-h RUC analyses from the 2002-2005 warm seasons (May-September) to relate 

observed atmospheric parameters to spatial and temporal CG lightning patterns.  A map typing 

procedure described in Lund (1963) and Reap (1994a) was used to develop lightning frequency 

predictors for five dominant flow patterns based on RUC analyses of sea-level pressure.  The 

map type frequencies provide detailed information about local effects that may be too small in 

scale to be resolved by mesoscale models.  We used a combination of stepwise variable selection 

and cross-validation to develop BLR models for PROB³ 1 for each 3-h period, while a NB model 

was used to forecast PROB³ T, conditional on one or more flashes occurring.   

Precipitable water (PRECPW), best lifted index (BESTLI), boundary layer moisture flux 

convergence (MFLXC), mean layer u and v wind components (MEANU, MEANV), and the map 

type lightning frequencies (MTFREQ, MTMEAN) were found to be the most important 

predictors for one or more flashes and the amount of lightning.  These findings are consistent 

with previous studies (e.g., McPherson 1970; Pielke 1974; López et al. 1984; López and Holle 

1987; Reap and MacGorman 1989; Watson et al. 1991; Price and Rind 1992; Arritt 1993; 

Solomon and Baker 1994; Zipser 1994; Petersen and Rutledge 1998; Mazany et al. 2002; Lericos 

et al. 2002; Bothwell 2002, 2005; Lambert et al. 2005; Shafer and Fuelberg 2006).   
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The lightning forecast models were shown to have good reliability in that forecast 

probabilities corresponded well with event observed relative frequencies.  Additionally, the 

scheme was found to have forecast skill relative to a model containing only climatology and 

persistence (L-CLIPER) and to persistence alone when it was applied to the 2002-2005 

dependent sample. 

The results presented in part one of this study (Chapter 5) were based on the dependent 

data sample.  That is, the results showed the skill of the equations when applied to the same RUC 

data used to derive them.  These results, while promising, do not assess the scheme’s ability to 

generalize to data not involved in its development.  In addition, the objective of any PP approach 

is to demonstrate forecast skill when applied to forecasts of the predictors and not just 0-h 

analyses.   

The goal of part two is to evaluate the utility of the lightning forecast scheme when 

applied to forecast output from several mesoscale models during an independent test period (the 

2006 warm season).  Output from two mesoscale models run by the National Centers for 

Environmental Prediction (NCEP), as well as local high resolution runs of the Weather Research 

and Forecasting (WRF) model are used in the evaluation.  These datasets and the methodology 

are described in Chapter 8.  Results from each model are presented in Chapter 9, along with an 

example probabilistic forecast for a case during August 2006 using output from the high 

resolution WRF.  A summary of results is given in Chapter 10. 
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CHAPTER EIGHT 
 

DATA AND METHODOLOGY 
 
 
 

We applied the lightning guidance equations described in part one (Chapter 5) to forecast 

output from three mesoscale models during the 2006 warm season (1 May – 30 September).  

These models are the 1500 UTC run of the NCEP 13-km RUC (RUC13), the 1200 UTC run of 

the NCEP 12-km North American Mesoscale (NAM12), and local high resolution WRF runs 

initialized at 1500 UTC with data from the Local Analysis and Prediction System (LAPS).   

RUC is a mesoscale high-frequency data assimilation and short-range numerical 

prediction system (Benjamin et al. 2004).  It runs at the highest frequency of any NCEP forecast 

model, assimilating recent observations to provide hourly updates of current conditions and 

short-range numerical forecasts.  RUC is unique among operational NWP systems in its hourly 

forward assimilation cycle and its use of a hybrid isentropic terrain-following vertical coordinate 

(Benjamin et al. 2004).  The most recent RUC upgrade was implemented at NCEP on 28 June 

2005, providing increased resolution to 13 km and improvements in model physics.  RUC13 uses 

an ensemble based Grell/Devenyi convective parameterization scheme, and an improved version 

of the bulk mixed-phase cloud microphysics scheme from the National Centers for Atmospheric 

Research (NCAR)/ Penn State Mesoscale Model version 5 (MM5).  The RUC13 assimilates new 

observation types, including GPS precipitable water and METAR cloud, visibility, and current 

weather observations.  A detailed description of RUC’s data assimilation methods and model 

physics is given in Benjamin et al. (2002).   

We also used two versions of the WRF model to evaluate the lightning guidance 

equations; the 12-km NCEP operational NAM-WRF, and a 4-km LAPS-initialized WRF (WRF-

LAPS) that is run locally at the NWS Weather Forecast Office (WFO) in Miami, FL.  WRF is a 

state-of-the-art, regional atmospheric model for operational numerical weather prediction and 

atmospheric research (UCAR 2002).  WRF has two dynamical cores, the WRF-Nonhydrostatic 

Mesoscale Model (NMM) version developed by the Environmental Modeling Center (EMC) at 

NCEP, and the Advanced Research WRF (ARW) developed by NCAR.  Both contain a variety 

of options for physics packages, including cloud microphysics, boundary-layer and surface 

processes, convective parameterizations, and short-wave and long-wave radiation.  These options 
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provide sufficient sophistication so that WRF can be used for a broad range of research and 

operational applications (UCAR 2002).  Complete descriptions of the model physics and 

parameterization options are given in Janjic et al. (2004) and Skamarock et al. (2005).  The 

various dynamics and physics options used in the 12-km NCEP NAM-WRF and the 4-km WRF-

LAPS are summarized in Table 11. 

WRF-LAPS is part of the WRF Environmental Modeling System (WRF-EMS) that is 

distributed by Dr. Robert Rozumalski at the University Corporation for Atmospheric Research 

(UCAR).  WRF-EMS is a complete, full-physics, numerical weather prediction package that 

incorporates the dynamical cores from both the NCAR ARW and the NCEP NMM releases into 

a single end-to-end forecasting system (UCAR 2006).    

Unlike the NCEP operational NAM-WRF, the version run at the Miami WFO uses high 

resolution LAPS and NCEP 1/12th degree sea-surface temperature (SST) data for model 

initialization (Table 11).  LAPS is a diagnostic tool that is part of the Advanced Weather 

Information Processing System (AWIPS).  LAPS produces a high resolution three-dimensional 

analysis of the atmosphere by combining a background field (obtained from the 1-h forecast of 

the AWIPS 40-km RUC) with local data from a variety of observing systems.  LAPS input data 

include surface observing systems, Doppler radars, satellites, wind and temperature profilers, and 

data from aircraft (Hiemstra et al. 2006).  The LAPS analysis produced at Miami has a horizontal 

resolution of 5 km, with 39 vertical levels at 25 hPa intervals from 1000 hPa to 50 hPa.  It uses 

satellite data and level 3 reflectivity data from the Miami and Key West NWS radars to create 

three-dimensional diabatic analysis grids to initialize the WRF model (“hot start” initialization).  

The inclusion of data from local mesonetworks enhances the analysis of inland and coastal 

gradients, and better depicts the effects of Lake Okeechobee on surface fields (Etherton and 

Santos 2006).  

Bogenschutz (2004) performed a statistical evaluation of forecasts produced by WRF 

version 1.3 with LAPS initialization, and the 12-km ETA during the summer and fall seasons of 

2003.  He found that WRF-LAPS considerably outperformed the ETA model for sea breeze 

detection, and also correctly forecast sea breeze, frontal, and air-mass convection in many cases.  

A recent study by Etherton and Santos (2006) found that WRF forecasts initialized using locally 

produced LAPS analyses generally produced better forecasts of surface temperature, specific  
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Table 11. Comparison of NCEP NAM-WRF and WFO Miami WRF-LAPS configurations.  
 

 NCEP NAM-WRF WRF-LAPS 
Initialization time 
Model resolution 
Dynamical core 
Cumulus scheme 
Microphysics scheme 
Turbulence/PBL scheme 
Surface layer physics 
Radiation package 
Land surface model 
Initialization 
 
Lateral boundary conditions 

1200 UTC 
12 km 
NMM 

Betts-Miller-Janjic 
Ferrier 

Mellor-Yamada-Janjic 
Janjic Similarity 

GFDL 
NOAH LSM (4 layers) 

NCEP Gridpoint Statistical 
Interpolation (GSI) System 

0600 UTC run of the 
Global Forecast System 

1500 UTC 
4 km 
NMM 

Kain-Fritsch 
Ferrier 

Mellor-Yamada-Janjic 
Janjic Similarity 

GFDL 
NMM LSM (4 layers) 

LAPS and  
NCEP 1/12th degree SST 

1200 UTC run of the 
NCEP NAM-WRF 
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humidity, wind, and sea level pressure than those initialized using the NAM/ETA, particularly 

during the first 6 h of the forecast.         

WRF-LAPS forecasts (initialized at 1500 UTC) for the period 19-30 September were 

provided by Dr. Pablo Santos (NWS Miami, FL), while runs for the 1 August – 18 September 

period were produced locally at Florida State University (FSU) using the WRF-EMS package.  

The LAPS, 1/12th degree SST, and NAM12 lateral boundary condition files required to produce 

the FSU runs also were provided by Dr. Santos.  The WRF-LAPS domain is centered on the 

Miami WFO county warning area (Fig. 18).  The model configuration used to create the FSU 

runs for 1 August – 18 September was the same as that used at Miami (Table 11).  We did not 

compare results using different physics options or cumulus schemes.  An examination of the 

sensitivity of the lightning forecasts to different model configurations is beyond the scope of this 

dissertation. 

Forecasts from RUC13 encompass 1 May – 30 September (153 days), while forecasts 

from the NCEP operational NAM-WRF are from 20 June – 30 September (103 days).  We used 

forecasts for every 3 h out to 12 h (i.e., the 0-h, 3-h, 6-h, 9-h, and 12-h projections).  Forecast 

parameters needed for the lightning guidance equations (Chapter 5) were calculated from the 

model temperature, dew point, wind, height, and surface pressure fields.  They were interpolated 

to the 10 × 10-km grid (Fig. 1) and transformed into the format of a vertical sounding at each 

grid point. 

CG lightning data for the period 1 May – 30 September 2006 were obtained from the 

NLDN.  Cummins et al. (1998, 2006) give a complete description of the NLDN as well as 

statistics on flash detection efficiency and location accuracy.  Details of the flash counting 

procedure and predictand development were given in Chapter 3. 
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Figure 18.  WRF-LAPS computational domain, with array of 4-km grid points. 
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CHAPTER NINE 
 

RESULTS OF MODEL EVALUATION 
 
 
 

The results presented in this chapter are for the South Florida domain (Fig. 18) during the 

1 August – 30 September 2006 period.  This is the common region and time period for which 

forecast data for all models were available (i.e., NCEP RUC13, NCEP NAM-WRF, and WRF-

LAPS).  State-wide results for the RUC13 and NAM-WRF do not vary significantly from those 

described for the South Florida region.  It should be noted that the 1200 UTC cycle time of the 

NAM-WRF hinders the forecasting of afternoon and evening lightning compared to the 1500 

UTC runs of the RUC13 and WRF-LAPS.  Thus, our intent is not to scrutinize differences in 

performance between the three models.  Rather, our objective is to describe the results that 

would have been achieved operationally if the most recently available run of each model had 

been used to generate the lightning forecasts valid at noon of each day. 

We calculated several verification scores for forecasting one or more flashes and the 

amount of lightning (i.e., ³  50th, ³  75th, ³  90th, and ³  95th percentiles) for each time period.  Flash 

count thresholds for each percentile and 3-h period were given in Table 1.  Scores that were 

calculated include POD, FAR, CSI, BR, and PSS, using probability thresholds determined from 

the 2002-2005 developmental sample (i.e., which maximized the PSS) (Chapter 5).  Wilks 

(2006) gives a complete description of these scores.    

Table 12 shows 2 ´  2 contingency tables and verification scores when forecasting one or 

more flashes during the most active lightning period (1800-2059 UTC).  These results are from 

the 1500 UTC RUC13 (top), 1200 UTC NAM-WRF (middle), and 1500 UTC WRF-LAPS 

(bottom) forecasts valid at 1800 UTC.  Scores using a model containing only climatology and 

persistence (L-CLIPER) also are given.  Based on a probability threshold of 0.214, between 80-

90% of the events with one or more flashes are predicted during the 1800-2059 UTC period 

(Table 12).  PODs range from 0.802 using the NAM-WRF to 0.896 using the RUC13, with 

reasonable FARs and BRs.  The WRF-LAPS produces the lowest FAR, highest CSI, and highest 

PSS for forecasting one or more flashes (Table 12).  As discussed in Chapter 8, the use of high 

resolution LAPS and SST data for model initialization produces better forecasts of the sea-breeze 

(Bogenschutz 2004) as well as surface temperature, wind, humidity, and sea-level pressure  
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Table 12. 2 ́  2 contingency tables and verification scores for forecasting one or more flashes 
during the 1800-2059 UTC period, using a probability threshold determined from the 2002-2005 
dependent sample.  These results are for the 1 August – 30 September 2006 period using the 
1500 UTC NCEP RUC13 (top), 1200 UTC NCEP NAM-WRF (middle), and 1500 UTC WRF-
LAPS (bottom) forecasts valid at 1800 UTC.  

 
 
      Observed              RUC13   L-CLIPER   
       

Predicted Yes        No    Total  POD =  0.896     0.933  
 

Yes         10239   10508  20747  FAR =  0.507     0.584  
     

No           1188   10578  11766  BR =   1.816     2.243  
     

Total         11427        21086             32513  CSI =   0.467     0.404 

Probability threshold = 0.214    PSS =  0.398     0.223 
 
 

   Observed         NAM-WRF    L-CLIPER   
       

Predicted Yes        No    Total  POD =  0.802     0.951  
 

Yes           8900     9713  18613  FAR =  0.522     0.585  
     

No           2197   11170  13367  BR =   1.677     2.291  
     

Total         11097        20883             31980  CSI =   0.428     0.406 

Probability threshold = 0.214    PSS =  0.337     0.238 
 
 

   Observed         WRF-LAPS   L-CLIPER   
       

Predicted Yes        No    Total  POD =  0.815     0.951  
 

Yes           9038     7845  16883  FAR =  0.465     0.585  
     

No           2051   11980  14031  BR =   1.522     2.292  
     

Total         11089        19825             30914  CSI =   0.477     0.407 

Probability threshold = 0.214    PSS =  0.419     0.202 
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during the first 6 h (Etherton and Santos 2006).  This leads to better placement of convergence 

boundaries as well as local maxima in moisture and instability, resulting in improved lightning 

forecasts.     

Table 13 shows results from forecasting ³  95th percentile lightning events (i.e., ³  104 

flashes within 10 km of a grid point) during the 1800-2059 UTC period.  Forecasting these rare 

events is very difficult.  Based on an unconditional probability threshold of 0.03 (determined 

from the developmental data), the three models predict between 30-60% of the events, but at the 

expense of a large over-forecasting bias and high FARs (resulting in low CSI scores).  As 

expected, there is better predictability of lower percentile thresholds (not shown), yielding 

generally higher CSIs and lower FARs.  It should be noted that the use of a separate optimum 

probability threshold for each NWP model produces better scores than those shown in Tables 12 

and 13.  However, these model specific thresholds must be fine-tuned to the bias characteristics 

of each model and thus, could not be used operationally unless new thresholds were determined 

each time that changes are made to the models. 

Despite the poor predictability of 95th percentile events (Table 13), it is important to note 

that all three NWP models produce better lightning forecasts than a model based on climatology 

and persistence alone (L-CLIPER).  The same is true for forecasting one or more flashes (Table 

12).  Figures 19-21 compare skill scores for each model and time period expressed as a percent 

improvement in CSI and PSS over L-CLIPER (a) and a model containing persistence alone (b).  

These results are very encouraging, especially considering that L-CLIPER tends to give very 

good forecasts during Florida’s warm season.  When forecasting one or more flashes, all models 

show positive skill through the 2100-2359 UTC period with respect to CSI (Fig. 19) and PSS 

(Fig. 20).  During the most active lightning period (1800-2059 UTC), model CSIs are a 4-12% 

improvement over L-CLIPER (Fig. 19a) and a 12-19% improvement over persistence (Fig. 19b), 

with the WRF-LAPS outperforming the RUC13 and NAM-WRF.  Skill scores with respect to 

PSS are even higher (Fig. 20).  When forecasting ³  95th percentile events (Fig. 21), only the 

RUC13 and WRF-LAPS are skillful compared to L-CLIPER through 6 h (Fig. 21a), with WRF-

LAPS performing the best during 2100-2350 UTC (~ 21% improvement).  All models are 

skillful through the 2100-2359 UTC period with respect to persistence alone (Fig. 21b), with 

scores ranging from a 20-50% improvement between 1500-1759 UTC to a 18-30% improvement 

between 2100-2359 UTC.  Figures 19-21 also illustrate the expected degradation in forecast skill  
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Table 13. 2 ́  2 contingency tables and verification scores for forecasting ³  95th percentile events 
during the 1800-2059 UTC period, using an unconditional probability threshold determined from 
the 2002-2005 dependent sample.  These results are for the 1 August – 30 September 2006 
period using the 1500 UTC NCEP RUC13 (top), 1200 UTC NCEP NAM-WRF (middle), and 
1500 UTC WRF-LAPS (bottom) forecasts valid at 1800 UTC.   

 
 
      Observed              RUC13   L-CLIPER   
       

Predicted Yes        No    Total  POD =  0.597     0.944  
 

Yes             329     9171    9500  FAR =  0.965     0.979  
     

No             222   22791  23013  BR =            17.241   45.606  
     

Total             551        31962             32513  CSI =   0.034     0.021 

Probability threshold = 0.030    PSS =  0.310     0.174 
 
 

   Observed         NAM-WRF    L-CLIPER   
       

Predicted Yes        No    Total  POD =  0.315     0.947  
 

Yes             173     6411    6584  FAR =  0.974     0.979  
     

No             376   25020  25396  BR =            11.993   45.271  
     

Total             549        31431             31980  CSI =   0.025     0.021 

Probability threshold = 0.030    PSS =  0.111     0.173 
 
 

   Observed         WRF-LAPS   L-CLIPER   
       

Predicted Yes        No    Total  POD =  0.404     0.947  
 

Yes             222     5383    5605  FAR =  0.960     0.979  
     

No             327   24982  25309  BR =            10.209   44.508  
     

Total             549        30365             30914  CSI =   0.037     0.021 

Probability threshold = 0.030    PSS =  0.227     0.160 
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a)      
Percent Improvement in Critical Success Index vs. L -CLIPER

Models for prob(>= 1 flash)
1 Aug - 30 Sept 2006, South Florida Domain
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Figure 19.  Percent improvement in Critical Success Index compared to a) L-CLIPER and b) 
persistence alone.  These results are for the logistic (yes/no) models applied to forecast output 
from the 1500 UTC RUC13, 1200 UTC NAM-WRF, and 1500 UTC WRF-LAPS during 1 
August – 30 September 2006. 
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b)       

Percent Improvement in Critical Success Index vs. P ersistence
Models for prob(>= 1 flash)

1 Aug - 30 Sept 2006, South Florida Domain
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Figure 19 (continued). 
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a)      
Percent Improvement in Peirce Skill Statistic vs. L -CLIPER

Models for prob(>= 1 flash)
1 Aug - 30 Sept 2006, South Florida Domain
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Figure 20.  Percent improvement in Peirce Skill Statistic compared to a) L-CLIPER and b) 
persistence alone.  These results are for the logistic (yes/no) models applied to forecast output 
from the 1500 UTC RUC13, 1200 UTC NAM-WRF, and 1500 UTC WRF-LAPS during 1 
August – 30 September 2006. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 66 

b)       

Percent Improvement in Peirce Skill Statistic vs. P ersistence
Models for prob(>= 1 flash)

1 Aug - 30 Sept 2006, South Florida Domain
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Figure 20 (continued). 
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a)     
Percent Improvement in Peirce Skill Statistic vs. L -CLIPER

Forecasting >= 95th percentile
1 Aug - 30 Sept 2006, South Florida Domain
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Figure 21.  Percent improvement in Peirce Skill Statistic compared to a) L-CLIPER and b) 
persistence alone.  These results are for predicting ³  95th percentile events based on forecast 
output from the 1500 UTC RUC13, 1200 UTC NAM-WRF, and 1500 UTC WRF-LAPS during 
1 August – 30 September 2006. 
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b)      

Percent Improvement in Peirce Skill Statistic vs. P ersistence
Forecasting >= 95th percentile

1 Aug - 30 Sept 2006, South Florida Domain
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Figure 21 (continued). 
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at longer forecast times, with none of the models being skillful during the chaotic late evening 

period (0000-0259 UTC).  Forecasts from the 1800 UTC cycle of the RUC13, NAM-WRF, and 

WRF-LAPS (not examined) likely would exhibit positive skill even at this time period.     

The results in Tables 12 and 13 are based on very strict verification criteria; that is, the 

lightning must occur within 10 km of a grid point.  Table 14 gives results from the 1500 UTC 

WRF-LAPS if the event is permitted to verify one grid point away in any direction from the 

forecast grid point.  This relaxed criterion gives much improved scores for forecasting one or 

more flashes (top), and somewhat better scores for forecasting ³  95th percentile (bottom).  The 

same is true for the NCEP RUC13 and NAM-WRF (not shown).  Although better scores are 

achieved, it is important to note that scores for L-CLIPER also increase by a proportionate 

amount.  Thus, little if any additional “skill” is gained by relaxing the verification criteria.   

The results presented thus far (Tables 12-13 and Figs. 19-21) represent a composite of all 

events over all time periods.  Given the highly variable nature of thunderstorms and lightning 

over Florida during the warm season, day-to-day fluctuations in predictability and skill are 

expected.  Figure 22 is a time series of CSI when forecasting one or more flashes between 1800-

2059 UTC using the three models (only periods with 50 or more events have been included).  

Large day-to-day fluctuations are evident, with some periods having CSI > 0.70, while a few 

have CSIs of only ~ 0.10.  It is evident (Fig. 22) that fluctuations in CSI tend to occur in unison 

among the three models.  Further investigation reveals that the CSI fluctuations are highly 

correlated (~ 0.90) with the areal coverage of lightning. That is, higher CSIs occur during periods 

when lightning is more widespread, with lower scores during periods with less coverage.   

Figure 23 shows a time series of the percent improvement in CSI relative to L-CLIPER 

(solid) and persistence (dashed) for the 1800-2059 UTC period using the NCEP RUC13.  It is 

clear that improvement scores fluctuate considerably, with most periods ranging from a small 

improvement (i.e., only a few percentage points) to 20%.  Conversely, some periods show 

improvements of 30% or greater, while 10 of the 43 periods (~ 23%) exhibit negative scores (i.e., 

zero skill).  All but five of the periods, however, show an improvement over persistence.  Time 

series of skill scores for the NAM-WRF and WRF-LAPS (not shown) exhibit similar variations, 

with the NAM-WRF having more periods with negative scores.  Unlike the time series of CSI 

(Fig. 22), the fluctuations in skill score (Fig. 23) are only weakly correlated with the areal 

coverage of lightning.  Further investigation reveals that these fluctuations in skill are due in part  
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Table 14. 2 ́  2 contingency tables and verification scores for forecasting one or more flashes 
(top) and ³  95th percentile events (bottom) during the 1800-2059 UTC period using the 1500 
UTC WRF-LAPS forecast valid at 1800 UTC.  These results are for the 1 August – 30 
September 2006 period.  The lightning event is permitted to verify one grid point away in any 
direction from the forecast point.   

 
 
    Observed ³  1          WRF-LAPS   L-CLIPER   
       

Predicted Yes        No    Total  POD =  0.765     0.938  
 

Yes         12586     4297  16883  FAR =  0.255     0.393  
     

No           3869   10162  14031  BR =   1.026     1.544  
     

Total         16455        14459             30914  CSI =   0.607     0.583 

Probability threshold = 0.214    PSS =  0.468     0.247 
 
 

           Observed ³  95th        WRF-LAPS   L-CLIPER   
       

Predicted Yes        No    Total  POD =  0.410     0.927  
 

Yes             752     4853    5605  FAR =  0.866     0.930  
     

No           1080   24229  25309  BR =              3.059   13.038  
     

Total           1832        29082             30914  CSI =   0.112     0.069 

Probability threshold = 0.030    PSS =  0.244     0.146 
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Time Series of Critical Success Index
Models for Prob(>= 1 flash)
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Figure 22.  Daily time series of Critical Success Index for the 1800-2059 UTC period based on 
forecast output from the 1500 UTC RUC13, 1200 UTC NAM-WRF, and 1500 UTC WRF-LAPS 
during 1 August – 30 September 2006.  Periods with fewer than 50 events have been omitted 
from the time series.  An “event” is defined as the occurrence of one or more flashes within a 10-
km radius of a grid point.  
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Time Series of Percent Improvement in CSI
Model for Prob(>= 1 flash) Using 15Z NCEP RUC13

1800-2059 UTC period
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Figure 23.  Daily time series of the percent improvement in Critical Success Index with respect 
to L-CLIPER (solid) and persistence (dashed) for the 1800-2059 UTC period.  These scores are 
based on forecast output from the 1500 UTC RUC13 during 1 August – 30 September 2006.  
Periods with fewer than 50 events have been omitted from the time series.  An “event” is defined 
as the occurrence of one or more flashes within a 10-km radius of a grid point. 
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to changes in the synoptic pattern (i.e., the low-level prevailing wind).  With the inclusion of 

pattern-type lightning predictors (Chapters 4 and 5), the scheme tends to significantly outperform 

L-CLIPER and persistence on days when the pattern transitions from one type to another.  

Conversely, L-CLIPER tends to be a good first guess when the synoptic pattern on a given day is 

similar to that of the previous day.  In these cases forecast skill relative to L-CLIPER depends 

more on the correct placement of small-scale features (i.e., convergence boundaries, moisture 

pools, etc.).                

An example lightning probability forecast is shown in Fig. 25 for 16-17 August 2006 

using the 1500 UTC WRF-LAPS.  A map with county names and labeled geographical features 

is shown in Fig. 24.  Results using the RUC13 and NAM-WRF (not shown) compare favorably 

with those from WRF-LAPS on this day.  The figure shows the probability of one or more 

flashes (left panels), the unconditional probability of ³  90th percentile events (center), and the CG 

strike verification (right panels) for four 3-h time period.  The flow pattern on this day is type A 

(Chapter 4), with prevailing southeasterly low-level flow and no synoptic or tropical influences.  

Between 1500-1759 UTC, the greatest probability of one or more flashes (between 30-40%) is 

forecast over eastern Broward and northern Miami-Dade (MD) counties, with probabilities 10% 

or greater for areas south of Lake Okeechobee (LOK) (Fig. 25a).  The verification (Fig. 25c) 

shows that storms develop over some of these areas; however, the probabilities do not capture 

the activity that develops near LOK and over eastern Palm Beach (PB) county (this activity 

developed after 1700 UTC).  Forecast probabilities valid at 1800 UTC (Figs. 25d and e) are 

considerably greater across South Florida than at 1500 UTC (Figs. 25a and b), with the highest 

values concentrated along the west coast as well as eastern PB, Broward, and MD counties.  The 

verification for this period (Fig. 25f) reveals a significant increase in activity (over 7000 flashes) 

along the west coast and over Broward and MD counties.  With the exception of the activity that 

occurs south of LOK, this verification agrees well with the forecast probabilities (Figs. 25d and 

e).  Forecast probabilities for the 2100-2359 UTC period (Figs. 25g and h) have increased south 

of LOK, and lightning occurs just east of this area over central and western PB and Broward 

counties (Fig. 25i).  The area of enhanced probabilities north of LOK does not verify during this 

period (Fig. 25i), however, lightning does occur there just one hour earlier, i.e., between 2000-

2030 UTC (Fig. 25f).  Finally, forecast probabilities for the 0000-0259 UTC period (Figs. 25j  

 



 74 

 
 

 
 

Figure 24.  Map of South Florida with county names and geographical features labeled. 
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a)   0-h: 1500-1759 UTC   b)   0-h: 1500-1759 UTC    c)   0-h: 1500-1759 UTC 

   
 

d)   3-h: 1800-2059 UTC   e)   3-h: 1800-2059 UTC    f)   3-h: 1800-2059 UTC 

   
 

g)   6-h: 2100-2359 UTC   h)   6-h: 2100-2359 UTC    i)   6-h: 2100-2359 UTC 

   
 
 
Figure 25.  Probability of one or more flashes (left panels), unconditional probability of ³  90th 
percentile (center panels), and CG strike verification superimposed on the one or more flash 
probabilities (right panels) for 16-17 August 2006 based on 1500 UTC WRF-LAPS (a-c) 0-h, (d-
f) 3-h, (g-i) 6-h, and (j-l) 9-h forecast projections.  Valid time periods are shown above each plot. 
Note the different color scales for the left and center panels. 
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j)   9-h: 0000-0259 UTC   k)   9-h: 0000-0259 UTC    l)   9-h: 0000-0259 UTC 

   
 

Figure 25 (continued). 
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and k) show a diminishing lightning threat, and indeed little activity occurs during this period 

(Fig. 25l). 

The example in Figure 25 is typical of many others during the 1 August – 30 September 

2006 period.  That is, the sequence of probability maps shows the expected diurnal trend in 

lightning, peaking during the afternoon and then diminishing.  The lightning forecasts generally 

show good agreement with the verification, with most of the observed lightning occurring within 

the higher probability contours.  However, as observed on 16-17 August, the timing and 

placement of lightning maxima is not perfect.  Nonetheless, the forecasts do capture the general 

spatial and temporal trends in observed lightning at a level of detail that, to our knowledge, has 

not been reported previously. 
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CHAPTER TEN 
 

SUMMARY AND CONCLUSIONS  
OF MODEL EVALUATION 

 
 
 

The objective of this study was to evaluate the utility of a PP scheme for forecasting 

warm season lightning over Florida (described in Chapters 4 and 5) using forecast output from 

three mesoscale models during an independent test period (1 May – 30 September 2006).  The 

lightning guidance equations were applied to forecast output from the 1500 UTC NCEP RUC13, 

the 1200 UTC NCEP NAM-WRF, and high resolution runs of the WRF initialized at 1500 UTC 

with LAPS and NCEP 1/12th degree SST data (WRF-LAPS).     

Results for the South Florida domain (Fig. 18) during 1 August – 30 September 2006 

were presented.  Verification scores including POD, FAR, CSI, BR, and PSS were calculated for 

each model and time period, based on probability thresholds determined from the 2002-2005 

developmental sample.  During the most active lightning period (1800-2059 UTC), the three 

models forecast between 80-90% of the lightning events having one or more flashes, and 

between 30-60% of the events with flash counts meeting or exceeding the 95th percentile.  Of the 

three mesoscale models, WRF-LAPS generally produced the lowest FAR, highest CSI, and 

highest PSS when forecasting either one or more flashes or the amount of lightning between 

1800-2059 UTC. 

Forecasts from all three mesoscale models generally showed positive skill with respect to 

L-CLIPER and persistence through the 2100-2359 UTC period.  During the most active period 

(1800-2059 UTC), model CSIs were a 4-12% improvement over L-CLIPER and a 12-19% 

improvement over persistence, with the WRF-LAPS outperforming the RUC13 and NAM-WRF.  

When forecasting ³  95th percentile events, only the RUC13 and WRF-LAPS were skillful with 

respect to L-CLIPER through 6 h, with WRF-LAPS performing the best during 2100-2350 UTC 

(~ 21% improvement in PSS).  All models were skillful through the 2100-2359 UTC period with 

respect to persistence alone, with scores ranging from a 20-50% improvement between 1500-

1759 UTC to a 18-30% improvement between 2100-2359 UTC. 

Time series plots of CSI for the 1800-2059 UTC period showed significant day-to-day 

fluctuations, with CSIs ranging from 0.10 to 0.70.  These fluctuations were highly correlated (~ 
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0.90) with the areal coverage of lightning, with higher CSIs achieved during periods when 

lightning was more widespread.  Similar plots for skill scores relative to L-CLIPER and 

persistence also showed significant fluctuations due in part to changes in the synoptic pattern. 

An example probability forecast was shown for 16-17 August 2006 using the 0-h, 3-h, 6-

h, and 9-h forecasts from the 1500 UTC WRF-LAPS.  The sequence of probability maps for each 

3-h period showed the expected diurnal trend in lightning.  The exact timing and placement of 

lightning was not perfect; however, there generally was good agreement between the forecasts 

and the verification, with most of the observed lightning occurring within the higher probability 

contours.     

The positive skill demonstrated by the RUC13, NAM-WRF and WRF-LAPS (through 

2100-2359 UTC) during the 1 August – 30 September test period is strong evidence that the PP 

scheme truly is model independent.  The results also demonstrate that a model initialized with 

high resolution LAPS and SST data is capable of producing good lightning forecasts.     

The guidance that we have developed represents an important step toward more precise 

and timely lightning forecasts.  The PP underpinning permits the equations to be implemented 

using any NWP model and for any forecast projection.  The inevitable changes to the NWP 

models will not require redevelopment of the equations, and in fact, should only improve the 

forecasts (Wilks 2006).  Conversely, the main drawback is that the PP scheme assumes a 

“perfect” forecast/analysis of the predictors by the NWP model and thus, does not account for, or 

correct any type of NWP forecast error.  Nonetheless, as the spatial resolution and physics of 

mesoscale models continue to improve, better lightning forecasts are expected to result.         

The methodology that we have developed is an enhancement to schemes already in use 

(e.g., Bothwell 2002, 2005).  Further improvements will be achieved in future work.  For 

example, temporal resolution can be increased by developing separate PP equations for each 

hour, which could be applied to hourly forecasts from the RUC13.  Plans already are in place to 

incorporate the lightning guidance into the Interactive Forecast Preparation System (IFPS) 

Graphical Forecast Editor (GFE) at the Tallahassee NWS office.  A forecaster then can use 

output from one NWP model or a blend of two or more models to generate lightning 

probabilities using a “smart tool” in GFE.  The resulting lightning forecasts then could be 

accessed by the public through NWS web sites and used by the NWS in forecast products. 
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Future work also will seek to expand the scheme to other parts of the country.  Since 

some of the statistical assumptions made for Florida may not be applicable to other areas, 

appropriate modifications will be needed.  In addition, future efforts should determine whether a 

Bayesian framework can produce better results than those achieved in this study using the more 

classical methods.  In the longer term, the availability of higher resolution analyses (e.g., £ 10 

km) and a larger developmental sample should produce greater reduction of variance and more 

robust estimates of the model parameters.  Finally, accurate cloud analyses and improved NWP 

model forecasts of cloud hydrometeor profiles will permit cloud microphysical parameters to be 

included in the equations.   
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