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ABSTRACT

We will describe the development of a high-resolutigridded forecast guidance product
for warm season cloud-to-ground (CG) lightning lariela. Four warm seasons of analysis data
from the 20-km Rapid Update Cycle (RUC) and lightndata from the National Lightning
Detection Network are used to examine relationshgis/een observed atmospheric parameters
and the spatial and temporal patterns of CG ligigtmver Florida. The most important RUC-
derived parameters then are used in a perfect psig(PP) technique to develop equations
producing 3-hourly spatial probability forecasts dme or more CG flashes, as well as the
probability of exceeding various flash count petiternhresholds. Binary logistic regression is
used to develop the equations for one or moredkgsithile a negative binomial (NB) model is
used to predict the amount of lightning, conditiooaone or more flashes occurring. When
applied to the dependent sample of RUC analysesdbations show forecast skill over a model
containing only persistence and climatology (L-CE.

We also evaluate the lightning forecast scheme velpptied to output from three
mesoscale models during an independent test pghed®006 warm season). The evaluation is
performed using output from NCEP’s 13-km RUC, teB¥ 12-km NAM-WRF, and local runs
of WRF for a domain over South Florida that weiigiatized with NCEP 1/1% degree sea-
surface temperatures (SST) and data from the LAwalysis and Prediction System (LAPS)
(WRF-LAPS). During the most active lightning petid800-2059 UTC), the three models
forecast between 80-90% of the lightning eventsrigaene or more flashes, and between 30-
60% of the events with flash counts meeting or edirey the 9% percentile. Of the three
mesoscale models, WRF-LAPS generally producesdbeverification scores during 1800-2059
UTC. Forecasts from all three mesoscale modelsrgéiy show positive skill with respect to L-
CLIPER and persistence through the 2100-2359 UTogedemonstrating that the PP scheme
is model independent. Although the exact timindg placement of forecast lightning is not
perfect, there generally is good agreement betweeforecasts and their verification, with most
of the observed lightning occurring within the hegliorecast probability contours.
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CHAPTER ONE

OVERVIEW

This dissertation consists of two manuscripts tidtoe submitted taMonthly Weather
Reviewto describe the development and evaluation of@geprognosis scheme for forecasting
warm season cloud-to-ground (CG) lightning overigen. The first manuscript is contained in
Chapters two through six, while the second compr@eapters seven through ten.

The first objective of this study is to developighiresolution, gridded forecast guidance
product for warm season CG lightning for Florideour warm seasons of analysis data from the
20-km Rapid Update Cycle (RUC20) are used to exametationships between observed fields
of various atmospheric parameters and the spatthtemporal patterns of CG lightning over
Florida. The most important RUC-derived paramettees are used in a perfect prognosis
technique to develop equations producing 3-hoyrétial probability forecasts for one or more
CG flashes, as well as the probability of exceedmgous flash count percentile thresholds. A
description of the parameters comprising the moaledstheir relationships to lightning
occurrence is presented, as well as an evaluatithre geliability and skill of the equations when
applied to the four warm seasons of dependent data.

The second major objective is to evaluate thetyi@ind skill of the perfect prognosis
equations when applied to output from several nedesnodels during an independent test
period. Forecast output from the National Cenfi@r&nvironmental Prediction (NCEP) 13-km
RUC and 12-km North American Mesoscale (NAM) modelks used as an independent test of
the equations during the 2006 warm season. Thatiegs also are evaluated using output from
high resolution runs of the Weather Research amddasting (WRF) model for a domain over
South Florida, initialized with data from the Lodahalysis and Prediction System (LAPS).



CHAPTER TWO

INTRODUCTION TO MODEL DEVELOPMENT

Cloud-to-ground (CG) lightning is one of the leagltauses of weather related fatalities
in the United States (U.S.) (Holle et al. 1999).fdct, Curran et al. (2000) showed that only
river and flash floods ranked higher than lightningerms of deaths. Aside from the loss of life,
CG lightning damages trees, buildings, and utliitgs, often leading to power outages and
disruptions to communications. Improved foreca$tSG lightning are of great interest to all
persons concerned with protecting life and property

Florida has more than twice the number of lightreagualties of any other state (Curran
et al. 2000). A majority of casualties occur dgrthe warm season (May-September), the
climatological peak for lightning in Florida. Sied examining lightning patterns across the U.S.
have shown that Florida annually receives more €ites than any other state (Orville 1994,
Hodanish et al. 1997; Orville and Huffines 2001g @rville et al. 2002).

Location and time specific forecasts of afterndghthing for lead times longer than
~ 30 min currently are not available. National WeatService (NWS) zone forecasts usually
give little information about which specific areasl experience convection on a particular day,
and make no mention of how much lightning is expedt convection develops. Since Florida
is characterized by extensive day-to-day variahititthe location, timing, and amount of
lightning during the warm season, it is difficudtdevelop a skillful lightning forecast product,
especially for lead times longer than a few hours.

It has been recognized that warm season conveati@nFlorida is regulated by low-
level convergence associated with the sea bre@aeplete descriptions of the sea breeze are
given by Wexler (1946) and Simpson (1994). Inteoas between the sea breeze, the prevailing
wind, and coastline curvature have been shownflioeince lightning patterns (e.g., Lépez and
Holle 1987; Arritt 1993; Lericos et al. 2002). Nuneal simulations also have revealed the
effects of the synoptic flow on sea breeze convergée.g., Estoque 1962; McPherson 1970;
Pielke 1974; Arritt 1993). Studies by Hodanislale{1997), Camp et al (1998), and Lericos et
al. (2002) noted the effects of coastline shapkghitning patterns. In addition, local thermal

circulations (e.g., water conservation areas, laked rivers), urban effects (e.g., Westcott 1995;



Steiger et al. 2002), and thunderstorm outflowsaidrin producing deep convection. Even if
one could pinpoint the exact locations that wilpexence convection, it does not necessarily
follow that these areas will experience the magithing, since lightning production ultimately
is controlled by cloud microphysics.

Determining how convective clouds become electtifiemains a challenging problem in
meteorology, and many factors influencing clouaifcation still are poorly understood
(MacGorman and Rust 1998). Two traditional hyps#sefor electrification are the precipitation
hypothesis (Reynolds et al. 1957) and the convedtypothesis (Vonnegut 1963). More recent
studies propose that cloud electrification occhreugh the non-inductive ice-ice collision
process (e.g., Williams 1985; Williams et al. 1989hese hypotheses depend on a vigorous
updraft and a robust ice phase for charge genear@@nce and Rind 1992, Petersen and Rutledge
1998). Studies suggest that a persistent andgstrpdraft above the —1Q level, and not just
the presence of a strong updraft, is necessamidatrification (e.g., Price and Rind 1992, 1993;
Solomon and Baker 1994, 1998; Zipser 1994; Greoniland Orville 1999; Ushio et al. 2001).

A variety of statistical techniques have been usetkvelop forecast models for
thunderstorms and lightning. For continuous prtaaids, the most common method is multiple
linear regression (MLR) (e.g., Neumann and Nichol$872; Reap and MacGorman 1989).
However, when the predictand is “yes” or “no,” bipéogistic regression (BLR) often is
employed (this technique is described in detalivapter 4). Examples include Livingston et al.
(1996), Mazany et al. (2002), Lambert et al. (20@54 a recent study by Shafer and Fuelberg
(2006) for portions of the Florida Peninsula. Statal prediction models also have been
developed using Classification and Regression TI@ART) (e.g., Burrows et al. 2004).

Many of the statistical studies described above&at parameters derived from morning
soundings to forecast afternoon lightning. Thiprapch sometimes can produce large forecast
errors if morning conditions change, or if the sding is not representative of the entire forecast
area. An alternative to soundings is data fromerical weather prediction (NWP) models.
Since NWP models provide input data that are nmation and time specific, they may
produce more skillful forecasts.

Model Output Statistics (MOS) is an objective fasting technique in which a statistical
relationship is determined between a predictandvanidbles forecast by an NWP model (Glahn

and Lowry 1972). The primary advantage of MOS$ha& tnodel biases and local climatology are



automatically built into the equations (Klein antaé 1974; Brunet et al. 1988). Reap (1994a)
developed MOS equations predicting the spatiatitdigion of CG lightning over Florida during
different low-level flow regimes using predictorsiin the Nested Grid Model (NGM). The

MOS approach also has been used to generate ebjdntinderstorm guidance for stations
across the contiguous U.S. based on output from Mweékels (e.g., Reap and Foster 1979; Reap
1994b; Hughes 2001, 2002).

Despite its advantages, MOS has several drawbbhaksan limit its forecast skill. Since
NWP models are constantly changing, it often ifiaift to obtain a long archive of forecasts
from the same model that will be used to implentbatMOS equations. Any modifications to
the NWP model that change (even reduce) systemmatitel errors requires redevelopment of
the MOS equations (Wilks 2006). Furthermore, a MfOBeme tends to perform best for typical
events while rare events tend to be poorly forecast

An alternative to MOS is the perfect prognosis (feet prog”) (PP) method. This
approach develops statistical relationships betvabservedatmospheric parameters and
observations of the predictand (Klein et al. 19%@in 1971). Once the statistical relations are
determined, forecasts are obtained by inserting NiéEel forecasts of the predictors into the
PP equation (Wilks 2006). Bothwell (2002) usedRtremethod to develop lightning guidance
for the western U.S. on a 40 x 40 km grid, usinglgses from the NCEP 40-km RUC (RUCA40).

A drawback to the PP scheme is that it assumesréeq” forecast of the predictors by
the NWP model and thus does not account for madskb. Conversely, a significant advantage
is the stability of the equations. Since PP eguatare developed without NWP information,
any changes to the driving NWP models do not req@development of the PP equations. In
fact, improving random or systematic errors infWP model should improve the statistical
forecasts (Wilks 2006). This advantage makes BfPrigthod of choice for this study.

The first major goal of this study is to use therR&hod to develop a high-resolution,
gridded forecast guidance product for warm seasenightning over Florida on a 10 x 10 km
grid at 3-hourly intervals. An archive of analy$esn the 20-km RUC model (RUC20) is used
to examine relationships between observed atmogspberameters and spatial and temporal
patterns of CG lightning. The most important RU&#ded parameters then are used to develop
equations producing 3-hourly forecasts for the plolity of one or more CG flashes (PR©OB,

as well as the probability of exceeding variousltilaount percentile thresholds (PROR



Chapter 3 describes the study domain as well aligtm@ing and RUC analysis datasets.
The model development procedure is described ipp&hd. Parameters comprising the models
as well as their reliability and skill when appliedthe dependent data are presented in Chapter
5. Finally, a summary of model development is gireChapter 6. Chapters 7-10 describe the

evaluation and independent testing of the scheimg sgveral mesoscale models.



CHAPTER THREE

DATA

Our lightning guidance was developed for all afriéla (Fig. 1), covering the Peninsula
and Panhandle and extending northward into soutii¢alsama and southern Georgia. Figure 1
also shows the 10 x 10-km grid used for computieglightning probabilities. Since CG
lightning over heavily populated areas is of magtiiest, only data for grid points over land
were included in the model development.

We utilized CG lightning data from the National htging Detection Network (NLDN)
(Cummins et al. 1998). This network, in operatome 1989, detects and records CG flashes
across the contiguous U.S. The NLDN is owned gretaied by Vaisala-Global Atmospherics
Inc. (GAI). The network consists of 113 sensost tltilize the IMProved Accuracy from
Combined Technology (IMPACT) method to detect C&zlfles. A more detailed description of
sensors and methods of detection is given in Cumeti@al. (1998).

Lightning data for the 1995-2005 warm seasons wseeel to develop climatological
predictors, while data for the 2002-2005 warm seaseere used to develop the PP equations.
A system-wide NLDN upgrade was completed in 199%ctvallowed a greater number of
flashes to be detected, as well as improved locaozuracy. Through 2001, the NLDN had a
location accuracy of ~ 500 m over most of the Ua8d a flash detection efficiency of 80-90%
(Cummins et al. 1998). Beginning in the sprin@002, the network underwent its most recent
system-wide upgrade with the installation of newPIMCT sensors. CG detection efficiencies
now are estimated to be 90-95% throughout the gental U.S., with location accuracy < 500 m
(Cummins et al. 2006). We did not apply correditmaccount for the variations in detection
efficiency and location accuracy during the 199920eriod. Thus, actual CG flash counts are
underestimated. We also employed a quality copitmtedure recommended by Cummins et al.
(1998) to remove possible cloud discharges andahiplstrikes. This procedure is described in
detail in Shafer and Fuelberg (2006).

For every land grid point (Fig. 1), flash totalsres¢abulated for each 3-h period (e.g.
0000-0259 UTC, ..., 2100-2359 UTC) by summing thiesrthat occurred within a 10 km
radius. The flash totals then were transformeal loary variables; “1” if one or more flashes
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Figure 1. Map of the study domain with array of 10 x 10 gnd points overlaid. Only grid
points over land were used in the study.



occurred during the 3-h period or “0” if no lightigj occurred. Binary variables also were
assigned based on whether the flash total excabdest’, 75", 90", or 98" percentiles for a
given 3-h period (percentile thresholds are givemable 1). The flash totals and binary
indicators served as the predictands for develofhiadightning forecast equations.

The fixed-radius counting method that was usedddaantages and disadvantages
compared to the more traditional grid box approdeigure 2 depicts a superposition of two
counting regions with equal areas, one a box aaatiwer a circle, centered on pdt Also
shown are two lightning strikes at locatichandB. Assume that a physical process acting at
has some influence on the occurrence of a lightsirige within a certain distance Bf It is
clear that a grid box counting procedure will ignstrikeB while strikeA will be counted,
irrespective of the fact that strilis closer tdP than strikeA. Conversely, with a fixed-radius
approach, all strikes occurring within a specifiadius ofP are counted. However, a
consequence of this approach is that the coungéigipms must overlap to assure complete
coverage of the study area, and this can leadl&sla being assigned to more than one grid point
if it occurs in the overlap between two or moreuglar regions. This can be advantageous since
the degree of data smoothing can be controllechaypging the radius. However, the lightning
counts for adjacent grid points are not independehich is a key assumption in many statistical
tests. This issue is addressed in the model devedot procedure described in Chapter 4.

Observed atmospheric predictors were obtained &orarchive of RUC 0-h analyses
during the 2002-2005 warm seasons (~ 600 days).RTHhe is a mesoscale high-frequency data
assimilation and short-range numerical predictigstesm (Benjamin et al. 2004). A 20-km, 50-
level, hourly version of the RUC was implementedmy April 2002, replacing the 40-km
version (RUC40) implemented in 1998 and contaimmgrovements in the analysis and model
physics. Another RUC upgrade was implemented RGN 28 June 2005 with increased
resolution (13 km- RUC13) and additional improvetsenThe atmospheric parameters
calculated from the RUC analyses are describechap@r 4.

Two statistical software packages were used ®ettploratory analysis and model
development. These are S-PLUS version 6.1 for Wirsdand the Statistical Package for the
Social Sciences (SPSS) version 11.5 for Windowsth Bre powerful, state-of-the-art packages

with a wide range of analysis and modeling captadsli



Table 1.Conditional percentiles of CG flash count for e&eh period, based on counts for all
land grid points in the domain during the elevemmvaeason period 1995-2005.

Percentile

Time period (UTC) 58 75" od" o5" Max
1200 — 1459 3 10 28 50 1196
1500 - 1759 4 14 37 60 810
1800 — 2059 6 22 62 104 1190
2100 — 2359 5 21 65 114 1577
0000 — 0259 4 14 45 83 1267
0300 — 0559 3 10 31 59 635
0600 — 0859 2 8 25 48 991
0900 - 1159 2 8 24 43 983
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Figure 2. lllustration of two counting regions (box andcte) with equal areas centered on a
point of influencepP, with two lightning strike location& andB.
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CHAPTER FOUR

MODEL DEVELOPMENT

4.1 Climatological and Map Type Lightning Predictas

Climatological and pattern type lightning frequesscivere developed as candidate
predictors to capture local enhancements due éoaations between the low-level wind, thermal
circulations, and coastline topography (e.g., RdR74; Arritt 1993; Laird et al. 1995; Lericos
et al. 2002). These predictors have the poteatiatiding detailed information about local
effects which may not be well resolved by NWP med&eap 1994a).

We used a simple correlation technique describédind (1963) and Reap (1994a) to
develop the map type predictors. Based on Reaé)9the correlation technique was applied
to 3-hourly observed sea level pressure (SLP)di&loim RUC analyses spanning the 1998-2005
warm seasons (~ 1224 days). SLP implies both tleetthn and speed of the low-level flow.
Although this procedure also was applied to the 9B height fields, SLP produced the most
distinct pattern types and the largest number gisthat could be classified into a type.

The pattern classification was performed over tiea ghown in Fig. 3. To capture only
the regional scale patterns (i.e., the prevailimgvand to smooth small scale variations, the
RUC SLP values were interpolated to a more coaidg(00 km) (Fig. 3). Each smoothed SLP
map then was correlated with every other map irstmple (9613 available maps). The
pressure pattern with the most maps correlateditéha threshold of 0.70 or greater (e.g., Reap
1994a) was denoted type A and removed from the lkeaatpng with all other type A maps. The
procedure was repeated to determine subsequentypeguntil the residual sample contained
less than 3% of maps that were correlated at . g0eater (Lund 1963; Reap 1994a).

Table 2 shows results of the map type classificatieive map types (A-E) were
developed using the 0.70 correlation threshold.o Types (A and B) comprise ~ 44% of the
total sample, while types C-E comprise ~ 34%. Tmaining ~ 22% of the sample could not be
classified at the 0.70 threshold. This threshaldally is considered the smallest acceptable for
pattern classification (Lund 1963; Reap 1994agrdasing the threshold produces more map

types and more detailed map patterns, but at therese of producing more unclassified cases.
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Figure 3. Map of geographical region for which the mapetygtassification was performed.
The RUC sea level pressure fields were interpoltiede array of 100 x 100 km grid points
shown in the figure.
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Table 2.Number of RUC-analyzed sea-level pressure mapsifittasinto each type at a
correlation threshold of 0.70, using 3-houly daitarf the 1998-2005 warm seasons (9613
available maps). For purposes of developing thaeons, maps which could not be classified
into a type were assigned the type with which tveye most correlated.

Map Type No. Maps % of Sample
A 2913 30.3
B 1303 13.6
C 1260 13.1
D 1061 11.0
E 1002 104
Unclassified 2074 21.6
Total 9613 100
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Using the binary indicators for one or more flasfsction 3.2), relative lightning
frequencies were calculated for each map type amg&iod. Similarly, 3-h flash totals were
used to calculate an unconditional mean numbdashés for each map type. Only time periods
when the SLP map could be classified at 0.70 catgrevere used in preparing the map type
predictors. However, when developing the lightrgaugdance equations, the unclassified maps
were assigned to the type with which they were mogtklated. Climatological relative
frequencies and unconditional means also were ledzliusing all warm season days during
1995-2005. The lightning frequencies and meang webmitted as candidate predictors for the
regression analysis described later.

Composite SLP patterns associated with each mapangshown in the left panels of
Fig. 4, while the right panels show spatial disitibns of the mean number of flashes for the
1800-2059 UTC period. The five map types repredesinctly different flow patterns, and are
similar to those from previous studies (e.g., RE@@4a; Lericos et al. 2002). The predominant
pattern, type A (Figs. 4a-b), is characterized igy Ipressure northeast of Florida that produces
prevailing easterly and southeasterly flow acrbssstate. As a result, most of the lightning is
confined to the West Coast, with maxima near TaBgg Fort Myers, and east of Lake
Okeechobee. Map type B (Figs. 4c-d) contains faseridge over South Florida resulting in
southwesterly flow across the state. This foctisedightning along the East Coast, with
coastline interactions evident near the Big BenthefPanhandle (Camp et al. 1998). Map type
C (Figs. 4e-f) represents a transition betweengypand B, in which the east-west surface ridge
is located over central Florida. This pattern piceEs southeasterly flow over South Florida and
south-southwesterly flow over the northern Penmsdihus, the lightning patterns are a
combination of types A and B, with maxima alonghbotasts. Map type D (Figs. 4g-h) is
characterized by high pressure north of Floridalamer pressure to the southeast, which is
most common during May and September after a colitdl passage. The dry northeasterly
flow confines most of the lightning to South FlaidFinally, map type E (Figs. 4i-)) is a
variation of type B, exhibiting a lobe of high psese over the Gulf of Mexico and lower
pressure to the northeast. West-northwesterly omfines most lightning to the East Coast and

Big Bend, with generally less coverage than obskwith type B.
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a) Type A b)  1800-2059 UTC

C) Type B d) 1800-2059 UTC
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Figure 4. Composite sea level pressure and spatial disioiv of the unconditional mean
number of flashes for the 1800-2059 UTC period(éeb) type A, (c-d) type B, (e-f) type C, (g-
h) type D, and (i-)) type E. The inferred low-lévend is indicated by arrows on each map.
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9) Type D
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) Type E
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Figure 4 (continued).
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4.2  Model-Analyzed Candidate Predictors

A large number of RUC-analyzed predictors were stigated for possible inclusion in
the candidate predictor pool, many of which havenbieund useful in previous studies. The
parameters investigated, their abbreviations, asttba description of each are listed in Table 3.
The parameters were calculated from the 0-hour RU&lyzed temperature, dew point, wind,
height, and surface pressure fields valid every&.dp, 0000 UTC, 0300 UTC,..., etc.). The
fields were interpolated to the 10 x 10-km gridg(Fi) and transformed into the format of a
vertical sounding at each grid point (Bothwell 2DORUC cloud hydrometeor profiles also were
investigated; however, a documented error in th€RIldud analysis procedure through June
2006 (FSL 2006) rendered these fields unusable.

An important assumption is that the model analgpes thebest estimatef the state of
the atmosphere at the analysis time, and thushedreated as “observations” for purposes of
developing the PP equations. However, Wilks (2@@&itions that the inclusion of a predictor
based solely on the relationship of its observddesato the predictand can be detrimental if the
NWP forecast of that predictor bears little relaibip to the predictand. Although it is
important to investigate as many relevant predscas possible, we focused on those that are
well handled by today’s NWP models. Nonethelegsjesparameters that can be difficult to
forecast on small scales (e.g., MFLXC, LCAPE, CCTH@&ere investigated, with the
expectation that as the spatial resolution andipbysd mesoscale models continue to improve,

forecasts of these parameters also will improve.

4.3 Generalized Linear Models

MLR has been used in the majority of previous stigtl lightning studies (e.qg.,
Neumann and Nicholson 1972; Reap and Foster 1958y Bnd MacGorman 1989; Reap 1994a;
Hughes 2001). However, unless the assumptionsradtant variance and Gaussian residuals are
met (which is rarely the case with count data)s¢éhmethods can lead to undesirable and
sometimes nonsensical results. Thus, we considdteahative regression methods; namely, the

family of generalized linear models (GLMs).
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Table 3.RUC-analyzed parameters investigated for inclugidhe candidate predictor pool.
The name of each variable, a description (wherdeue and abbreviations are included.

Abbrev. Name Description/levels

LTHICK Layer thickness 1000-850 hPa, 850-500 hPa, 700-400 hPa, 500-300 hPa

TADV Temperature advection 10 m and each 25 hPa surface

TCONV Convective temperature

CCTHICK Cold cloud thickness Thickness betweer’Q level and cloud top (equil. level)

MFLXC Moisture flux convergence 10 m and each 25 hPa surface

THEADV Theta-e advection 10 m and each 25 hPa surface

PRECPW Precipitable water Entire depth of sounding (surface-100 hPa)

LAYRH Layer mean relative humidity | 45 layers between 1000 hPa and 100 hPa

RHFRZL Relative humidity at C level

WBZP Wet bulb zero pressure

LCLP Pressure at LCL Lifting condensation level

MUCAPE Most unstable CAPE Largest CAPE obtained when each parcel between the
surface and 700 hPa is lifted.

LCAPE1 MUCAPE in various layers Cloud base to cloud top (Solomon and Baker 1994)

LCAPE2 Cloud base to -2 (Bothwell 2002)

LCAPE3 Mixed phase region:°C to —40C (Randell et al. 1994)

LCAPE4 Charging zone: -1 to —25C (Solomon and Baker 1994)

LCAPES _ Between —15C and —20C (Bothwell 2002)

NCAPE(1-5) | Normalized LCAPE Layer CAPE divided by the geometric thickness ef ltyer

CIN Convective inhibition Negative area between the surface and 700 hPéihy tihe

] surface parcel.
BESTLI Best Lifted Index (LI) Most unstable LI obtained when each parcel between
- surface and 700 hPa is lifted.

SSI Showalter Stability Index Lifted index based on parcel originating at 850 hPa

TT Total Totals Index (as defined in the AMS Glossary of Meteorology)

KI K-index (as defined in the AMS Glossary of Meteorology)

SWEAT Severe Weather Threat Index | (as defined in the AMS Glossary of Meteorology)

TLAPSE Temperature lapse rate 300-hPa layers between 1000 hPa and 100 hPa

THELAPSE | Theta-e lapse rate _ 300-hPa layers between 1000 hPa and 100 hPa

CCTHGT Convective cloud top height | Geometric height of equilibrium level

PRFREQ Price & Rind frequency Price & Rind function for lightning frequency based
cloud top height: F = (3.44 x Ppx CCTHGT"®

DIV Wind divergence 10 m and each 25 hPa surface

VORT Vorticity 10 m and each 25 hPa surface

VORTADV | Vorticity advection 10 m and each 25 hPa surface

MEANU Layer average u component | 45 layers between 1000 hPa and 100 hPa

MEANV Layer average v component | 45 layers between 1000 hPa and 100 hPa

MEANSP Layer average speed 45 layers between 1000 hPa and 100 hPa

SHEAR Layer wind shear 45 layers between 1000 hPa and 100 hPa
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When the predictand is either “yes” or “no”, onelsunethod is binary logistic
regression (BLR). Logistic regressions are fibimary predictands according to the nonlinear
equation

P

In

=b, +bX +...+ b, X (1)

or

) = _EXDBy DX+ tbx)

_1+exp(oo+blx1 +..+tbox ) )

wherep; is the predicted probability resulting from tffeset of predictorsx, %, ..., x<). The
guantity on the left of (1) is the logit link funah which relates the log of the odds rafl{p)
to a linear combination of predictors. In BLR, tlegression parametets (b, ....,bx) are
estimated by maximizing a log-likelihood functiosing iterative methods (Wilks 2006 gives a
thorough description of these methods). Unlike M guarantees that the probabilities are
bounded within the interval (0,1). BLR does natuase a direct linear relationship between the
predictors and the response and accommodates mh&aassian (Bernoulli) distributions of the
regression residuals (Lehmiller et al. 1997).

We used BLR to develop equations giving the prdidglmf one or more flashes
(PROPB 1) within a 10-km radius of each grid point (Fig.t@ produce spatial probability
forecasts for each 3-h period. BLR has been useckssfully in previous lightning forecasting
studies (e.g., Bothwell 2002; Mazany et al. 200@nbert et al. 2005; Shafer and Fuelberg
2006). The procedure used to develop the equaatescribed in section 4.4.

Our second objective was to develop equationshi®amount of lightning during each 3-
h period, conditional on one or more flashes odagrr For reasons previously stated, the most
appropriate model for count data is the Poissonlyamh GLMs (Elsner and Schmertmann 1993;
Gardner et al. 1995; Elsner and Jagger 2004).nA R, this approach employs a log link

function to linearize the expected valug ¢f the dependent variablg){
In(7[x1) =b, +bx +...+ b, X, (3)

nx1=expl, +bx +...+b %), 4)
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wherenjx] is the mean response resulting fromithset of predictorsxg, X, ...., ). If one
assumes that events occur randomly and at a corstarage raterfy with Var(y) = /m then the
events are said to be generated by a Poisson prasithsthe probability model
expt mm

—y! :

A histogram of the conditional count distributiar bur most active lightning period

Priy|m = (5)

(1800-2059 UTC) is shown in Fig. 5. It is cleaattthe counts are strongly skewed, with the
majority having 10 or fewer flashes and few casearg 100 or more. Since the variance of the
distribution is very large, ~80 times greater tHamihean 4723 flashes), the data do not fit the
Poisson assumption that \Vi@r& /m The most likely explanation is that the counesav
generated by an inhomogeneous Poisson procesk(elam as a Cox process), whereby the
number of storms over a given region and the nurabiashes produced per storm are both
approximately Poisson. This “mixed” Poisson prgaesults in the lightning counts having
much more dispersion than is accounted for by adgemeous Poisson model (personal
communication with Dr. Thomas Jagger, Departme@&dgraphy, FSU).

An alternative probability model is the negatbieomial (NB). As in Poisson
regression, the meam)(is modeled by (4); however, Vgj(how is a quadratic function ofr.

Var(y | mix] ) = mix] + ¢ mx]? (6)

whereg?is the shape parameter (estimated by maximumliteti). The resulting probability

model for the number of flashgg,as a function of)and g is given by

Gy+q) g ' nix]
YI&qg) g+mx] qg+mx]

whereGis the gamma function (Crawley 2002).

y

Priy| mx],q) =

(7)

Figure 6 shows the probability distribution impliby the Poisson (5) and NB (7) models
with only the intercept ternbg) included form= 23.15 andy = 0.342 (estimated from the
observed data using the S-PLUS software). Alsavahe the observed frequency distribution.

It is clear that the Poisson model is a poor chficeepresenting the count distribution since too

little probability is assigned to the smallest tighg counts while too much is assigned to counts
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Figure 5. Histogram of the distribution of flash countsidg the 1800-2059 UTC period for all
cases when one or more flashes occurred. Theghasiohas been truncated at 200 flashes to
emphasize the lower part of the distribution. étisém bins are 5 flashes.
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Flash Count Probability Distribution Implied from
Poisson and Negative Binomial Models
1800-2059 UTC period

T T T
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Figure 6. Flash count probability distribution for the TBR059 UTC period implied from the
Poisson and negative binomial regression modédte observed frequency also is shown for
comparison.
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near the mean. The NB model is a much betteo tin¢ data, capturing the large number of
cases with 10 or fewer flashes and more closelgesgmting the tail of the observed distribution.

Since the NB provides a much better fit to the ole=e frequency distribution (Fig. 6), it
was our method of choice. The NB has been uspdewious studies to model thunderstorm
activity at Kennedy Space Center (KSC) (e.g., Fetllal. 1971, Williford et al. 1974) as well as
thunderstorm and hail days probabilities in Nevggikamoto 1973). However, to the best of
our knowledge no prior study has used the NB aptbleability model for lightning counts.
Since the count distribution (Fig. 5) is left-trated at one flash, the distribution is not strictly
NB since (7) includeg = 0. However, if we treat-1 as having a NB distribution, then (7) can
be used to estimate the probability for egch Since (7) is a probability density functionet
individual probabilitiesy = 1,...¥) must sum to 1. Thus, the probability of meeting
exceeding any count threshold,can be obtained from

¥ T-1

Pry: T)=  Priy)=1-  Pr(y) . ®)

y=T y=1

4.4  Equation Development

We determined whether relationships between obdgrkedictors and lightning were
generally the same for the entire study area threly varied significantly from one portion of the
state to another. We first subdivided the domiaia nine areas (Fig. 7). Then, separate sets of
equations were developed for each area, with thdteecompared to those obtained using a
global model (i.e., using data for all grid point&)/e found that the best verification scores were
achieved by consolidating the nine areas into fangrer regions (Fig. 7): East Coast, West
Coast, Panhandle, and Alabama/Georgia. To minispaéial discontinuities at the boundaries,
the regions were permitted to overlap by 30 km, thiedprobabilities for grid points within the
overlapping regions were averaged.

Parameters calculated from the RUC analyses (T3bkes well as the map type and
climatological frequencies (section 4.1) for eaeh 3eriod, comprised the initial set of candidate
predictors. However, it is clear (Table 3) thatnypaf the predictors contain redundant
information. Including predictors with strong matworrelation in a prediction equation can

lead to poor estimates of the regression param@téatiss 2006). This problem was addressed
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Figure 7. Map of the original nine areas for which equagidirst were developed. The shaded
areas represent the final four regions used toldp\egjuations.
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by performing a Principal Component Analysis (P@&gxamine inter-correlations among the
predictors (Table 3) and to aid in choosing a senallibset to retain for the regression analysis.
This procedure, using data for all grid pointgjéscribed in detail in Shafer and Fuelberg
(2006). The principal component groupings, in ocogfion with Pearson correlations between
the predictors and the lightning predictands (CéiaBj, were used as an objective method to
select a subset of the most physically relevardipters containing less mutual correlation.

The final list of candidate predictors is giverTiable 4. To allow the possibility that one
predictor may be more important than another irjuwwtion with others already in the model,
several parameters with mutual correlation wetamed for possible selection (e.g., KI and
PRECPW, several LCAPEs, etc.). Also shown in Tdldee Pearson correlations between each
predictor and the binary indicator for one or mit@shes during the 1800-2059 UTC period for
the East Coast (EC) region. The correlations@#g ineaning that nsingleobserved predictor
is a good indicator of lightning (Bothwell 2002;&&r and Fuelberg 2006). Correlations for the
amount of lightning (not shown) also were foundé&low. However, it is important to note that
a Pearson correlation indicates the degrdmedr association between two variables, while
highly non-linear relationships still may existo @ccount for possible non-linear and interaction
effects, power terms up to the fourth degree amdviiay cross products were calculated for each
parameter (Table 4) and included in the final pregtipool. Finally, the 3-h change in each
parameter also was calculated and submitted asdzdadgredictors.

As mentioned in Chapter 3, the fixed-radius appnaaquires that the counting regions
overlap. The main drawback of this approach is difeerent locations in the domain are not
covered by the same number of counting regiongh Wcounting radius of 10 km and centers
on a 10 km grid, a particular location could beerad by as few as two or as many as four
regions. As aresult, a lightning strike couldused as few as two or as many as four times in
the data analysis. While this would not be a pobif each region were modeled separately, the
assumption of independence may be violated if fibatall grid points comprise the
developmental sample (as done in this study). pieeaution, only data for non-overlapping
(disjoint) regions were used for each screeningasgion sample (illustrated in Fig. 8). Each
sample of non-overlapping data contains ~ 1/4 oftrelable data points, resulting in four

separate data samples for use in the regressidysanalt should be noted, however, that the
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Table 4. Final list of RUC-derived candidate predictors ugsedevelop the regression models.
Power terms and two-way cross products for eacanpaiter also were included in the final
predictor pool (not listed). Pearson correlatioth the binary (yes/no) lightning predictands
for the 1800-2059 UTC period also are shown forEhst Coast region.

Abbrev. Name Correlation
LTHICK1 1000-850 hPa thickness 0.23
LTHICK4 700-400 hPa thickness 0.08
TADV4 950 hPa temperature advection 0.13
CCTHICK Cold cloud thickness 0.24
MFLXC2 1000 hPa Moisture flux convergence  0.19
THEADV5 925 hPa Theta-e advection 0.10
Kl K-index 0.31
PRECPW Precipitable water 0.33
LCLP Pressure at LCL 0.16
LCAPE2 MUCAPE cloud base to -2C 0.27
LCAPE4 MUCAPE -10C to -25C 0.25
LCAPES MUCAPE -15C to -20C 0.24
CIN Convective inhibition 0.08
BESTLI Best Lifted Index (LI) -0.26
SSI Showalter Stability Index -0.28
T Total Totals Index 0.24
TLAPSEZ2 900-600 hPa temperature lapse rate ~ -0.23
THELAPSEG | 500-200 hPa theta-e lapse rate -0.20
D\ 1000 hPa wind divergence -0.15
Div34 200 hPa wind divergence 0.11
VORT2 1000 hPa vorticity 0.10
MEANU3 1000-700 hPa u component 0.09
MEANV3 1000-700 hPa v component 0.12
MEANSP3 | 1000-700 hPa wind speed -0.13
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Figure 8. lllustration of the 10 10 km grid with disjoint circular counting regionsed in the
regression analysis. RUC-derived predictors afiaek at each 10 km grid point.
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variables selected for inclusion in each model thiett respective coefficients generally were
found to be the same even if data for all grid oeomprised the regression sample.

A combination of forward stepwise selection andssrgalidation was used to develop
the BLR equations for each region (Fig. 7) and@hod using the SPSS software. This
procedure is similar to that described in Shafef Enelberg (2006). Each database of non-
overlapping data first was subdivided into two skswf ~ 300 days, one containing even years
(2002 and 2004) and the other odd years (2003 @@8)2 Data for even years were used as a
“learning” sample for screening the variables felestion, while the odd years were used as an
“evaluation” sample to test the model each timam@able was added or removed during the
stepwise selection process. Thorough discussibsiepwise selection procedures are given in
Hosmer and Lemeshow (1989) and Wilks (2006). Trieeliptors comprising the model at the
step with the highest percentage of correctly diaslsevents for the evaluation sample were
noted. Only parameters for which the sign of thefficient made physical sense were retained
in the model in any screening sample. The stepsasection procedure was repeated for each
sample of non-overlapping data, and the prediabosen for each sample were noted. This
procedure identified the combination of predictitvat is most likely to generalize to
independent data and not over-fit the dependenpleanT he set of “best” predictors from this
process then was re-entered using data for allpgriidts and all years to determine the final
coefficients for each model.

The NB models for PROBI' were developed using S-PLUS. We found that the
overnight and early morning periods did not con&Bufficient number of events in the upper
percentiles to allow stable, reliable models talbeeloped. Thus, NB models were developed
only for the four most active periods (1500-1759 YT800-2059 UTC, 2100-2359 UTC, and
0000-0259 UTC). The same sampling procedure éven and odd years) described above was
used to develop the models; however, the S-PLUSvacé does not permit stepwise selection
for NB regression. Instead, the predictors wetered simultaneously into the model. Those
predictors contributing the greatest reductionefidnce (usually 8 or 10) then were re-entered,
and the resulting model was tested on the evaluaample (odd years). Predictors were
removed from the model one at a time until theroptiset of predictors that produced the
greatest reduction of deviance for the evaluatan@e was identified. As with the BLR

models, the set of “best” predictors then was rterenl using all data to determine the final
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coefficients for each region and 3-h period. Thedctors comprising the models and their
physical relationships to lightning are describe@hapter 5.

We used a model containing only climatology andis¢éence (L-CLIPER) as a
benchmark for assessing forecast skill. Climatplognsisted of the lightning frequencies and
unconditional means for each 3-h period, as wethasine of the day number. Persistence
consisted of a binary indicator for whether onenarre flashes occurred during the same 3-h
period the previous day, as well as the previoysfldah count. Separate L-CLIPER models
were developed for each region and 3-h periodll &ares relative to L-CLIPER and a model
containing persistence alone are given in Chapter 5

To the best of our knowledge, Bothwell (2002, 2005} the first to use the PP method
to develop spatial probabilistic guidance for Cghtning. Although the methodology described
herein has some similarities to that of Bothwélere are several major differences. First, our
use of pattern type predictors differs from BothHyweho included only climatological predictors
for different pentads. Our NB approach for foreéicesthe amount of lightning requires only one
model to calculate PRGH for any count threshold, and provides a goodfihie underlying
count distribution and variance structure. ConelgrBothwell used separate BLR models for
each threshold. Lastly, our guidance is produced higher resolution grid (1010 km vs.
Bothwell's 40" 40 km). Other than the 1212 km grid used by Reap (1994a) for 12-h
forecasts, it appears that ours provides the higksslution guidance that is capable of
producing more detailed and skillful forecasts thag product currently available. We consider
these differences to be an enhancement to Bottsy@iicedure, and represents the first effort to
develop guidance for CG lightning that is specificdesigned for use with high-resolution

models.
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CHAPTER FIVE

RESULTS OF MODEL DEVELOPMENT

51 Discussion of Model Parameters

This section describes the parameters selectatiddBLR and NB models as well as
their relationships to lightning occurrence. Sitioe equations for each 3-h period are variations
on a similar theme, the physical reasoning presidmeee can be extended to all times.
Therefore, this discussion focuses on the mostathtning period (1800-2059 UTC).

The BLR models giving PRCHL. and the NB models for PRA@B during the 1800-2059
UTC period are shown in Tables 5 and 6, respegtivet the four study regions (Fig. 7). The
predictors and standardized coefficients are ligteatder of importance. A series of diagrams
displaying the frequency of one or more flashesHER1) and the unconditional mean number
of flashes (MEANNF) as a function of several impattpredictors is shown in Figs. 9-12. The
acronyms used to describe the predictors wereeltiimTables 3 and 4.

PRECPW is the most important predictor for one orarflashes (Table 5 and Fig. 9a),
while Kl, a measure of 850-700 hPa moisture, wéscsed in 3 out of the 4 NB models
estimating the amount of lightning (Table 6 and. Big). This finding agrees with numerous
studies indicating that deep layer moisture pravitie most favorable large-scale environment
for warm season thunderstorms over Florida (e@pgek et al. 1984; Reap and MacGorman
1989; Watson et al. 1995; Mazany et al. 2002). ihbkision of a second-order term (Table 5)
implies that this relationship is non-linear (Feg), with a peak in FREQ for PRECPW ~ 5.5
cm, followed by a decline for even greater valueargest PRECPW usually is associated with
widespread shallow convection from tropical systevhgh tends to lack the vigorous updrafts
and ice processes necessary for lightning formgioice and Rind 1992; Zipser 1994).

BESTLI was selected as the second most importaanpeter in the BLR models (Table
5 and Fig. 10a) and also is important for predgtime amount of lightning (Table 6 and Fig.
10b). The negative coefficients and the relatigrskdepicted in Fig. 10 imply that FREQ and
MEANNTF increase with increasing instability (i.as BESTLI becomes more negative). Many

studies have shown that sufficient instability leado a persistent and strong updraft is
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Table 5. Logistic regression models for the probability akcor more flashes during the 1800-
2059 UTC period. Standardized coefficients forheaicthe four regions are shown. Parameters
not selected for inclusion in each model are ingiddy ----- .

Predictor East Coast | West Coast| Panhandle AL & GA
PRECPW 1.628 1.461 1.396 1.326
(PRECPWj -0.400 -0.387 -0.474 -0.491
BESTLI -0.357 -0.641 -0.633 -0.563
MFLXC?2 0.312 0.218 0.321 0.385
MTFREQ 0.296 0.242 0.400 0.216
THEADVS | e 0.132 0.103f = ----
TLAPSE?2 -0.546, - e -
Div4 | e - 0.152 0.133
(MEANU3) x (DISTEC) -0.385| | | e
(MEANU3)?x (DISTEC) 0131 = | e e
(MEANU3) x (DISTWC)|  ----- 0116 |
MEANU3 | = e e 0.237
MEANV3Z | e - -0.093 0.097
MEANSP3 -0.228 -0.418, = -——| -
SINDAY 0.100 0.181 0.066 0.123
Constant -2.160 -1.881 -1.898 -1.940
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Table 6. Negative Binomial regression models for the nundfdlashes during the 1800-2059
UTC period. Standardized coefficients and thawestied shape parameter for each of the four
regions are shown. Parameters not selected flusioo in each model are indicated by ----- .

Predictor East Coast | West Coast| Panhandle AL & GA
MTMEAN 0.156 0.165 0.325 0.414
BESTLI -0.188 -0.238 -0.252 -0.216
Kl 0.126 0.153 0.106] = ----
MFLXC2 0.139 0.069 0.107f -
TLAPSE2 -0.235, | - -0.156
THELAPSEG | | e e -0.102
THEADV5 0.112 0.083] = - -
pivz2 = e e -0.158
Diva | e - 0.122| = ----
MEANU3 0.147, - - 0.056
(MEANU3)? -0.099| | e e
MEANVZ | e - -0.247 -0.174
MEANSP3 | - -0.280, @ | -
SINDAY 0.114 0.055, | e
Constant 3.083 2.992 3.028 3.113
Shape parameteqg) 0.369 0.373 0.368 0.377
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Frequency of One or More Flashes vs. Precipitable W  ater
1800-2059 UTC period

0.40 -
0.35
0.30
0.25
0.20
0.15

0.10

Frequency of One or More Flashes

0.05

o0+

1.00 2.00 3.00 4.00 5.00 6.00 7.00
Precipitable Water (cm)
Unconditional Mean Number of Flashes vs. K-index
1800-2059 UTC period

Unconditional Mean No. of Flashes

O:\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\
-10.0 -5.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

K-index (deg C)

Figure 9. Plots for a) the frequency of one or more flasigea function of precipitable water for
the 1800-2059 UTC period., and b) the unconditionehn number of flashes as a function of K-
index for the same period.
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Frequency of One or More Flashes vs. Best Lifted In  dex
1800-2059 UTC period
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Figure 10. Plots for a) the frequency of one or more flasksea tunction of Best Lifted Index
for the 1800-2059 UTC period, and b) the unconddlanean number of flashes for the 1800-
2059 UTC period.
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Frequency of One or More Flashes vs.
1000 hPa Moisture Flux Convergence
1800-2059 UTC period
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Figure 11. Plots for a) the frequency of one or more flashes, b) the unconditional mean
number of flashes as a function of 1000 hPa madtux convergence for the 1800-2059 UTC
period.

35



Frequency of One or More Flashes vs.
1000-700 hPa Mean U-wind Component
1800-2059 UTC: East Coast Region
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Figure 12. Plots for a) the frequency of one or more flashes, b) the unconditional mean
number of flashes, as a function of 1000-700 hPamtewind component for the East Coast
region (1800-2059 UTC period).
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necessary for charge generation (e.g., Price and F992; Solomon and Baker 1994; Zipser
1994; Petersen and Rutledge 1998). Other stapditgmeters such as LCAPE and SSI were
selected for other time periods.

Coincident areas of abundant moisture (PRECPW)rastdbility (BESTLI) are expected
to be regions of high thunderstorm probability; lexer, storms will not develop without a
source of lift. The selection of MFLXC2 in the Blddd NB models (Tables 5 and 6) indicates
that boundary layer forcing is important for ligimtg formation (e.g., Watson et al. 1987; Reap
and MacGorman 1989; Watson et al. 1991). Large XAFZ usually is associated with low-
level convergence due to the sea breeze and atlhedaries (e.g., lake/river breezes, outflows,
etc.). The relationships in Figs. 11a-b show FREQ 1 and MEANNF generally increase with
greater MFLXC2. However, a non-linear effect igdewt for large negative values, possibly due
to lightning occurring in the divergent stratifonegions of decaying cells.

First and second-order terms of 1000-700 hPa méaoh (MEANU3, MEANV3) were
selected in several equations (Tables 5 and 6is r€hationship is non-linear for the EC region
(Figs. 12a-b), with peak lightning for offshore efe between 2 and 4 ii,sand a decline for
increasing MEANU3. Weak offshore flow producesetiér developed sea breeze and greater
convergence, while strong offshore flow may preuvhatsea breeze from penetrating inland
(McPherson 1970; Pielke 1974; Arritt 1993). Intdi@n terms involving MEANU3 and the
distance from the coast (DISTEC, DISTWC) also wssiected, implying that this relationship is
modulated by proximity to the coast.

Finally, the pattern type predictors (MTFREQ andMHAN) enter all of the equations.
Although MTFREQ does not rank highly in the BLR netglduring the 1800-2059 UTC period,
it usually is among the first selected for otherdiperiods. Conversely, MTMEAN consistently
is the most important predictor in the NB modatsplying that the prevailing wind greatly
influences locations where storms are most likelgersist over an area and produce large
lightning counts (L6pez and Holle 1987; Lericoget2002).

Forecast maps of PRAB are shown in Fig. 13 for 4-5 June 2004. Thedefiels
indicate the 3-hourly PRCGR. based on the RUC analyses valid at the begirofiegch 3-h
period, while the right panels show the lightnitwke verification. This example, which begins
at 1200 UTC on the™and ends at 0300 UTC on th8 Svas a very active day with over 36,000

flashes observed. The sequence of probability mhap®'s the expected diurnal trend in
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Figure 13. Probability of one or more flashes based on RUQyara, and lightning strike
verification for 4-5 June 2004: (a-b) 1200-1459 UYT€&d) 1500-1759 UTC, (e-f) 1800-2059
UTC, (g-h) 2100-2359 UTC, (i-j) 0000-0259 UTC.
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Figure 13 (continued).
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lightning, peaking during the afternoon and thanidishing. More importantly, the agreement
between the forecasts and the verification is gagith most of the observed lightning contained
within the higher probability contours. A forecasample also is presented in Chapter 9 for the

2006 independent test period.

5.2 Reliability and Skill for Dependent Data

Reliability is a measure of the quality of prolhakic forecasts, indicating how well the
probabilities correspond with the observed freqyenfdhe predictand (Wilks 2006). Figure 14
plots FREQ1 as a function of PRCGA. for all regions combined during the 1800-2059 UTC
period. Similarly, Figs. 15a-d show reliabilityops for unconditional PROH for the 58", 75",
90", and 9%' percentiles during the 1800-2059 UTC period (TdBleThe unconditional
probabilities for each threshold, ##( T ), were calculated using Bayes’ rule:

Priy3 T)=Prfy3 T|y3 1) * Pry3 1) : 9)
where Pry3 T |y3 1) is PROBT conditional on one or more flashes occurring &fyg Pry 3
1) is PROB 1 obtained from (2). Figs. 14 and 15 show thafdinecasts exhibit good reliability
and are well calibrated, meaning that the eveatixa frequencies are nearly identical to the
forecast probabilities. Reliability for other tirperiods (not shown) also is very good.

Equations (2) and (9) provide probabilities betwB8eand 1. To make a deterministic
forecast, a probability threshold must be deterohink the probability exceeds the chosen
threshold, the event is forecast to occur; otherwtise event is not forecast. To determine the
optimum threshold, we examined several verificaoares obtained from"22 contingency
tables for the joint distribution of forecasts afibervations. The scores examined include the
probability of detection (POD), false alarm ratiAR), critical success index (CSI), bias ratio
(BR), and the Peirce Skill Score (PSS). Wilks @0gives a complete description of these
guantities, and a samplé 2 contingency table containing formulas for therss is shown in
Table 7. The PSS has several appealing charditegempared to CSI. First, random or
constant forecasts (e.g., always forecasting riarligg) receive the same zero score. Second,
the contribution to PSS by a correct forecast inses as the event becomes less likely. Since
PSS is more suitable for forecasting rare evergsshvose to maximize PSS to determine the

optimum probability thresholds for each model (\WIR006).
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Figure 14. Reliability diagram for the logistic models predlng the probability of one or more
flashes. The results are for all regions combihaihg the 1800-2059 UTC period.
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Reliability Diagram
Negative Binomial Prob(>= 50th percentile)
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Figure 15. Reliability diagrams for the unconditional probatyibf a)3 50", b)3 75", c)3 9d",
and d)? 95" percentiles of flash count. The results are foregions combined during the
1800-2059 UTC period.
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Table 7. Sample Z 2 contingency table and formulas for computingfieation scores.

Observed
Predicted Yes No Total
Yes a b a+b
No c d c+d
Total a+c b+d a+b+c+d

PODa/(a+¢
FARE/ (a + b)
BR=@+hb)/(@a+c
CSl=a/(@a+b+¢

_ad-bc
~ (a+c)(b+d)
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Table 8 shows results for forecasting one or miaghés during the 1800-2059 UTC
period using the RUC analysis valid at 1800 UTCe Tésults in Table 8 are for the four regions
combined. Scores for L-CLIPER also are shown. Sdwes are good, with POD = 0.813, CSI
=0.370, and PSS = 0.498. Scores for forecasti@gmount of lightning are shown in Table 9
using the optimum threshold of unconditional praligb Since forecasting the amount of
lightning is a much more difficult task than forstiag only its occurrence, CSls only range from
0.239 for the 58 percentile to 0.045 for the $%ercentile. One should note the large BRs,
especially for forecasting the '®@nd 95 percentiles. However, these scores improve if onl
cases with one or more flashes are considered€T&))| with CSls ranging from 0.486 to 0.110
and more reasonable BRs.

Figures 16 and 17 plot the skill score for eaclo8rly model expressed as a percent
improvement in CSl and PSS over L-CLIPER and ptsce for all regions combined. The
scores for each time period are positive, indigcatorecast skill over L-CLIPER and persistence.
When forecasting one or more flashes, the modela &12% CSI improvement over L-
CLIPER and a 7-18% improvement over persistenag (lda). Scores with respect to PSS are
greater (Fig. 16b), with the highest scores achlialging periods when lightning is less likely.
Figures 17a-b show similar plots for forecasﬁn@S‘h percentile. The CSI improvement is
modest (3-4%); however, improvements in PSS are dugh (32-49%). Individual monthly
scores (not shown) indicate little difference inllddetween months. Thus, separate equations
for each month were not required.

These results (Tables 8-10 and Figs. 14-17) arthéfour warm seasons of dependent
data. That is, they show the predictive skilllog quations when applied to the same data that
were used to derive them based on RUC analyseapt@9 describes results when the
equations are applied to forecast output from s#weesoscale models during an independent

test period.
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Table 8.2" 2 contingency table and verification scores foefasting one or more flashes
during the 1800-2059 UTC period, using the prohgttihreshold that maximizes PSS (0.214).
These results are for the 2002-2005 developmeatapke using the RUC analysis valid at 1800
UTC. Scores for the BLR model and L-CLIPER arevaino

Observed
Predicted Yes No Total
Yes 229590 339007 568597
No 52834 736292 789126
Total 282424 1075299 1357723

Probability threshold = 0.214

POD =

FAR =

BR =

€SI
PSS =

Model L-CLIPER
0.813 0.677
0.596 0.644
2.013 2.014
0.370 0.289
0.498 .320
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Table 9. Verification scores for forecasting the amountigiitning during the 1800-2059 UTC
period, using a threshold of unconditional prokdgpbthat maximizes PSS. These results are for
the 2002-2005 developmental sample using the RWGysis valid at 1800 UTC. Scores for the
BLR model and L-CLIPER are shown.

3 50" Percentile| 3 75" Percentile| 3 90" Percentile| 3 95" Percentile
Score Model| L-CLIP| Model | L-CLIP| Model | L-CLIP | Model | L-CLIP
POD 0.794| 0.686 0.811 0.664| 0.829 0.700 0.838 0.715
FAR 0.745| 0.800| 0.850| 0.888| 0.922| 0.947f 0.954| 0.971
BR 3.113 3.428 5.398 5.938| 10.638| 13.302| 18.367| 24.692
Csli 0.239| 0.183] 0.145| 0.106f 0.077| 0.051f 0.045| 0.029
PSS 0.451 0.279 0.493 0.298 0.541 0.328 0.576 0.355
P-thresh 0.510| 0.543 0.247 0.290 0.077 0.101 0.030 0.041
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Table 10.Verification scores for forecasting the amountigitning during the 1800-2059 UTC
period for cases in which one or more flashes gedyusing a threshold of conditional
probability that maximizes PSS. These resultdarthe 2002-2005 developmental sample
using the RUC analysis valid at 1800 UTC. Scooestfe BLR model and L-CLIPER are
shown.

3 50" Percentile| 3 75" Percentile| 3 90" Percentile| 3 95" Percentile
Score Model| L-CLIP| Model | L-CLIP| Model | L-CLIP | Model | L-CLIP
POD 0.617 0.475 0.685 0.516 0.755 0.532 0.742 0.591
FAR 0.305| 0.340f 0.600| 0.640f 0.802| 0.825( 0.886| 0.905
BR 0.887 0.719 1.711 1.433 3.822 3.034 6.488 6.210
Csli 0.486| 0.382] 0.338| 0.269| 0.186| 0.152( 0.110| 0.089
PSS 0.165 0.067 0.215 0.096 0.262 0.129 0.299 0.157
P-thresh 0.552| 0.562| 0.285| 0.307| 0.093| 0.116f 0.041| 0.048
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Percent Improvement in Critical Success Index
over L-CLIPER and Persistence
Logistic Models for Prob(>= 1 flash)
2002-2005 Dependent Sample

20
184 - B L-CLIPER -
-3 U (| O Persistence Only | |
T iR
Q
S I T R L N P
()
>
o
S0l - — 4 Bl - B - -
E
2 g+ P B Lo P e _
()
o
[ _ _ _
o
1200-1459 1500-1759 1800-2059 2100-2359 0000-0259 0300-0559 0600-0859 0900-1159
Time Period (UTC)
Percent Improvement in Peirce Skill Statistic
over L-CLIPER and Persistence
Logistic Models for Prob(>= 1 flash)
2002-2005 Dependent Sample
60

EL-CLIPER

O Persistence Only

Percent Improvement

1200-1459 1500-1759 1800-2059 2100-2359 0000-0259 0300-0559 0600-0859 0900-1159
Time Period (UTC)

Figure 16. Percent improvement in a) Critical Success Indes, @ Peirce Skill Statistic
compared to L-CLIPER and persistence alone. Tresséts are for the logistic (yes/no) models
applied to the 2002-2005 dependent data sample.
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Percent Improvement in Critical Success Index
over CLIPER and Persistence
Negative Binomial Models for Prob(>= 95th percentile)
2002-2005 Dependent Sample
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Figure 17. Percent improvement in a) Critical Success Indes, @ Peirce Skill Statistic
compared to L-CLIPER and persistence alone. Tre=sdts are for the negative binomial
models for Prob( 95" percentile)applied to the 2002-2005 dependent data sample.
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CHAPTER SIX

SUMMARY AND CONCLUSIONS
OF MODEL DEVELOPMENT

The major objective of this study was to develdpgh resolution, gridded forecast
guidance product for warm season CG lightning ¢\erida using the PP method. Four warm
seasons of NLDN data and an archive of RUC20 aesly®re used to develop equations for
PROB 1, as well as PROCHI, for each 3-h period on a 1010 km grid. RUC-analyses of sea-
level pressure and a map-typing technique were tsddvelop lightning frequencies for five
dominant flow types to capture small scale enhaecésndue to local forcing that are not well
resolved by NWP models. The map type frequendeasell as RUC-analyzed parameters
describing temperature, moisture, stability anddwrere used as candidate predictors.

BLR was used to develop the equations for PROBvhile NB regression was used to
model the number of flashes conditional on one orenflashes occurring. The NB distribution
provides the best fit to the underlying count dsttion, enabling PROBT for any count
threshold T) to be calculated. A combination of stepwise soneg and cross-validation was
used to select the best combination of predictoasis most likely to generalize to independent
data. Five variables were found to have the gs¢atéluence on the likelihood of one or more
flashes and the amount of lightning. They are daggr moisture (PRECPW), instability
(BESTLI/ LCAPE), boundary layer forcing (MFLXC2)afiern type (MTFREQ/ MTMEAN),
and the low-level wind (MEANU3/MEANV3).

The forecast equations show skill over persistemceclimatology (L-CLIPER) when
applied to the dependent sample of RUC analyses.niddels for PROBL produce a 6-12%
improvement in CSI over L-CLIPER and a 7-18% impmmaxent over persistence, with even
greater improvements with respect to PSS. The lmddethe amount of lightning also are
skillful. Although the results based on the deparidample are encouraging, a more rigorous
test is required to determine the true skill of ssheme when applied to independent data.

Results for an independent test period using mimdetasts are presented in Chapter 9.
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CHAPTER SEVEN

INTRODUCTION TO MODEL EVALUATION

Improved forecasts of CG lightning would have mantential societal benefits. Skillful
probabilistic guidance in the 3-12 h time frame doailow the public to better assess the CG
lightning threat and thereby support better denisiaking regarding the protection of life and
property. Some of the economic sectors that wbatltkfit include organizers of outdoor
sporting events, the fire weather community, agiatthe maritime industry, outdoor
construction, and electric utilities. A producatiproduces accurate and timely CG lightning
threat information should lead to reduced fataiied injuries.

Chapters 2-6 of this dissertation described theldgwnent of a perfect prognosis (PP)
scheme to produce 3-hourly spatial probability éasts of CG lightning on a 1010 km grid
encompassing all of Florida and southern portidmslabama and Georgia (Fig. 1). We used an
archive of 0-h RUC analyses from the 2002-2005 wseasons (May-September) to relate
observed atmospheric parameters to spatial andot@in@G lightning patterns. A map typing
procedure described in Lund (1963) and Reap (1984a)used to develop lightning frequency
predictors for five dominant flow patterns basedRWC analyses of sea-level pressure. The
map type frequencies provide detailed informatibawa local effects that may be too small in
scale to be resolved by mesoscale models. Weausenhbination of stepwise variable selection
and cross-validation to develop BLR models for PROBr each 3-h period, while a NB model
was used to forecast PR®B conditional on one or more flashes occurring.

Precipitable water (PRECPW), best lifted index (BEB, boundary layer moisture flux
convergence (MFLXC), mean layer u and v wind congmdsi (MEANU, MEANV), and the map
type lightning frequencies (MTFREQ, MTMEAN) wereufad to be the most important
predictors for one or more flashes and the amolingidning. These findings are consistent
with previous studies (e.g., McPherson 1970; Piéke4; Lopez et al. 1984; Lopez and Holle
1987; Reap and MacGorman 1989; Watson et al. 1@3de and Rind 1992; Arritt 1993;
Solomon and Baker 1994; Zipser 1994; Petersen aitiddgie 1998; Mazany et al. 2002; Lericos
et al. 2002; Bothwell 2002, 2005; Lambert et aDZ0Shafer and Fuelberg 2006).
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The lightning forecast models were shown to hawageliability in that forecast
probabilities corresponded well with event obsemaddtive frequencies. Additionally, the
scheme was found to have forecast skill relative maodel containing only climatology and
persistence (L-CLIPER) and to persistence alonewith@as applied to the 2002-2005
dependent sample.

The results presented in part one of this studyap@r 5) were based on the dependent
data sample. That is, the results showed thedkile equations when applied to the same RUC
data used to derive them. These results, whilm@iag, do not assess the scheme’s ability to
generalize to data not involved in its developmdntaddition, the objective of any PP approach
is to demonstrate forecast skill when applietbrecastsof the predictors and not just 0-h
analyses.

The goal of part two is to evaluate the utilitytoé lightning forecast scheme when
applied to forecast output from several mesoscaldets during an independent test period (the
2006 warm season). Output from two mesoscale rmadalby the National Centers for
Environmental Prediction (NCEP), as well as loaghhresolution runs of the Weather Research
and Forecasting (WRF) model are used in the evaluaiThese datasets and the methodology
are described in Chapter 8. Results from each havderesented in Chapter 9, along with an
example probabilistic forecast for a case duringusi 2006 using output from the high

resolution WRF. A summary of results is given ima@ter 10.
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CHAPTER EIGHT

DATA AND METHODOLOGY

We applied the lightning guidance equations deedrib part one (Chapter 5) to forecast
output from three mesoscale models during the 208én season (1 May — 30 September).
These models are the 1500 UTC run of the NCEP 1Rki€ (RUC13), the 1200 UTC run of
the NCEP 12-km North American Mesoscale (NAM12)] &tal high resolution WRF runs
initialized at 1500 UTC with data from the Local #ysis and Prediction System (LAPS).

RUC is a mesoscale high-frequency data assimilanahshort-range numerical
prediction system (Benjamin et al. 2004). It rahshe highest frequency of any NCEP forecast
model, assimilating recent observations to prowiderly updates of current conditions and
short-range numerical forecasts. RUC is uniquersaperational NWP systems in its hourly
forward assimilation cycle and its use of a hylsehtropic terrain-following vertical coordinate
(Benjamin et al. 2004). The most recent RUC upgnads implemented at NCEP on 28 June
2005, providing increased resolution to 13 km angrovements in model physics. RUC13 uses
an ensemble based Grell/Devenyi convective paraipat®n scheme, and an improved version
of the bulk mixed-phase cloud microphysics schemoe fthe National Centers for Atmospheric
Research (NCAR)/ Penn State Mesoscale Model veBs{dhV5). The RUC13 assimilates new
observation types, including GPS precipitable watet METAR cloud, visibility, and current
weather observations. A detailed description of Riata assimilation methods and model
physics is given in Benjamin et al. (2002).

We also used two versions of the WRF model to etalthe lightning guidance
equations; the 12-km NCEP operational NAM-WRF, arfdkm LAPS-initialized WRF (WRF-
LAPS) that is run locally at the NWS Weather Fost@ffice (WFO) in Miami, FL. WRF is a
state-of-the-art, regional atmospheric model fagraponal numerical weather prediction and
atmospheric research (UCAR 2002). WRF has two niyced cores, the WRF-Nonhydrostatic
Mesoscale Model (NMM) version developed by the Emvwnental Modeling Center (EMC) at
NCEP, and the Advanced Research WRF (ARW) develbgediCAR. Both contain a variety
of options for physics packages, including cloudnephysics, boundary-layer and surface

processes, convective parameterizations, and sfawe-and long-wave radiation. These options
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provide sufficient sophistication so that WRF ca&nuised for a broad range of research and
operational applications (UCAR 2002). Completecdesions of the model physics and
parameterization options are given in Janjic e{28l04) and Skamarock et al. (2005). The
various dynamics and physics options used in thklANICEP NAM-WRF and the 4-km WRF-
LAPS are summarized in Table 11.

WRF-LAPS is part of the WRF Environmental Modeltagstem (WRF-EMS) that is
distributed by Dr. Robert Rozumalski at the Uniugr€orporation for Atmospheric Research
(UCAR). WRF-EMS is a complete, full-physics, numat weather prediction package that
incorporates the dynamical cores from both the NGV and the NCEP NMM releases into
a single end-to-end forecasting system (UCAR 2006).

Unlike the NCEP operational NAM-WRF, the version at the Miami WFO uses high
resolution LAPS and NCEP 1/12legree sea-surface temperature (SST) data forlmode
initialization (Table 11). LAPS is a diagnostiotahat is part of the Advanced Weather
Information Processing System (AWIPS). LAPS pradua high resolution three-dimensional
analysis of the atmosphere by combining a backgtdmhd (obtained from the 1-h forecast of
the AWIPS 40-km RUC) with local data from a variefyobserving systems. LAPS input data
include surface observing systems, Doppler radats]lites, wind and temperature profilers, and
data from aircraft (Hiemstra et al. 2006). The ISA&alysis produced at Miami has a horizontal
resolution of 5 km, with 39 vertical levels at 2Banintervals from 1000 hPa to 50 hPa. It uses
satellite data and level 3 reflectivity data frame tMiami and Key West NWS radars to create
three-dimensional diabatic analysis grids to ii#&athe WRF model (“hot start” initialization).
The inclusion of data from local mesonetworks eclkarthe analysis of inland and coastal
gradients, and better depicts the effects of Lakee®Ghobee on surface fields (Etherton and
Santos 2006).

Bogenschutz (2004) performed a statistical evadnati forecasts produced by WRF
version 1.3 with LAPS initialization, and the 12-l&1A during the summer and fall seasons of
2003. He found that WRF-LAPS considerably outpenied the ETA model for sea breeze
detection, and also correctly forecast sea brdezm@al, and air-mass convection in many cases.
A recent study by Etherton and Santos (2006) fahat WRF forecasts initialized using locally

produced LAPS analyses generally produced bettecdsts of surface temperature, specific
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Table 11.Comparison of NCEP NAM-WRF and WFO Miami WRF-LAP&tigurations.

NCEP NAM-WRF WREF-LAPS
Initialization time 1200 UTC 1500 UTC
Model resolution 12 km 4 km
Dynamical core NMM NMM
Cumulus scheme Betts-Miller-Janijic Kain-Fritsch
Microphysics scheme Ferrier Ferrier
Turbulence/PBL scheme Mellor-Yamada-Janjic Mellor-Yamada-Janjic
Surface layer physics Janjic Similarity Janjic Similarity
Radiation package GFDL GFDL
Land surface model NOAH LSM (4 layers) NMM LSM (4 layers)
Initialization NCEP Gridpoint Statistical LAPS and

Interpolation (GSI) System NCEP 1/12' degree SST
Lateral boundary conditions 0600 UTC run of the 1200 UTC run of the
Global Forecast System NCEP NAM-WRF
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humidity, wind, and sea level pressure than thogrlized using the NAM/ETA, patrticularly
during the first 6 h of the forecast.

WRF-LAPS forecasts (initialized at 1500 UTC) foetberiod 19-30 September were
provided by Dr. Pablo Santos (NWS Miami, FL), whilms for the 1 August — 18 September
period were produced locally at Florida State Ursitg (FSU) using the WRF-EMS package.
The LAPS, 1/1% degree SST, and NAM12 lateral boundary condities frequired to produce
the FSU runs also were provided by Dr. Santos. WRe--LAPS domain is centered on the
Miami WFO county warning area (Fig. 18). The modmhfiguration used to create the FSU
runs for 1 August — 18 September was the sameaaisised at Miami (Table 11). We did not
compare results using different physics optionsusnulus schemes. An examination of the
sensitivity of the lightning forecasts to differanbdel configurations is beyond the scope of this
dissertation.

Forecasts from RUC13 encompass 1 May — 30 Septegibb@rdays), while forecasts
from the NCEP operational NAM-WRF are from 20 Jui#0 September (103 days). We used
forecasts for every 3 h outto 12 h (i.e., the @-h, 6-h, 9-h, and 12-h projections). Forecast
parameters needed for the lightning guidance egumtiChapter 5) were calculated from the
model temperature, dew point, wind, height, andeserpressure fields. They were interpolated
to the 10 x 10-km grid (Fig. 1) and transformea itite format of a vertical sounding at each
grid point.

CG lightning data for the period 1 May — 30 Septen2006 were obtained from the
NLDN. Cummins et al. (1998, 2006) give a comphiscription of the NLDN as well as
statistics on flash detection efficiency and lomataccuracy. Details of the flash counting

procedure and predictand development were giv&hapter 3.
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Figure 18. WRF-LAPS computational domain, with array of 4-kndgpoints.
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CHAPTER NINE

RESULTS OF MODEL EVALUATION

The results presented in this chapter are for thalSFlorida domain (Fig. 18) during the
1 August — 30 September 2006 period. This is timraon region and time period for which
forecast data for all models were available (N\CEP RUC13, NCEP NAM-WRF, and WRF-
LAPS). State-wide results for the RUC13 and NAM-/# not vary significantly from those
described for the South Florida region. It shcadhoted that the 1200 UTC cycle time of the
NAM-WRF hinders the forecasting of afternoon andrerg lightning compared to the 1500
UTC runs of the RUC13 and WRF-LAPS. Thus, ournhts not to scrutinize differences in
performance between the three models. Ratheglgactive is to describe the results that
would have been achieved operationally if the mestntly available run of each model had
been used to generate the lightning forecasts aalon of each day.

We calculated several verification scores for fasting one or more flashes and the
amount of lightning (i.e3 50" 3 75" 3 90", and® 95" percentiles) for each time period. Flash
count thresholds for each percentile and 3-h pesect given in Table 1. Scores that were
calculated include POD, FAR, CSI, BR, and PSS,gipnobability thresholds determined from
the 2002-2005 developmental sample (i.e., whichimizred the PSS) (Chapter 5). Wilks
(2006) gives a complete description of these scores

Table 12 shows 2 2 contingency tables and verification scores wioeecasting one or
more flashes during the most active lightning p@(ib800-2059 UTC). These results are from
the 1500 UTC RUC13 (top), 1200 UTC NAM-WRF (middlahd 1500 UTC WRF-LAPS
(bottom) forecasts valid at 1800 UTC. Scores usimgodel containing only climatology and
persistence (L-CLIPER) also are given. Based prohability threshold of 0.214, between 80-
90% of the events with one or more flashes areigestiduring the 1800-2059 UTC period
(Table 12). PODs range from 0.802 using the NAMHWR 0.896 using the RUC13, with
reasonable FARs and BRs. The WRF-LAPS produce®irest FAR, highest CSI, and highest
PSS for forecasting one or more flashes (Table A8)discussed in Chapter 8, the use of high
resolution LAPS and SST data for model initialinatproduces better forecasts of the sea-breeze
(Bogenschutz 2004) as well as surface temperaiime, humidity, and sea-level pressure
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Table 12.2"° 2 contingency tables and verification scores éme¢asting one or more flashes
during the 1800-2059 UTC period, using a probabthtreshold determined from the 2002-2005
dependent sample. These results are for the 1shugB0 September 2006 period using the
1500 UTC NCEP RUCA13 (top), 1200 UTC NCEP NAM-WRHddte), and 1500 UTC WRF-
LAPS (bottom) forecasts valid at 1800 UTC.

Observed RUC13 L-CLIPER
Predicted Yes No Total POD = 0.8960.933
Yes 10239 10508 20747 FAR = 0.507 0.584
No 1188 10578 11766 BR = 1.816 2.243
Total 11427 21086 32513 CSI= 0.467 0.404
Probability threshold = 0.214 PSS = 0.398 .228

Observed NAM-WRF L-CLIPER
Predicted Yes No Total POD = 0.8020.951
Yes 8900 9713 18613 FAR = 0.522  0.585
No 2197 11170 13367 BR = 1.677 2.291
Total 11097 20883 31980 CslI= 0.428  0.406
Probability threshold = 0.214 PSS = 0.337 .238

Observed WRF-LAPS L-CLIPER
Predicted Yes No Total POD = 0.8150.951
Yes 9038 7845 16883 FAR = 0.465  0.585
No 2051 11980 14031 BR = 1.522 2.292
Total 11089 19825 30914 CSI= 0.477 0.407

Probability threshold = 0.214 PSS = 0.419 .20Q
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during the first 6 h (Etherton and Santos 2006)is Téads to better placement of convergence
boundaries as well as local maxima in moistureiastbility, resulting in improved lightning
forecasts.

Table 13 shows results from forecastin§5" percentile lightning events (i.6.,104
flashes within 10 km of a grid point) during theDD82059 UTC period. Forecasting these rare
events is very difficult. Based on an unconditigorabability threshold of 0.03 (determined
from the developmental data), the three modelsigrredtween 30-60% of the events, but at the
expense of a large over-forecasting bias and higjRsHresulting in low CSI scores). As
expected, there is better predictability of lowergentile thresholds (not shown), yielding
generally higher CSls and lower FARs. It shoulchbted that the use of a separate optimum
probability threshold for each NWP model producettds scores than those shown in Tables 12
and 13. However, these model specific thresholdst toe fine-tuned to the bias characteristics
of each model and thus, could not be used opesdljomnless new thresholds were determined
each time that changes are made to the models.

Despite the poor predictability of 9%ercentile events (Table 13), it is important ¢oen
that all three NWP models produce better lightrforgcasts than a model based on climatology
and persistence alone (L-CLIPER). The same isftnuirecasting one or more flashes (Table
12). Figures 19-21 compare skill scores for eaodehand time period expressed as a percent
improvement in CSIl and PSS over L-CLIPER (a) andbael containing persistence alone (b).
These results are very encouraging, especiallyidensg that L-CLIPER tends to give very
good forecasts during Florida’'s warm season. Wbaeatasting one or more flashes, all models
show positive skill through the 2100-2359 UTC pdnaith respect to CSI (Fig. 19) and PSS
(Fig. 20). During the most active lightning perid800-2059 UTC), model CSls are a 4-12%
improvement over L-CLIPER (Fig. 19a) and a 12-198provement over persistence (Fig. 19b),
with the WRF-LAPS outperforming the RUC13 and NAMRW. Skill scores with respect to
PSS are even higher (Fig. 20). When forecasti@§" percentile events (Fig. 21), only the
RUC13 and WRF-LAPS are skillful compared to L-CLRErough 6 h (Fig. 21a), with WRF-
LAPS performing the best during 2100-2350 UTC (~ dt®brovement). All models are
skillful through the 2100-2359 UTC period with regspto persistence alone (Fig. 21b), with
scores ranging from a 20-50% improvement betwe@®@-1559 UTC to a 18-30% improvement
between 2100-2359 UTC. Figures 19-21 also illustiiae expected degradation in forecast skill
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Table 13.2° 2 contingency tables and verification scores éve¢asting 95" percentile events
during the 1800-2059 UTC period, using an uncooddl probability threshold determined from
the 2002-2005 dependent sample. These resulferate 1 August — 30 September 2006
period using the 1500 UTC NCEP RUC13 (top), 120@CWINCEP NAM-WRF (middle), and
1500 UTC WRF-LAPS (bottom) forecasts valid at 1800C.

Observed RUC13 L-CLIPER
Predicted Yes No Total POD = 0.5970.944
Yes 329 9171 9500 FAR = 0.965 0.979
No 222 22791 23013 BR = 17.241 45.606
Total 551 31962 3351 CSl = 0.034 0.021
Probability threshold = 0.030 PSS = 0.310 .1790

Observed NAM-WRF L-CLIPER
Predicted Yes No Total POD = 0.3150.947
Yes 173 6411 6584 FAR = 0.974 0.979
No 376 25020 25396 BR = 11.993 45.271
Total 549 31431 3098 CSl= 0.025 0.021
Probability threshold = 0.030 PSS = 0.111 .178

Observed WRF-LAPS L-CLIPER
Predicted Yes No Total POD = 0.4040.947
Yes 222 5383 5605 FAR = 0.960  0.979
No 327 24982 25309 BR = 10.209 44.508
Total 549 30365 3091 CSl= 0.037  0.021

Probability threshold = 0.030 PSS = 0.227 .160
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Percent Improvement in Critical Success Index vs. L -CLIPER
Models for prob(>= 1 flash)
1 Aug - 30 Sept 2006, South Florida Domain
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Figure 19. Percent improvement in Critical Success Index caepb#o a) L-CLIPER and b)
persistence alone. These results are for thetiogyes/no) models applied to forecast output
from the 1500 UTC RUC13, 1200 UTC NAM-WRF, and 1%00C WRF-LAPS during 1
August — 30 September 2006.
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b)

Percent Improvement in Critical Success Index vs. P ersistence
Models for prob(>= 1 flash)
1 Aug - 30 Sept 2006, South Florida Domain
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Figure 19 (continued).

64



Percent Improvement in Peirce Skill Statisticvs. L~ -CLIPER
Models for prob(>= 1 flash)
1 Aug - 30 Sept 2006, South Florida Domain
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Figure 20. Percent improvement in Peirce Skill Statistic coredao a) L-CLIPER and b)
persistence alone. These results are for thetiogyes/no) models applied to forecast output
from the 1500 UTC RUC13, 1200 UTC NAM-WRF, and 1%00C WRF-LAPS during 1
August — 30 September 2006.
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b)

Percent Improvement in Peirce Skill Statistic vs. P ersistence
Models for prob(>= 1 flash)
1 Aug - 30 Sept 2006, South Florida Domain
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Figure 20 (continued).
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Percent Improvement in Peirce Skill Statisticvs. L -CLIPER
Forecasting >= 95th percentile
1 Aug - 30 Sept 2006, South Florida Domain
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Figure 21. Percent improvement in Peirce Skill Statistic coredao a) L-CLIPER and b)
persistence alone. These results are for predittBs" percentile events based on forecast
output from the 1500 UTC RUC13, 1200 UTC NAM-WRRd&500 UTC WRF-LAPS during
1 August — 30 September 2006.
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b)

Percent Improvement in Peirce Skill Statistic vs. P ersistence
Forecasting >= 95th percentile
1 Aug - 30 Sept 2006, South Florida Domain
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Figure 21 (continued).
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at longer forecast times, with none of the modeiadp skillful during the chaotic late evening
period (0000-0259 UTC). Forecasts from the 1800 Wdy¢€le of the RUC13, NAM-WRF, and
WRF-LAPS (not examined) likely would exhibit posgiskill even at this time period.

The results in Tables 12 and 13 are based on wécy/ \gerification criteria; that is, the
lightning must occur within 10 km of a grid pointable 14 gives results from the 1500 UTC
WRF-LAPS if the event is permitted to verify onédgooint away in any direction from the
forecast grid point. This relaxed criterion giveach improved scores for forecasting one or
more flashes (top), and somewhat better scordeffecasting 95" percentile (bottom). The
same is true for the NCEP RUC13 and NAM-WRF (navah). Although better scores are
achieved, it is important to note that scores f€ILIPER also increase by a proportionate
amount. Thus, little if any additional “skill” igained by relaxing the verification criteria.

The results presented thus far (Tables 12-13 agsl EB-21) represent a composite of all
events over all time periods. Given the highlyiaale nature of thunderstorms and lightning
over Florida during the warm season, day-to-dagtd@lations in predictability and skill are
expected. Figure 22 is a time series of CSI wioeechsting one or more flashes between 1800-
2059 UTC using the three models (only periods wiltor more events have been included).
Large day-to-day fluctuations are evident, with sgmeriods having CSI > 0.70, while a few
have CSls of only ~ 0.10. Itis evident (Fig. 28ttfluctuations in CSI tend to occur in unison
among the three models. Further investigationaksvimat the CSI fluctuations are highly
correlated (~ 0.90) with the areal coverage of hghg. That is, higher CSls occur during periods
when lightning is more widespread, with lower ssadearing periods with less coverage.

Figure 23 shows a time series of the percent imgrent in CSl relative to L-CLIPER
(solid) and persistence (dashed) for the 1800-20B68 period using the NCEP RUC13. ltis
clear that improvement scores fluctuate considgratith most periods ranging from a small
improvement (i.e., only a few percentage point)@&. Conversely, some periods show
improvements of 30% or greater, while 10 of thgpéBods (~ 23%) exhibit negative scores (i.e.,
zero skill). All but five of the periods, howevahow an improvement over persistence. Time
series of skill scores for the NAM-WRF and WRF-LAR®t shown) exhibit similar variations,
with the NAM-WRF having more periods with negats@res. Unlike the time series of CSI
(Fig. 22), the fluctuations in skill score (Fig.)28e only weakly correlated with the areal

coverage of lightning. Further investigation rdgdhat these fluctuations in skill are due in part
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Table 14.2"° 2 contingency tables and verification scores éme¢asting one or more flashes
(top) and® 95" percentile events (bottom) during the 1800-2059 We6od using the 1500
UTC WRF-LAPS forecast valid at 1800 UTC. Thesailtssare for the 1 August — 30
September 2006 period. The lightning event is iégchto verify one grid point away in any
direction from the forecast point.

Observed 1 WRF-LAPS L-CLIPER
Predicted Yes No Total POD = 0.7650.938
Yes 12586 4297 16883 FAR = 0.255 0.393
No 3869 10162 14031 BR = 1.026 1.544
Total 16455 14459 30914 CSI= 0.607 0.583
Probability threshold = 0.214 PSS = 0.468 .240

Observed 95" WRF-LAPS L-CLIPER
Predicted Yes No Total POD = 0.4100.927
Yes 752 4853 5605 FAR = 0.866 0.930
No 1080 24229 25309 BR = 3.059 13.038
Total 1832 29082 30914 CsSI= 0.112 0.069

Probability threshold = 0.030 PSS = 0.244 .146
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Time Series of Critical Success Index
Models for Prob(>= 1 flash)
1800-2059 UTC period
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Figure 22. Daily time series of Critical Success Index for ##890-2059 UTC period based on
forecast output from the 1500 UTC RUC13, 1200 UTEAMNWRF, and 1500 UTC WRF-LAPS
during 1 August — 30 September 2006. Periods feitler than 50 events have been omitted
from the time series. An “event” is defined as dloeurrence of one or more flashes within a 10-
km radius of a grid point.
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Time Series of Percent Improvement in CSI
Model for Prob(>= 1 flash) Using 15Z NCEP RUC13
1800-2059 UTC period
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Figure 23. Daily time series of the percent improvement inti€al Success Index with respect
to L-CLIPER (solid) and persistence (dashed) fer1B00-2059 UTC period. These scores are
based on forecast output from the 1500 UTC RUCIBhdu August — 30 September 2006.
Periods with fewer than 50 events have been omiitted the time series. An “event” is defined
as the occurrence of one or more flashes withid-km radius of a grid point.
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to changes in the synoptic pattern (i.e., the lewel prevailing wind). With the inclusion of
pattern-type lightning predictors (Chapters 4 apdie scheme tends to significantly outperform
L-CLIPER and persistence on days when the pattansitions from one type to another.
Conversely, L-CLIPER tends to be a good first gwesen the synoptic pattern on a given day is
similar to that of the previous day. In these sdseecast skill relative to L-CLIPER depends
more on the correct placement of small-scale feat(ire., convergence boundaries, moisture
pools, etc.).

An example lightning probability forecast is shoimrfig. 25 for 16-17 August 2006
using the 1500 UTC WRF-LAPS. A map with county eanand labeled geographical features
is shown in Fig. 24. Results using the RUC13 aAd/NNVRF (not shown) compare favorably
with those from WRF-LAPS on this day. The figun®ws the probability of one or more
flashes (left panels), the unconditional probapitit3 90" percentile events (center), and the CG
strike verification (right panels) for four 3-h tenperiod. The flow pattern on this day is type A
(Chapter 4), with prevailing southeasterly low-leflew and no synoptic or tropical influences.
Between 1500-1759 UTC, the greatest probabilityrad or more flashes (between 30-40%) is
forecast over eastern Broward and northern MiandedD@1D) counties, with probabilities 10%
or greater for areas south of Lake Okeechobee (LBK) 25a). The verification (Fig. 25¢)
shows that storms develop over some of these areasgver, the probabilities do not capture
the activity that develops near LOK and over easBalm Beach (PB) county (this activity
developed after 1700 UTC). Forecast probabilitedgl at 1800 UTC (Figs. 25d and e) are
considerably greater across South Florida tha®@d UTC (Figs. 25a and b), with the highest
values concentrated along the west coast as welstern PB, Broward, and MD counties. The
verification for this period (Fig. 25f) reveals igrsficant increase in activity (over 7000 flashes)
along the west coast and over Broward and MD ceantWith the exception of the activity that
occurs south of LOK, this verification agrees weilth the forecast probabilities (Figs. 25d and
e). Forecast probabilities for the 2100-2359 UEdqa (Figs. 25g and h) have increased south
of LOK, and lightning occurs just east of this ao¥ar central and western PB and Broward
counties (Fig. 25i). The area of enhanced proligsilnorth of LOK does not verify during this
period (Fig. 25i), however, lightning does occwerthjust one hour earlier, i.e., between 2000-
2030 UTC (Fig. 25f). Finally, forecast probabéifor the 0000-0259 UTC period (Figs. 25j
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Figure 24. Map of South Florida with county names and gedgigh features labeled.
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a) 0-h:1500-1759 UTC D) 0-h: 1500-1759 UTC C) 0-h: 1500-1759 UTC

d) 3-h:1800-2059 UTC €) 3-h:1800-2059 UTC f) 3-h: 1800-2059 UTC

g) 6-h:2100-2359 UTC h) 6-h: 2100-2359 UTC 1) 6-h: 2100-2359 UTC

Figure 25. Probability of one or more flashes (left panelsicanditional probability of 90"
percentile (center panels), and CG strike veriitcasuperimposed on the one or more flash
probabilities (right panels) for 16-17 August 20i#sed on 1500 UTC WRF-LAPS (a-c) 0-h, (d-
f) 3-h, (g-i) 6-h, and (j-I) 9-h forecast projeat®m Valid time periods are shown above each plot.

Note the different color scales for the left andtee panels.
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|) 9-h:0000-0259 UTC  K) 9-h: 0000-0259 UTC ) 9-h: 0000-0259 UTC

Figure 25 (continued).
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and k) show a diminishing lightning threat, andded little activity occurs during this period
(Fig. 25I).

The example in Figure 25 is typical of many othdweng the 1 August — 30 September
2006 period. That is, the sequence of probaliifps shows the expected diurnal trend in
lightning, peaking during the afternoon and thanidishing. The lightning forecasts generally
show good agreement with the verification, with tmafshe observed lightning occurring within
the higher probability contours. However, as obséon 16-17 August, the timing and
placement of lightning maxima is not perfect. Nibedess, the forecasts do capture the general
spatial and temporal trends in observed lightning lavel of detail that, to our knowledge, has

not been reported previously.
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CHAPTER TEN

SUMMARY AND CONCLUSIONS
OF MODEL EVALUATION

The objective of this study was to evaluate thityitof a PP scheme for forecasting
warm season lightning over Florida (described im@tars 4 and 5) using forecast output from
three mesoscale models during an independenteéastdg1l May — 30 September 2006). The
lightning guidance equations were applied to foseocatput from the 1500 UTC NCEP RUC13,
the 1200 UTC NCEP NAM-WRF, and high resolution rohshe WRF initialized at 1500 UTC
with LAPS and NCEP 1/12degree SST data (WRF-LAPS).

Results for the South Florida domain (Fig. 18) dgrl August — 30 September 2006
were presented. Verification scores including PERBR, CSI, BR, and PSS were calculated for
each model and time period, based on probabiligstivlds determined from the 2002-2005
developmental sample. During the most active figitg period (1800-2059 UTC), the three
models forecast between 80-90% of the lightninghessbaving one or more flashes, and
between 30-60% of the events with flash counts imgetr exceeding the 85percentile. Of the
three mesoscale models, WRF-LAPS generally prodtieetbwest FAR, highest CSI, and
highest PSS when forecasting either one or mosadaor the amount of lightning between
1800-2059 UTC.

Forecasts from all three mesoscale models genetadiywed positive skill with respect to
L-CLIPER and persistence through the 2100-2359 @&fod. During the most active period
(1800-2059 UTC), model CSls were a 4-12% improverogar L-CLIPER and a 12-19%
improvement over persistence, with the WRF-LAP$etforming the RUC13 and NAM-WRF.
When forecasting 95" percentile events, only the RUC13 and WRF-LAP Sevaillful with
respect to L-CLIPER through 6 h, with WRF-LAPS penfing the best during 2100-2350 UTC
(~ 21% improvement in PSS). All models were skilthrough the 2100-2359 UTC period with
respect to persistence alone, with scores rangamy & 20-50% improvement between 1500-
1759 UTC to a 18-30% improvement between 2100-2B858.

Time series plots of CSI for the 1800-2059 UTC petshowed significant day-to-day

fluctuations, with CSls ranging from 0.10 to 0.7These fluctuations were highly correlated (~
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0.90) with the areal coverage of lightning, witlgler CSls achieved during periods when
lightning was more widespread. Similar plots fkitl sScores relative to L-CLIPER and
persistence also showed significant fluctuations idyart to changes in the synoptic pattern.

An example probability forecast was shown for 16ALligust 2006 using the 0-h, 3-h, 6-
h, and 9-h forecasts from the 1500 UTC WRF-LAPSe $&guence of probability maps for each
3-h period showed the expected diurnal trend inttiopng. The exact timing and placement of
lightning was not perfect; however, there genenathg good agreement between the forecasts
and the verification, with most of the observedhtigng occurring within the higher probability
contours.

The positive skill demonstrated by the RUC13, NAMR®Wand WRF-LAPS (through
2100-2359 UTC) during the 1 August — 30 Septemé&rgeriod is strong evidence that the PP
scheme truly is model independent. The results @gdsnonstrate that a model initialized with
high resolution LAPS and SST data is capable odlgpcong good lightning forecasts.

The guidance that we have developed representag@ortant step toward more precise
and timely lightning forecasts. The PP underpigrpermits the equations to be implemented
using any NWP model and for any forecast projectidhe inevitable changes to the NWP
models will not require redevelopment of the equagj and in fact, should only improve the
forecasts (Wilks 2006). Conversely, the main drasias that the PP scheme assumes a
“perfect” forecast/analysis of the predictors bg WP model and thus, does not account for, or
correct any type of NWP forecast error. Nonetlelas the spatial resolution and physics of
mesoscale models continue to improve, better lightforecasts are expected to result.

The methodology that we have developed is an emma@ct to schemes already in use
(e.g., Bothwell 2002, 2005). Further improvememisbe achieved in future work. For
example, temporal resolution can be increased bgldping separate PP equations for each
hour, which could be applied to hourly forecastsrfrthe RUC13. Plans already are in place to
incorporate the lightning guidance into the IntékecForecast Preparation System (IFPS)
Graphical Forecast Editor (GFE) at the TallahadbaS office. A forecaster then can use
output from one NWP model or a blend of two or mmedels to generate lightning
probabilities using a “smart tool” in GFE. Theuksg lightning forecasts then could be

accessed by the public through NWS web sites aed log the NWS in forecast products.
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Future work also will seek to expand the schenwher parts of the country. Since
some of the statistical assumptions made for Fhomicy not be applicable to other areas,
appropriate modifications will be needed. In addit future efforts should determine whether a
Bayesian framework can produce better results tiase achieved in this study using the more
classical methods. In the longer term, the avdilglof higher resolution analyses (e.§.10
km) and a larger developmental sample should pedueater reduction of variance and more
robust estimates of the model parameters. Finatigurate cloud analyses and improved NWP
model forecasts of cloud hydrometeor profiles wélmit cloud microphysical parameters to be

included in the equations.
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