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ABSTRACT 
 
 
 

  Image segmentation is one of the most important categories of image processing.  

The purpose of image segmentation is to divide an original image into homogeneous regions. It 

can be applied as a pre-processing stage for other image processing methods.  There exist several 

approaches for image segmentation methods for image processing.  The watersheds 

transformation is studied in this thesis as a particular method of a region-based approach to the 

segmentation of an image.  The complete transformation incorporates a pre-processing and post-

processing stage that deals with embedded problems such as edge ambiguity and the output of a 

large number of regions.  Multiscale Morphological Gradient (MMG) and Region Adjacency 

Graph (RAG) are two methods that are pre-processing and post-processing stages, respectively.  

RAG incorporates dissimilarity criteria to merge adjacent homogeneous regions. 

 In this thesis, the proposed system has been applied to a set of co-aligned images, which 

include a pair of intensity and range images. It is expected that the hidden edges within the 

intensity image can be detected by observing range data or vice versa.  Also it is expected that 

the contribution of the range image in region merging can compensate for the dominance of 

shadows within the intensity image regardless of the original intensity of the object. 

 x 

 
 

 



CHAPTER 1 

INTRODUCTION 

 

 

 

Image processing and analysis is an important area in the field of robotics.  This is 

particularly true for the operation of autonomous vehicles.  The operation of an autonomous 

vehicle is based on first acquiring data that describe its environment.  Indeed, the motion 

planning and control of a fully autonomous vehicle requires an intelligent controller to be 

able to make decisions to allow the autonomous vehicle to maneuver in an unknown field 

based on these data.  These data sets include range data, 2D images, and position 

measurements.  This data is used to identify and avoid obstacles and to map the 

surrounding terrain. 

The elements of an image analysis system are shown in Figure 1.  Image analysis 

usually starts with a pre-processing stage, which includes operations such as noise 

reduction.  For the actual recognition stage, segmentation should be done before it to 

extract out only the part that has useful information. Image segmentation is a primary and 

critical component of image analysis.  The quality of the final results of an image analysis 

could depend on the segmentation step.  On the other hand, segmentation is one of the most 

difficult tasks in image processing, especially automatic image segmentation. 

The goal of the segmentation process is to define areas within the image that have 

some properties that make them homogeneous.  The definition of those properties should 

satisfy the general condition that the union of neighboring regions should not be 

homogeneous if we consider the same set of properties.  After segmentation, we can usually 

establish that the discontinuities in the image correspond to boundaries between regions.   
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Figure 1.1: Elements of Image Analysis 

 

The methods most commonly used for image segmentation can be categorized into 

four classes. 

 

1. Edge-based approaches:  Image edges are detected and then linked into contours 

that represent the boundaries of image objects. The main advantage of edge-based 

approaches is their lower computational cost.  However, the edge grouping process 

presents serious difficulties in setting appropriate thresholds and producing connected, 

one-pixel-wide contours.  

2. Clustering-based approaches: Image pixels are sorted in increasing order as a 

histogram according to their intensity values. Fuzzy-c-means (FCM) and K-means fall 

into this method. The main advantage of this approach is that the problem of setting 

thresholds can be avoided by using iterative processes. Also, the segmented contours 

are always continuous. But, oversegmentation may occur because pixels in the same 

cluster may not be adjacent. 

3. Region-based approaches: The goal is the detection of regions that satisfy a 

certain predefined homogeneity threshold. Region-based approaches are available 

because the segmented contours are always continuous and one-pixel-wide. The 

computation time of this approach is short. However, different similarity threshold 
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settings may lead to different segmentation results. Also it can cause 

oversegmentation.  

4. Split/merge approaches: An input image is first segmented into homogeneous 

primitive regions using K-means or FCM as a ‘Split’ step. Then, similar neighboring 

regions are merged according to a certain decision rule as a ‘Merge’ step. 

 

In this thesis, we examine a segmentation procedure based on morphological 

techniques, which is one method of region-based approaches. Mathematical morphology is 

a branch of nonlinear signal processing and is a powerful tool for the geometrical shape 

description and analysis of images.  In Chapter 2, basic morphological operations are 

explained with mathematical concepts and examples.  The watersheds transformation is 

described in Chapter 3.  Its history and mathematical definitions are presented with some 

illustrations. Some of shortcomings of the watersheds transformation are also discussed.  

Chapters 4 and 5 are dedicated to the improvements of the watersheds transformation as 

‘pre’ and ‘post’ processing.  The morphological gradient is reviewed as a noise-insensitive 

method to calculate the gradient of an image and is compared to the conventional gradient 

method.  The morphological gradient is extended to a multiscale for greater robustness in 

Chapter 4.  The region merging algorithm using region adjacency graph (RAG) is 

introduced in Chapter 5.  Also, some of the differences are mentioned between Split/Merge 

image segmentation and the region merging using RAG.  Chapter 6 consists of a possible 

image segmentation application motivated from autonomous vehicle maneuvering, a 

proposed algorithm using co-aligned intensity and range images, and simulation result.  

Chapter 7 contains the conclusions and proposed future work as a closing remark. 
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CHAPTER 2 

   MATHEMATICAL MORPHOLOGY 

 

 

 

The term morphology refers to the study of shapes and structures from a general 

scientific perspective.  Also, it can be interpreted as shape study using mathematical set 

theory.  In image processing, morphology is the name of a specific methodology for 

analyzing the geometric structure inherent within an image.  The morphological filter, 

which can be constructed on the basis of the underlying morphological operations, are more 

suitable for shape analysis than the standard linear filters since the latter sometimes distort 

the underlying geometric form of the image.   

 Some of the salient points regarding the morphological approach are as follows 

[10]: 

 

1. Morphological operations provide for the systematic alteration of the geometric 

content of an image while maintaining the stability of the important geometric 

characteristics. 

2. There exists a well-developed morphological algebra that can be employed for 

representation and optimization. 

3. It is possible to express digital algorithms in terms of a very small class of 

primitive morphological operations. 

4. There exist rigorous representation theorems by means of which one can obtain the 

expression of morphological filters in terms of the primitive morphological 

operations. 
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In general, morphological operators transform the original image into another 

image through the interaction with the other image of  a certain shape and size, which is 

known as the structuring element. Geometric features of the images that are similar in 

shape and size to the structuring element are preserved, while other features are suppressed. 

Therefore, morphological operations can simplify the image data, preserving their shape 

characteristics and eliminate irrelevancies. In view of applications, morphological 

operations can be employed for many purposes, including edge detection, segmentation, 

and enhancement of images. 

 This chapter begins with binary morphology that is based on the set theory. Then, 

grayscale morphology can be regarded as the extension of binary morphology to a three-

dimensional space since a grayscale image can be considered as a set of points in 3D space. 

The basic geometric characteristics of the primitive morphology operators are introduced in 

this chapter.  A systematic introduction of theoretical foundations of mathematical 

morphology, its main image operations, and their applications can be found in [11], [10] 

and [12]. 

Mathematical morphology defined in a Euclidean setting is called Euclidean 

morphology and that defined in a digital setting is called digital morphology. In general, 

their relationship is akin to that between continuous signal processing and digital signal 

processing. The actual implementation of morphological operators will be in the digital 

setting, so in this thesis focusing on digital image, we only consider the digital 

morphological setting. 

 

 

2.1 Binary Morphology 

 

The theoretical foundation of binary mathematical morphology is set theory.  In 

binary images, those points in the set are called the ‘foreground’ and those in the 
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complement set are called the ‘background’. 

Besides dealing with the usual set-theoretic operations of union and intersection, 

morphology depends heavily on the translation operation.  For convenience, ‘∪ ’ denotes 

the set-union, ‘∩ ’ denotes set-intersection and ‘+’ inside the set notation refers to vector 

addition in the following equations.   We need two general definitions that are used 

extensively to extend morphological operations. 

 

Definition: Reflection 

Given an image B, the reflection of set B, denoted B̂ , is defined as 

 

 ˆ { | , for }.B w w b b B= = − ∈  

 

Actually, this operation has same effect as rotating image 180° about its origin. 

 

Definition: Translation 

Given an image A, the translation of A by the point x, denoted by Ax, is defined by  

 

{ |xA a x a A}= + ∈ . 

 

           

A 

x

Figure 2.1: Illustration of the Translation Operation on Digital Setting 
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 Figure 2.1 shows an example of the translation operation in digital space.  The 

symbol ★ denotes the origin of each image set.  The set A is an image in 2
Z , with 

{(1,2),(2,2),(3,2),(4,2),(1,3),(2,3),(3,4),(2,5)} and x is a vector of (1,1). Translation of A by 

x results in {(2,3),(3,3),(4,3),(5,3),(2,4),(3,4),(4,5),(3,6)}. The result is described in the right 

part of Figure 2.1. 

 

2.1.1 Structuring Element 

Before continuing, we should describe what a structuring element is in 

morphological operations.  A structuring element is a small image that is overlapped on 

input image to compute a certain definition.  The basic operations of binary and also gray-

scale images depend on what structuring elements are used.  In this section, only those for 

binary morphology are considered.  The gray-scale case will be described later.  Figure 2.3 

contains some examples that are used commonly for binary images. 

 

     

     

Figure 2.2: Examples of 3x3 Structuring Element 

 

 In these cases, all origins of structuring elements are located on the center. 

Depending on the shape of structuring element, the origin could be on a different location. 

The pixels marked with ‘1’ are the points that should be considered during any binary 
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morphological operations.   

 

2.1.2 Binary Dilation 

Definition: Binary Dilation 

With A and B as sets in Z
2
, the dilation of A by B (usually A is an image and B is the 

structuring element), denoted by A⊕B, is defined as 

 

}.andsomefor,|{ 2
BbAabazZzBA ∈∈+=∈=⊕  

 

It can be shown that dilation is equivalent to a union of translation of the original image 

with respect to the structuring element:  

 

( )
b

Bb

ABA
∈

=⊕ ∪ . 

 

            

A 

B 

Figure 2.3: Illustration of Binary Dilation on Digital Setting 

 

 Dilation is found by placing the center of the template over each of the foreground 

pixels of the original image and then taking the union of all the resulting copies of the 

structuring element, produced by using the translation.  From Figure 2.3, it is clear how 

dilation modifies the original image with respect to the shape of the structuring element.  
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Dilation generally has an effect of expanding an image; so consequently, small holes inside 

foreground can be filled.  

 In another sense, dilation can be a morphological operation on a binary image 

defined as: 

( )ˆ{ | }
z

A B z B A φ⊕ = ≠∩ . 

This equation is based on obtaining the reflection of B about its origin and shifting this 

reflection by z. The dilation of A by B is the set of all displacements, z, such that B and A 

overlap by at least one element.  Based on this interpretation, the equation above may be 

written as  

( )ˆ{ |[ ] }
z

A B z B A A⊕ = ⊆∩ . 

 

Although dilation is based on set operations, whereas convolution is based on 

arithmetic operations, the basic process -- “flipping” B about its origin and successively 

“displacing” it so that it slides over set (image) A -- is analogous to the convolution process.  

Even though dilation of an image A by structuring element B can be defined in several 

ways, all definitions have the same meaning and results in the same output.  Figure 2.4 

illustrates the dilation operation using a binary image.  The original image is dilated with an 

11x11 ‘disk’ type structuring element. 

 

              

Figure 2.4: Binary Dilation Example 
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2.1.3 Binary Erosion 

Definitions: Binary Erosion  

Erosion of a binary image A by structuring element B, denoted by AΘ B, is defined as 

 

{ | , }A B z z b A b BΘ = + ∈ ∀ ∈ . 

 

Whereas dilation can be represented as a union of translates, erosion can be represented as 

an intersection of the negative translates. So, the given definition of erosion above can be 

redefined as 

 

b
Bb

ABA −
∈

=Θ ∩  

where ‘–b’ is the scalar multiple of the vector b by -1. 

 

            

A 

B

Figure 2.5: Illustration of Binary Erosion on Digital Setting 

 

 The erosion of the original image by the structuring element can be described 

intuitively by template translation as seen in the dilation process.  Erosion shrinks the 

original image and eliminates small enough peaks (Note: the terms ‘expand’ for dilation 

and ‘shrink’ for erosion refer to the effects on the foreground).  Figure 2.6 clearly illustrates 

these effects.  The original image is eroded with 7x7 disk-shape structuring element. 
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Figure 2.6: Binary Erosion Example 

 

 

2.1.4 Binary opening 

Definition: Binary Opening  

The opening of a binary image A by the structuring element B, denoted by ADB, is defined 

as 

 

( )A B A B B= Θ ⊕D . 

 

From the definition, the original image A is first eroded and then dilated by the 

same structuring element B.  In terms of set theory, this opening process can also be defined 

as 

 

{( ) | ( ) }
z z

A B B B A= ⊆D ∪ . 

 

The whole procedure of opening can be interpreted as “rolling the structuring 

element about the inside boundary of the image”. 
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Figure 2.7: Illustration of Binary Opening Process [13] 

 

 The effects of the opening process on the original image are smoothing, reducing 

noise from quantization or the sensor and pruning extraneous structures. These effects 

result from the fact that the structuring element cannot fit into the regions. Therefore, it can 

be said that the result of the opening process heavily depends on the shape of structuring 

elements. Figure 2.8 presents an example of the opening process. 

 

              

Figure 2.8: Binary Opening Example 

 

 The effects of the opening mentioned before are clearly shown in the Figure 2.8. 

The vortices of the triangle foreground have been cut out because the image is “opened” 

with ‘square’ type structuring element, whereas those of the square are preserved. 
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2.1.5 Binary closing 

Definitions: Binary Closing 

Closing of a binary image A by a structuring element B, denoted by A•B, is defined as 

 

BBABA Θ⊕=• )( . 

 

In the closing operation, dilation and erosion are applied successively in that order. Note 

that this order is reversed for the opening process.   

 In another aspect, the closing process on a binary image can be defined as: 

 

z is an element of  A B if and only if • φ≠+ AyB ∩)( , for any translate (B+y) containing z. 

 

 The closing operation can be described as in Figure 2.9 as “rolling the structuring 

element on the outer boundary of the image.” 

 

 

Figure 2.9: Illustration of Binary Closing Process [13] 

 

 The closing process has the effect of filling small holes in the original image, 

smoothing as the opening process does, and filling up the bay in the foreground.  

Sometimes, it is said that the closing has an effect of clustering each spatial point to be 
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connected.  Figure 2.10 is an example showing how the closing operation works. 

 

              

Figure 2.10: Binary Closing Example 

 

 

2.2 Gray-scale Morphology 

 

In this section, the binary morphology is extended to the gray-scale case. Through 

the discussions below, we will see that the key issue is to use the ‘Maximum’ and 

‘Minimum’ functions to define gray-scale morphological operators.  Using these concepts, 

gray-scale morphology can be easily extended from binary morphology with the same 

concept.  The differences between binary and gray-scale morphology results from the 

definitions of dilation and erosion because other operations basically depend on these.  

Except for these definitions, gray-scale morphology is fairly similar to the binary case. 

Hence, in this section, definitions for gray-scale dilation and erosion as well as some of 

examples for gray-scale morphological operations are merely given.  Also, some 

expansions of the morphological procedure are mentioned at the end. 

 

2.2.1 Gray-scale Dilation and Erosion 

Before discussing basic gray-scale morphological operations, it should be noted 

that the structuring elements of the gray-scale morphological operations could have the 
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same domains as those in binary morphology.  However, as will be seen in the definitions 

below, a gray-scale structuring element has certain values (‘b’s’) instead of having only 

position value ‘1’ or ‘0’ showing its domain. A grayscale image can be considered as a 

three-dimensional set where the first two elements are the x and y coordinates of a pixel 

and the third element is gray-scale value.  It can be also applied to the gray-scale 

structuring element.  With this concept, gray-scale dilation can be defined as follows 

 

Definition: Gray-scale Dilation 

Gray-scale dilation of f by b, denoted by f b⊕ , is defined as  

 

( )( , ) max{ ( , ) ( , ) | ( ), ( ) ; ( , ) }f bf b s t f s x t y b x y s x t y D s y D⊕ = − − + − − ∈ ∈ . 

 

where Df and Db are the domains of f and b, respectively. 

Similarly gray-scale erosion can be defined as an extension of binary erosion. 

 

Definition: Gray-scale Erosion 

Gray-scale erosion, denoted by f bΘ , is defined as 

 

( )( , ) min{ ( , ) ( , ) | ( ), ( ) ; ( , ) }f bf b s t f s x t y b x y s x t y D s y DΘ = + + − + + ∈ ∈ . 

 

where Df and Db are the domains of each image or function.   

 

Specific concepts and operation procedures are already explained in binary morphology. 

 Gray-scale dilation and erosion are duals with respect to function completion and 

reflection.  That is, the relation between these can be expressed as 
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ˆ( ) ( , ) ( )( ,c c )f b s t f b s tΘ = ⊕  

 

where ( , )c
f f x y= −  and . ˆ ( , )b b x y= − −

 The minimum operator will interrogate a neighborhood with a certain domain and 

select the smallest pixel value to become the output value. This has the effect of causing the 

bright areas of an image to shrink or erode. Similarly, grayscale dilation is performed by 

using the maximum operator to select the greatest value in a neighborhood.  Figure 2.11 

shows a simple image and its dilation and erosion with a “flat-top” structuring element.  

The term ‘flat-top’ refers to the fact that the values (b’s) of the structuring element are all 

zero in a certain domain. In this example, a disk-type structuring element is applied. 

 

       

a) original                           b) dilation                        c) erosion 

Figure 2.11: An Example of Gray-scale Dilation and Erosion 

 

2.2.2 Gray-scale Opening and Closing 

 Gray-scale opening and closing are defined below in a similar manner as the binary 

case.  The only difference is, when the operations are carried out, these opening and closing 

operations use gray-scale dilation and erosion described in the previous section. 

 The effect of gray-scale closing and opening is shown in Figure 2.12. As binary 

morphological operations do, gray-scale opening is anti-extensive and gray-scale closing is 

extensive.  Both operations make an original image smooth along to the nature of minimum 
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and maximum functions.  Also, both operations have ‘increasing’, ‘idempotent’ properties. 

 

       

a) original                           b) opening                        c) closing 

Figure 2.12: An Example of Gray-scale Opening and Closing 

 

 

2.3 Some Applications of Morphology 

 

 Although there are some applications requiring basic gray-scale morphological 

operations, most applications of morphology are developed for binary images. A list of 

binary morphological applications follows. The reader is referred to [13] for details of the 

individual applications.  

 

1. Boundary extraction 

2. Region filling 

3. Extraction of connected 

components 

4. Convex Hull 

5. Thinning 

6. Thickening 

7. Skeletons 

8. Pruning 

  

 All these applications are carried out by applying a series of basic operations with 

different type of structuring elements.  For gray-scale morphological case, it can be 
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expanded to 

1. Smoothing 

2. Morphological gradient 

3. Top-hat, Bottom-hat Transformations 

4. Textual segmentation 

5. Granulometry  

 

 In this thesis, we focus on how to use morphological gradient and how to improve 

that for image segmentation.  The details of morphological gradient will be covered in 

Chapter 4 as a pre-processing stage of watersheds transformation. 
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CHAPTER 3    

WATERSHEDS TRANSFORMATION IN DIGITAL SPACE 

 

 

 

 In this chapter, the historical background of watersheds and the evolution of the 

algorithm are introduced first.  Later, the fast watersheds algorithm is reviewed and the key issues 

used to make the algorithm fast are especially pointed out and explained generally.  Finally, the 

some potential problems with the watersheds transformation are described. 

 

 

3.1 Introduction to the Concept of Watersheds. 

 

 The watersheds concept is one of the classic tools in the field of topography.  It is the line 

that determines where a drop of water will fall into a particular region. In image processing, 

especially mathematical morphology, grayscale images are considered as topographic relieves. In 

the topographic representation of given image I, the intensity value of each pixel stands for the 

elevation as this point. 

 

       

Figure 3.1: Topographical Map and Gray-scale Image in 3D Representation 
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 Naturally, the first algorithm for computing watersheds is found in the field of 

topography. Topographic surfaces are numerically handled through digital elevation models 

(DEM’s). These are arrays of numbers that represent the spatial distribution of terrain altitudes. 

The most commonly used data structure for DEM’s is the regular square grid in which available 

elevations are equally spaced in two orthogonal directions.  These restrictions are very similar to 

gray scale images in digital spaces.  

 Unlike the typical morphological filters, the watersheds transformation is not composed 

of the primitive morphological operations.  The initial concept of the watersheds transformation 

as a morphological tool was introduced by H. Digabel and C. Lantuéjoul in [7].  Later, a joint 

work of C. Lantuéjoul and S. Beucher led to the ‘inversion” of this original algorithm in order to 

extend it to the more general framework of grayscale images.  Later, watersheds were studied by 

many other researchers and used in numerous grayscale segmentation problems.  In this thesis, 

the efficient algorithm for watersheds suggested by Luc Vincent and Pierre Soille is reviewed 

briefly and used throughout the entire simulation. 

 As an interpretation in topography, the watershed can be imagined as the high mountain 

that separates two regions.  Each region has its own minimum and, if a drop of water falls on one 

side of the watershed, it will reach the minimum of the regions.  The regions that the watershed 

separates are called catchment basins. 

 

 

3.2 Watersheds Transformation Algorithm 

 

 The algorithm introduced by Luc Vincent and Pierre Soille is based on the concept of 

“immersion” [6].  Each local minima of a gray-scale image I which can be regarded as a surface 

has a hole and the surface is immersed out into water.  Then, starting from the minima of lowest 

intensity value, the water will progressively fill up different catchment basins of image (surface) I.  

Conceptually, the algorithm then builds a dam to avoid a situation that the water coming from 

two or more different local minima would be merged.  At the end of this immersion process, each 
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local minimum is totally enclosed by dams corresponding to watersheds of image (surface) I.  

Figure 3.2 shows this procedure graphically. 

 

       

       

Figure 3.2: The Immersion Procedure [17] 

 

 This informal analysis of the immersion process can be established mathematically by 

the definition of ‘geodesic distance’ and ‘geodesic influence zone’.  ‘Geodesic influence zone’ 

deals with the expansion of the plateau from each local minimum for watersheds transformation. 

 

Definition: Geodesic Distance 

The geodesic distance dA(x,y) between two pixels x and y in A is the infimum (greatest lower 

bound of given set) length of the paths which join x and y and are totally included in A. 

 

Definition: Geodesic Influence Zone 

Suppose A contains a set B consisting of several connected components B1, B2 ,… Bk.  The 

geodesic influence izA(Bi) of a connected component Bi of B in A is the locus of the points of A 

whose geodesic distance to Bi is smaller than their geodesic distance to any other component of B.  
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It can be expressed as 

 

( ) { , [1, ] /{ }, ( , )}A i A iiz B p A j k i d p B= ∈ ∀ ∈ . 

 

 The immersion process and its results along with catchment basins and watersheds can 

be described in terms of geodesic influence zone. 

 

 

Figure 3.3: Illustration of Geodesic Influence Zone 

 

Definition: Catchment Basins and Watersheds by Immersion 

The set of the catchment basins of the gray-scale image I is equal to the set Xhmax obtained after 

the following recursion: 

 

min min

1min, max 1 1 ( )

1. ( ), ( ) { , ( ) }.

2. [ 1], min ( ).
h

h h h I

h h T I

X T I T I p D I p h

h h h X iz X
++ +

= = ∈ ≤

∀ ∈ − = ∪ h

 

 

The immersion procedure is done in the recursion, and the watersheds of I correspond to the set 

of the points of DI which do not belong to any catchment basin. 

 

From these basic concepts and primitive algorithm, Luc and Pierre improved the 

immersion-based algorithm for watersheds extraction.  The algorithm consists of two important 
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steps, sorting and flooding and the queue structure is used to make computation time shorter.  A 

mathematical dilation process is used to find new local minimum candidates and to find the 

geodesic influence zone in flooding.  C-friendly pseudo code is attached as Appendix A to show 

the basic algorithm.  Fortunately, Mathworks Matlab
TM

 has a built-in function of the watersheds 

transformation (‘watershed’) in its Image Processing Toolbox using the same algorithm.  The 

routine takes a binary or gray-scale image as an input and makes a same size image as an output, 

labeling different regions with different numbers.  Watersheds are denoted as ‘0’ regions.  Figure 

3.3 is an example of watersheds transformation carried out on the ‘Lena’ gray-scale image. 

 

 

Figure 3.4: An Example of the Watersheds transformation on Gray-scale Image 

 

 

3.3 Embedded Problems 

 

The watersheds transformation is an effective method for extracting out continuous 

boundaries of each region.  However, applying it to the original image can cause undesired 

results.  In this section, we will go over these problems with some simple examples and introduce 

some methods to improve the results of the watersheds transformation. 

 

3.3.1 Oversegmentation 

The watersheds transformation makes a number of regions as an output.  For example, a 
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human can clearly see a woman with background in Figure 3.4.  This is because humans are 

capable of understanding the ‘semantics’ of a given scene; however, this image has 2976 different 

regions after the watersheds transformation.  This oversegmentaion problem comes mostly from 

the noise and quantization error.  To eliminate the effect of local minima from noise or 

quantization error on the final results, first, the gradient of the original image is computed as a 

pre-processing and then the watersheds transformation is applied on the gradient of image.  Noise 

or quantization error has a quite different value relative to its neighbor; hence, it shows a high 

gradient value.  So, if the watersheds transformation is applied to the gradient image, this high 

value is no longer a ‘local minimum’.  Another approach to eliminate noise and quantization error 

effects is to apply ‘region merging’ algorithm as a post-processing.  A large number of regions are 

merged until the output meets a given criteria which can be the number of regions or a 

dissimilarity value between homogeneous regions. 

 

 

3.3.2 Ambiguous Boundary on Homogeneous Regions. 

 Another reason why the watersheds transformation is applied to the gradient image is 

because the watersheds transformation makes ambiguous boundaries occasionally.  Figure 3.5 

shows a simple case with a vague boundary.  As interpreted, it consists of 3 different 

homogeneous regions.  If the watersheds transformation is applied directly to the original image, 

then the output is just 2 different regions.  The only marked boundary is made across the middle 

homogeneous regions. It does not match the original boundaries.  However, if the transformation 

is applied to the gradient of the original image, it can extract out proper boundaries and recognize 

3 different homogeneous regions. 

In Chapter 4, as a pre-processing stage, the morphological gradient compared to the 

conventional gradient-like Sobel, Laplacian operators- is reviewed and extended to multi-scale to 

find out more detail about the gradient.  For the post-processing, a region merging algorithm is 

described in Chapter 5.   
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a)     b) 

   

c)     d) 

Figure 3.5: Simple Illustration of Ambiguous Boundary Extraction:  

a) original, b) gradient, c) WS on original, d) WS on gradient 
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CHAPTER 4 

MORPHOLOGICAL GRADIENT OPERATORS 

 

 

 

 Image edge detection is a basic tool in image segmentation since edges carry 

valuable features of the image.  Edges in an image are formed due to variations of 

illumination in the scene.  Hence, the conventional approach to edge detection is 

composed of “gradient calculation” and “thresholding”.  For the first step, the original 

image is transformed into a gradient image which represents the edge strength of each pixel.  

A threshold is then applied to classify each pixel to the edge point or non-edge point.  

Traditionally, the gradient image can be obtained by means of first-order differential 

operators or a Laplacian operator which can enhance the spatial intensity changes in the 

image.  Morphological edge detectors have also been proposed for their robustness under 

noisy conditions and some of them are discussed in the following section. 

 

 

4.1 Conventional Gradients 

 

 Traditional methods to find the gradient of an image typically apply a first-order 

differential operation on the original image.  This operation is similar to linear filtering 

which consists of scanning the original image with certain masks.  The sizes and values of 

the mask are derived from standard mathematical expressions and approximated with ad 

hoc procedures to digital settings:  
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The following are examples of well-known gradient operators along with a typical output.  

Note that Laplacian operator is derived from the second-order differential 
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a) Gx mask, Gy mask, and the Gradient 

Figure 4.1: Conventional Gradient Operators on ‘Lena’: 

a) Prewitt, b) Sobel, c) Laplacian 
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b) Gx mask, Gy mask, and the Gradient 
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c) 4-neighbor, 8-neighbor, and Output 

Figure 4.1 Continued 
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 For the case using first-order operation, the masks in Figure 4.1 are designed to 

detect vertical and horizontal edges.  Different patterns of the mask should be applied to 

detect edges that appear diagonally in the image. 
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Figure 4.2: Prewitt, Sobel Mask for Diagonal Edges 

 

 First-order and second order gradient operators (conventional gradients) are 

convenient to use and relatively fast to calculate the gradient.  The procedure consists of 

overlapping the original image with certain masks and adding those together to find out the 

gradient value at a point and then repeating these through the whole image.  These 

methods perform strongly to detect points, line, or edges of objects in the situation that the 

given image does not contain noise.  However, if there is noise in the image set, these 

operators consider the noise pixels as points because they are too sensitive.  Naturally, 

digital images have noise due to imperfections in image acquiring sensors like CCD and 

CMOS.  Especially, the noise in the image is generated more where light is not controlled 
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like the pictures taken by autonomous vehicle (AV). 

 

 

4.2 Morphological Gradients 

 

 The morphological gradient is based on the concept of residues which make 

difference between the transformations of filters.  Some simple morphological gradient 

operators are illustrated as follows [1]: 

 

Gradient by Erosion: )()( BfffGe Θ−= . 

Gradient by Dilation: fBffGd −⊕= )()( . 

Morphological Gradient: )()()( BfBffG Θ−⊕= . 

 

If B is chosen as the rod structure element with flat top whose domain is the origin and its 

4-neighbor, then gradient by erosion and dilation are also called erosion residue edge 

detector and dilation residue edge detector respectively.  Furthermore, these operations 

can be reduced to the following mathematical expressions [2]: 

 

( , )

( , ) ( , ) ( )( , )

( , ) [min ( ( , ))].
rodi j D

Ge r c f r c f b r c

f r c f r i c j∈

= − Θ
= − − −

 

 

( , )

( , ) ( )( , ) ( , )

[max ( ( , ))] ( , ).
rodi j D

Gd r c f b r c f r c

f r i c j f r c∈

= ⊕ −
= − − −
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  a)                    b)                     c) 

     

  d)                    e)                     f) 

Figure 4.3: Basic Morphological Gradients:  

a) original, b) dilated, c) eroded, d,e) gradient by dilation, erosion, f) morph. gradient 

 

The basic morphological residue gradients are still a little sensitive to quantization error or 

noise and are position biased. Edge strength is only given to that side of the edge which has 

the lower/higher value.   

 The first robust morphological edge detector was proposed by Lee, Haralick and 

Shapiro.  Called blur-minimization edge detector, this method is noise insensitive and 

shows better performance detecting of step and ramp edges.  More details and 

experimental results can be found in the original paper [3]. The main equation is 

 

 ( ) min{ ( ) ( )( ), ( )( ) ( )}o av av v av v avf z f z f B z f B z f= − Θ ⊕ − z  

 

where fav(z) is the input image blurred with a 2D running mean filter, fo(z) is the output 
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image, and B is the structuring element which is a square with (2n+1)*(2n+1) pixels. 

 For greater efficiency, the mean filter blurring of the original image can be replaced 

with the α-trimmed mean filter. 

  

      

Figure 4.4: Blur-minimization Edge Detector:  

a) blurred image b) robust morphological gradient 

 

 

4.3 Multiscale Edge Detectors 

 

 For greater robustness to noise, a multiscale gradient algorithm can be considered.  

The term ‘multicale’ means to analyze the image with structuring elements of different 

sizes.  Intuitively, using the structuring element of smaller size may detect fine edges but 

become more sensitive to noise. On the other hand, the larger the size of the structuring 

element, the more noise can be removed but the edge becomes thicker.  Hence, the 

combination of the morphological gradients in different scales is able not only to become 

insensitive to noise but also to extract various fineness of the edge. 

 In the paper [2], a multiscale morphological edge detector is introduced.  Starting 

with some of the disadvantages of classical definition of morphological gradient, the 

improved erosion residue operator and improved dilation residue operator are defined as 

follows:  
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�  Improved Erosion Residue Operator 

 

)},(''),,(),(),,(),(min{),('
1

crGcrerosioncrfcrerosioncrfcrG eDDe rod
−−=  

 

where  is defined as  ),('' crG e

1 2 3 4
'' ( , ) max{| ( , ) ( , ) |, | ( , ) ( , ) |}.e D D DG r c erosion r c erosion r c erosion r c erosion r c= − − D

 

�  Improved Dilation Residue Operator 

 

)},(''),,(),(),,(),(min{),('
1

crGcrfcrdilationcrfcrdilationcrG dDDe rod
−−=  

 

where  is defined as  ),('' crG d

1 2 3 4
'' ( , ) max{| ( , ) ( , ) |, | ( , ) ( , ) |}.d D D DG r c dilation r c dilation r c dilation r c dilation r c= − − D

 

  

 Recall that the Di’s are the structuring elements with flat top and their domains are 

defined as below.  The reason for using different structuring elements is to consider the 

direction of the gradient of image. 
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Figure 4.5: Domains of the Structuring Elements for Multiscale 

 

Each structuring element is defined with radius 1.  To extend the above operators to scale 

n, the structuring elements are modified in proportion to n.  That is, nD1, nD2, nD3, and 

nD4 have the same domain as D1, D2, D3 and D4 but have size n.  Similarly, Drodn is 

defined as nDrodn and nD=nN8/nN4  (0,0) (where N∪ 8 means 8-neighbor and N4 means 4-

neighbor).  Therefore, the improved dilation residue operator at scale n is defined as: 

 

)},(),,(),(),,()(min{),( '
crGcrfcrdilationcrfrmcdilationcrG

n

dnDD

n

d rodn
−−=  

 

where  is defined as ),(' crG
n

d

 

1 4nD

'

2 3( , ) max{| ( , ) ( , ) |, | ( , ) ( , ) |}.n

d nD nD nD
G r c dilation r c dilation r c dilation r c dilation r c= − −  

 

 The improved erosion residue operator at scale n can be defined in a similar way. 

In [2], the improved dilation residue operator is focused and it is mentioned that edge 
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strength can be defined by the improved erosion residue operator or by sum of them. 

 After defining the edge image of each scale, the task turns to combining the edge 

strength.  It is very intuitive to use the weighted pixel summation, i.e., 

 

''( , ) ( , )
l

n n

n k

f r c w f r c
=

=∑  

 

where [k ,l] represents the range of scale and wi’s are respective weights of each scale.  

Simply, the weights can be equally distributed for all scale.  Other kinds of combinations 

are also possible. 

 Since the edge strength of each pixel has been determined, each pixel can be 

directly thresholded to classify it into the categories of either edge or non-edge.  In [2], the 

authors makes use of “Non-maximal suppression”.  The combined edge image appears to 

contain a long range of mountains and the true edge lies along its ridge (see Figure 4.6); 

hence, the watersheds transformation introduced in the previous section is suitable for 

extracting the ridge points in an edge image. 

 

      

a) n=1                        b) n=3 

Figure 4.6: Multiscale Edge Detector at Scale 

 

 Based on the concepts stated previously, the applicable multiscale edge detector is 
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introduced in [4] to find the gradient of the image: 

 

1

1

1
( ) [(( ) ( )) ]

n

i i

i

iMG f f B f B B
n

−
=

= ⊕ − Θ Θ∑  

 

where n is the scale and Bi denotes the group of square structuring elements whose sizes are 

(2i+1)*(2i+1) pixels.  The choice of square structuring elements has the advantage of low 

computational cost.  Other structuring elements like line segments of different directions 

can be used for specific applications. 

 36



CHAPTER 5 

REGION MERGING 

 

 

 

 In Chapter 3, some embedded problems of the watersheds transformation were 

discussed, and a multiscale morphological gradient algorithm was introduced as a pre-

processing stage to reduce the effect of noise and quantization error in Chapter 4.  In this 

chapter, a region merging post-processing stage is explained to compensate for the over-

segmentation problem.  The most natural method to overcome the over-segmentation of 

watersheds transformation is to merge the small regions in a homogeneous region since 

they may possess certain homogeneous characteristics in intensity, texture or statistical 

properties.  

 There is a traditional method for image segmentation, called Split/Merging which 

was already mentioned in Chapter 1.  The Split/Merging method takes an intensity image 

as an input and splits it into small grids usually using quadtree structure.  Finally, the 

procedure merges small grids according to their statistical properties. 

 

 

Figure 5.1: Quadtree Representation 
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Figure 5.2: Split and Merging with Quadtrees 

 

 The region merging as post-processing for watersheds transformation takes a 

labeled image as input instead.  This labeled image coincides with a quadtree of 

Split/Merging method. As explained in Chapter 3, the watersheds transformation algorithm 

processes the original image into a labeled image with boundary pixels; each label 

represents a different region.  Two important keys for merging different regions together 

are: 

1. If the regions are adjacent or not 

2. How dissimilar/similar the regions are to each other. 

The sections of this chapter contain the mathematical concepts and the implementations in 

a Matlab
TM

 program about each key respectively. 

 

 

5.1 Region Adjacency Graph 

 

 A simple label image is shown in Figure 5.3.  It can be transformed into a Region 

Adjacency Graph (RAG), to indicate whether two regions are adjacent or not; only adjacent 

regions are connected with bars. 
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Figure 5.3: Simple Label Image and its RAG 

 

Two regions that have minimum cost dissimilarity (a concept that will be explained in the 

next section) are merged together if the dissimilarity satisfies a given criteria.  Figure 5.4 

shows the merging step between regions a and b where it is assumed that those regions 

have minimum cost dissimilarity. 

 

 

Figure 5.4: Merging Steps using RAG 

 

 This merging step is repeated until there is no pair of regions satisfying the 

dissimilarity condition or the number of regions in repetition is the same as a given number 
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of regions.  Each merging step reduces the number of regions by 1.  Based on conceptual 

analysis, the pseudo-code for region merging can be summarized.  Given the RAG of the 

initial K-partition (K-RAG), the RAG of the suboptimal (K-n)-partition ((K-n)-RAG) is 

constructed by: 

Input: RAG of the K-Partition (K-RAG) 

Iteration: For i=0 to n-1 

 Find the minimum cost edge in the (K-i)-RAG 

 Merge the corresponding pair of regions to get the (K-i-1)-RAG 

 Update RAG and dissimilarity  

Output: RAG of the (K-n)-partition ((K-n)-RAG) 

 

 When region merging is applied to a labeled image being implemented in a 

program language, the image can be processed by first, scanning the image with a 3x3 

window and the comparing labels in the window. Then, the table containing the RAG 

information is built in matrix form. This table represents the status of adjacency with a flag 

(0=off, 1=on). 
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     Figure 5.5: RAG Table 

 40



The dissimilarity cost is calculated only for the region pairs that have their RAG flags on. 

 

 

5.2 Region Dissimilarity Function 

 

 Similarity between two regions can be simply described by the difference of 

statistical properties like average, variation or both of intensity values for each region.  In 

this thesis, the dissimilarity function defined as the equation below is used.  This objective 

cost function is the square error of the piecewise constant approximation of the observed 

image, which yields a measure of the approximation accuracy and is defined over the space 

of partitions.  If R*M is the optimal M-partition with respect to the squared error, then the 

optimal (M-1)-partition is generated by merging the pair of regions of R*M, which 

minimizes the dissimilarity function [14], [15]: 
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According to the above formulation, the most similar pair of regions is the one minimizing 

square error.  

 The determination of the optimal number of segments K* is performed by checking 

the value of δ(�,�).  If δ is greater than a certain threshold, then the merging process is 

terminated.  This threshold value can be obtained through hypothesis testing on noise 

distribution; however, the desired number of regions can be simply given to stop the 

merging process if the threshold value is not certain [16]. 
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 Figure 5.6 shows the effect of region merging.  The original image is processed 

with the watersheds transformation and region merging is applied to reduce the number of 

regions.  In this case, the program stops the merging process if the average intensity 

difference between the optimal pair of regions being merged is greater than 12. 

 

      

Figure 5.6: Region Merging of Watersheds on Akiyo 
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CHAPTER 6 

APPLICATION AND SIMULATION: 

IMAGE SEGMENTATION USING CO-ALIGNED IMAGES 

 

 

 

6.1 Motivation 

 

 Research on autonomous vehicles (AV) is recently expanding in the robotics field.  

One of the key issues is the vision system of the AV.  Vision sensors like intensity and 

infrared cameras acquire information about the AV’s surroundings including objects, 

obstacles, and targets etc.  As a primitive processing, the image segmentation takes an 

important role in image processing, which is a very crucial part of an AV system that allows 

the AV to maneuver around without problems.  Also, the result of image segmentation has 

a tremendous effect on the following image processing steps like automatic target 

recognition and obstacle avoidance.  The idea of this thesis is to use both intensity and 

range information to improve the segmentation of the given scene image into homogeneous 

regions.  This procedure can improve the whole AV vision system because most of the 

image processing depends on the result of the image segmentation step.

 

 

6.2 Application: the Proposed System 

 

6.2.1 Co-Aligned Images 

 An AV is usually equipped with intensity and range cameras. LADAR (LA(ser) 

D(etecting) A(nd) R(anging)) is a popular range sensor; however, it does not have very  
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good resolution compared to an intensity camera.  To obtain more detailed range data, a 

high-resolution range camera like ABW, K2T, Perceptron and Odetics can be used.  While 

ABW and K2T range cameras recover depth from triangulation using structured light, 

Perceptron and Odetics range cameras do the same processing by computing the phase shift 

between the outgoing laser beam and its returned (bounded back) signal.  Co-aligned 

images can be acquired from intensity and high-resolution range cameras.  Two cameras 

can be arranged physically for acquiring a co-aligned image or the image can have same 

alignment using a transformation matrix with the given focal length, relative coordinates 

between cameras.   

 

 

      

                     a) Perceptron           b) Odetics 

  Figure 6.1: High Resolution Range Camera 

 

 An image data base from the CESAR Lab at Oak Ridge National Laboratory is 

used for simulations.  Figure 6.2 shows examples of the co-aligned image data base.  
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           range        intensity            range        intensity 

Figure 6.2: Examples of Co-aligned Image Data 

 

 

6.2.2 Extraction Edge Information from Multiple Data. 

 Valuable edge information can be extracted from both intensity and range images 

using the morphological gradient.  As reviewed in previous sections, the multiscale 

morphological gradient method is more reliable for edge detection when there is noise 

compared to conventional methods.  Using only the intensity image or only the range 

image for edge detection, it is not enough to reveal all edges of a given scene.  Figure 6.3 

shows a simple example of hidden edges in an intensity image.  Two objects are arranged 

dexterously, so that if viewed from the front of the objects and using only intensity image 

or only the range image, it is not possible to find the actual border between two objects.  

The gradient of the range image helps to reveal that edge.  It gives an idea that 

compensation can be made with a combination of both.  
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Original 
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            Intensity   Range      combined 

Figure 6.3: The Idea of Hidden Edge 

 

6.2.3 Proposed Method 

 Figure 6.4 shows the system diagram of the proposed method.  The contents of 

most of the boxes are covered in previous sections.  Through the series of the process, the 

segmented image finally can be acquired.  First of all, both images are read in and 

preprocessed and the multiscale morphological gradient is applied separately to each image.  

After that, the edge information from each process is combined using selected methods.  

For the combination of each edge information, two methods are tested in this simulation—

linear average and maximum selection.  Primitive segmentation is calculated by applying 

the watersheds transformation.  The final results are produced through region merging 

using the algorithm reviewed in Chapter 5.  For the merging criterion, the dissimilarity of 

the average intensity value of a segment is used. 
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Figure 6.4: The Proposed System Diagram 

 

 

 

6.3 Simulation Results 

 

 The simulation is composed with two different cases to check the advantage of the 

proposed system.  The first case uses only the intensity image to divide the given scene 

into homogeneous regions with proposed method.  The second case utilizes both the 

intensity and range image to do the same.  As the nature of image segmentation simulation, 

it is hard to analyze the statistical properties of the results.  Consequently, we will evaluate 

the proposed systems by comparing the final result to human-eye ground truth. 

 

6.3.1 Only-Intensity-Image (OIIM) case 

 In this case, only the intensity image is read in and processed with a given series of 
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morphological processes using the left side of Figure 6.3 excluding combining edge 

information. Figure 6.5~7 show the results of each stage from the original read-in intensity 

image to the final segmented image.  First of all, Figure 6.5 shows the effect of the 

multiscale morphological gradient to improve finding edge information from intensity 

image.  As shown, the edges of the multiscale morphological gradient (c: Multiscale 

Morphological Gradient_MMG) is stronger and smoother than the non-multiscale gradient 

(b: Morphological Gradient_MG).  The last one (d: Thresholded MMG_Th-MMG) shows 

the multiscale gradient after taking out trivial edges by thresholding.  For the threshold, 

30% of the value of ‘Otsu’s method’ is used.  Thresholded multiscale morphological 

gradient is actually fed into the watersheds transform function to do further processing for 

the proposed system. 

 

 

a)Original            b)MG             c)MMG           d)Th-MMG 

Figure 6.5: The Morphological Gradients 

 

 Applying the watersheds transformation on Th-MMG reduces the number of 

segments, which consequently affects the time it takes for region merging.  The smaller 

the number of initial regions taken as input, the lower the computational expense cost, and 

the shorter the time it takes for the process.  The bar graph of Figure 6.6 (a) shows the 

tendency that the number of segments is reduced as the multiscale and threshold processes 

are added in order.  Part (b) shows the actual homogeneous regions of watersheds 

transformation. 
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a) the tendency of the number of regions 

 

b) the watersheds transformation for each image of Figure 6.5 

Figure 6.6: Tendency of the Number of Segments after Watersheds Transformation 

 

 The given human-eye ground truth is shown in Figure 6.7 (b) and is composed of 

11 different homogeneous regions.  The initial homogeneous regions of the result of the 

watersheds transformation is set to be merged until the number of its regions match that of 

the ground truth in the post-processing stage.  The final segmented image for the OIIM 

case with watersheds is shown in part (d). 

 

    

   a) Original        b) Ground Truth    c) before merging        d) final  

Figure 6.7: The Comparison between Ground Truth and Final Segmented Image (OIIM) 
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  The final result does not perfectly match to the ground truth in OIIM case.  It has 

some faults.  One is that the sides and the face of the third box on the top are merged with 

the second box before merging (see the red circle in part (a) and the MMG of intensity 

image Figure 6.5).  The intensity value of original image on that regions are very similar 

to each other; even though the multiscale morphological gradient is used, it cannot find the 

edges in that region (i.e., a hidden edge).  So, the watersheds transformation considers 

those regions as a homogeneous region.  Another fault is that the back wall and floor are 

merged with the first box.  This is because the dissimilarity function of region merging is 

using only the average intensity value of each region.  The last fault is that the shades at 

the corners are dominant for the intensity value on those regions irrelevant to original 

intensity values of the regions, even though the image is taken in a light-controlled 

environment.  

 The system shown in Figure 6.4 is proposed to improve these problems in the 

OIIM case like finding out hidden edges and compensating for the dissimilarity of the 

average intensity values. 

 

6.3.2 Both-Intensity-Range-Image (BIRIM) case 

 For this case, the proposed system in Figure 6.4 is used fully.  Both intensity and 

range images are read in, and the noise in these images is reduced using a 2-D Gaussian 

filter on each.  The range image is linearly equalized with the maximum and minimum 

intensity values to match the contribution on the criteria with that of the intensity image.  

Later, both images are processed with the multiscale morphological gradient scheme 

separately, and two MMG are combined linearly with equal weight.  The weight can be 

adjusted according to the situation.  Then, the combined edge information is thresholded 

with same method that is used for the OIIM case.  After watersheds transformation, the 

region merging stage uses both intensity and range images again to get the dissimilarity 

between each region. 
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 Figure 6.8 shows the original range image and its MG, MMG, and Th-MMG.  It 

can be checked that the multiscale scheme also works on range data.  The gradients of 

range image could have hidden edges (see the red circle in part (d)).  Hopefully, it is 

expected not to overlap those of the intensity image.  If it does, then it is not possible to 

reveal hidden edges in the sense of intensity and range. 

 

 

   a) Original           b)MG             c)MMG          d)Th-MMG 

Figure 6.8: The Gradients of Range Image 

 

 Figure 6.9 shows the initially segmented image applying the watersheds 

transformation on the MG, MMG and Th-MMG of the range image.  Unlike the OIIM 

case, the number of segments after applying the transformation on the original range image 

is a small number.  This is because the scene is composed of smooth planes like the floor, 

wall and boxes.  Viewed in perspective angle, the smooth planes are changing their 

distance gradually along to the line of sight of camera and the elevation procedure in the 

watersheds transformation just fill in the region without building a dam in that direction.  

That is why it has vertically long segments and the edges do not contain the shape of the 

object.  Even though there are some noises, they can be treated as ‘islands’ and it is erased 

through the watersheds transformation as reviewed in Chapter 3.  
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   a) Original          b) MG             c) MMG         d)Th-MMG 

Figure 6.9: Watersheds Transformation on the Gradients of Range image 

 

 Next, the combination of both MMG-(CMMG) and threshold-(Th-CMMG) on the 

combination are shown in Figure 6.10.  Hidden edges could be overlapped in intensity and 

range sense.  Fortunately, we have non-overlap hidden edges in this example.  The 

hidden edges in each intensity and range image are revealed in combined the MMG 

(CMMG)-part (c). 

 

 

   a) Int.-MMG       b) Ran.-MMG        c) CMMG        d) Th-CMMG 

Figure 6.10: MMG’s and the CMMG and Th-CMMG 

 

The watersheds transformation on the Th-CMMG is shown in Figure 6.11 

mpare

 

 

co d to that of Th-MMG of the OIIM case.  The number of regions of the watersheds 

transformation on Th-CMMG is slightly more than OIIM case, yet a fairly small number 

compared to the number of regions of watersheds transformation in original intensity image. 

It is natural that the number of regions of the watersheds transformation on Th-CMMG is 
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more than that of the OIIM case because Th-CMMG has more edges than Th-MMG if there 

were hidden edges.  

     

a) OIIM case            b) BIRIM case 

Figure 6.11: Primitive Segments of OIIM and BIRIM Cases 

 

 The final result after the region merging process is shown in Figure 6.12 compared 

to the result of OIIM case and the ground truth.  Three faces of the boxes are segmented 

properly in the BIRIM case; however, the top of first box is merged with the floor region 

and the dominant shadow is still affecting the segmentation at corners.   

 

      

                  a) intensity image         b) range image  

       

     c) ground truth      d) final in OIIM      e) final in BIRIM 

Figure 6.12: Comparison of Final Result with Ground Truth 
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6.3.3 Region-Merging-Stopping condition-Dissimilarity 

 In previous Sections 6.3.1 and 6.3.2, the number of segments of ground truth is 

used for the region-merging-stopping condition, so the region merging process is set to stop 

if the number of present segments is equal to that of the ground truth.  However, this 

condition does not use any feedback from the present segment status at all, so it could 

merge two distinguishable regions forcefully.  That is why we had objects merged with the 

floor or back wall.  The process should be stopped before those situations occur.  In this 

section, the dissimilarity value is used. 

 Figure 6.13 shows the results of the region merging process.  Previous processes 

are applied in the same way as in the proposed system in Figure 6.4.  The maximum 

dissimilarity value allowed to be merged is set to 12,000 for both OIIM and BIRIM case. 

The final numbers of regions for OIIM and BIRIM are 11 and 16. 

 

       

a) OIIM case              b) BIRIM case 

Figure 6.13: The Results of Dissimilarity Case 

 

As shown in 6.13, the back wall and the floor started to merge with the top of the first box 

in OIIM case, before the segments of back wall themselves are merged as a homogeneous 

region.  On the other hand, in BIRIM case, the final segmenation shows good results 

except for the dominancy of the shadows in the intensity image. 

 54



CHAPTER 7 

DISCUSSIONS AND FUTURE WORKS 

 

 

 

 Image segmentation is one of the most important categories of image processing.  

The purpose of image segmentation is to divide the original image into homogeneous 

regions.  Image segmentation can be a pre-processing stage for other image processes and 

the result of the whole image processing depends on the result of the image segmentation.  

There are several approaches to perform this task such as Edge-based, Clustering-based, 

Region-based, and Split/merge approaches.  In this work the watersheds transformation 

was selected as a particular region-based approach method to do the segmentation.  The 

immersion process of the watersheds transformation is a fast and powerful algorithm to 

produce the segmented image.  The transformation needs pre-processing and post-

processing for embedded problems.  The watersheds transformation may better applied on 

the gradient of the original image to get over the edge ambiguity.  The morphological 

gradient and multiscale concepts are selected to find reliable edge information.  Another 

embedded problem of the watersheds transformation is that it usually produces too many 

homogeneous regions.  The number of segments can be reduced dramatically when the 

transformation is applied to the gradient image; however, this generally still results in a 

large number of segments.  As a post-processing, the region merging algorithm is applied, 

using a region adjacency graph (RAG) and the dissimilarity function for the merging 

criteria. 

 In this thesis, the proposed system has been applied to co-aligned images, i.e., pair 

of intensity and range images. It is expected that the hidden edges in the sense of intensity 

can be detected in the sense of range or vice versa.  Also it is expected that the 
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contribution of the range image in region merging can compensate for the dominancy of 

shadows in the intensity image irrelevant to original intensity of object.  When hidden 

edges are not overlapped in both images, the proposed system detected those.  This 

produced a slightly higher number of segments after the application of the watersheds 

transformation.  The region merging algorithm worked somewhat, but the overall 

algorithm still needs to be improved.  The calculation time for the RAG table and the 

dissimilarity between each region neighbor is very expensive; the RAG needs to be 

replaced with a Nearest Neighbor Graph [6] which is a faster and compact version of the 

RAG by finding the closest adjacent region out of its neighbor regions.  Even though the 

range information is added to compensate the effect of shadows, the algorithm still merges 

wrong regions.  The dissimilarity function used for the criterion of merging needs to be 

redefined including another statistical properties like variance.  The dissimilarity can be 

defined in the sense of intensity, range and both separately, and the combination of these 

three dissimilarities can be used as criteria for region merging.  This subject may be good 

a topic for future work. 

 Finally, there is another problem with the proposed system that should be pointed 

out.  After combining two edge information from intensity and range images, the proposed 

system thresholds the combined gradient to eliminate local minima so that it can reduce the 

number of homogeneous regions of watersheds transformation.  Valuable edge 

information could be lost through this process.  To prevent the loss of this valuable edge 

information, morphological image reconstruction can be replaced with thresholding.  

Morphological image reconstruction is a powerful method to eliminate local minima while 

keeping all valuable edge information.  The mathematical background is shown in 

Appendix B.  This could be another subject for future work to incorporate morphological 

image reconstruction with the proposed system. 
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APPENDIX A 

WATERSHEDS TRANSFORMATION ALGORITHM 

 

 

 

The fast watersheds transformation algorithm was introduced by Luc Vincent and 

Pierre Soille in 1991.  This pseudo-code is captured from the original paper [6].  This 

algorithm uses three different FIFO (first-in-first-out) data structures. 

 

fifo_add(p): Puts the (pointer to) pixel p into the queue 

fifo_first(): Returns the (pointer to) pixel which is at the beginning of the queue, and 

removes it from the queue 

fifo_empty: Returns true if the queue is empty and false otherwise 

 

A ‘circular’ queue is efficient in order to implement such operations.  Below is some C-

friendly pseudo code. 

 

 

Algorithm: Fast Watersheds Transformation 

 

#define MASK   -2  /*initial value of a threshold level*/ 

#define WSHED  0  /*value of the pixels belonging to the watersheds*/ 

#define INIT -1    /* initial value of imo*/  

� ---input: imi, decimal image; 

---output: imo, image of the labeled watersheds; 

� Initializations: 
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---Value INIT is assigned to each pixel of imo:  ;)(, INITpimDp oimo
=∈∀

---current_label ← 0; 

---current_dist: integer variable; 

---imd: work image (of distances), initialized to 0; 

� Sort the pixels of imi in the increasing order of their gray values. 

 Let hmin and hmax designate the lowest and highest values, repectively. 

� For h ← hmin to hmax { 

 /* geodesic SKIZ of level h-1 inside level h */ 

 For every pixel p such that imi(p) = h { 

 /* These pixels are accessed directly through the sorted array. */ 

imo(p) ← MSAK; 

if there exists  { ' ( ) ( ') 0 ( ')G o op N p such that im p or im p WSHED∈ > =

imd(p) ← 1; fifo_add(p); 

} 

 } 

 current_dist ← 1; fifo_add(fictitious_pixel); 

 repeat indefinitely { 

   p ← fifo_first(); 

   if p = fictitious_pixel { 

     if fifo_empty() = true then BREAK; 

     else { fifo_add(fictitious_pixel); 

       current_dist ← current_dist + 1; 

 p ← fifo_first(); 

 } 

   } 

   For every pixel p’∈NG(p) { 

   If imd(p’) < current_dist and (imo(p’) > 0 or imo(p’) = WSHED){ 
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  /*i.e., p’ belongs to an already labeled basin or to the watersheds*/ 

  if imo(p’) > 0 { 

     if imo(p) = MASK or imo(p) = WSHED then 

        imo(p) ← imo(p’); 

     else if imo(p) ≠ imo(p’) then 

        imo(p) ← WSHED; 

  } 

  else if imo(p) = MASK then imo(p) ← WSHED 

  } 

    else if imo(p’) = MASK and imd(p’) = 0 { 

    imd(p’) ← current_dist +1; fifo_add(p’); 

    } 

 } 

   } 

   /* checks if new minima have been discovered*/ 

 

   For every pixel p such that imi(p) = h { 

 imd(p) ← 0;    /* the distance associated with p is reset to 0*/ 

 if imo(p) = MASK { 

    current_label ← current_label +1; 

    fifo_add(p); imo(p) ← current_label; 

    while fifo_empty() = false{ 

  p’ ← fifo_first(); 

  For every pixel  p” ∈  NG(p’) { 

     if imo(p”) = MASK { fifo_add(p”); 

        imo(p”) ← current_label; } 

  } 
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    } 

 } 

   } 

} 
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APPENDIX B 

LOCAL MINIMA ELIMINATION: 

MORPHOLOGICAL IMAGE RECONSTRUCTION 

 

 

 

 Local minima consist of a small number of pixels or have a low contrast with 

respect to their neighbors.  It is usually caused by noise or quantization error.  The 

procedure to eliminate local minima used in [4] takes advantage of the technique 

“morphological grayscale reconstruction” proposed in [5].  

 The morphological reconstruction transformation is well-known in the binary case, 

where it simply extracts the connected components of an image which are “marked” by 

another image.  Extending it to grayscale reconstruction, it can accomplish several tasks 

such as image filtering, extrema, domes, and basins extraction.  In the following 

paragraphs, we will review morphological reconstruction first and then describe how to 

apply it to modify the gradient. 

 

Definition: Binary Reconstruction 

 Let X,Y ⊂ Z
2
 and Y ⊆ X. The reconstruction of X from Y is obtained by iterating 

elementary geodesic dilations of Y inside X until stability is reached; that is, 

 

)()( )(

1

YY n

X
n

X δρ
≥

= ∪ . 

 

where  can be obtained by iterating n elementary geodesic dilation and the 

geodesic dilation is defined as: 

)()( Yn

Xδ
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)1()()()1( sizeofelementgstructurintheisBXBYYX ∩⊕=δ . 

 

Definition: Dilation-based Grayscale Reconstruction 

 Let I, J be two grayscale images defined on the same domain and J ≤ I.  The 

reconstruction of I from J, denoted as , is obtained by iterating elementary 

geodesic dilations of J under I until stability is reached: 

)()( Jrec

Iγ

 

)()( )(

1

)( JVJ n

I
n

rec

I δγ
≥

=  

 

where  can be obtained by iterating n elementary geodesic dilation and the 

geodesic dilation is defined as  

)()( Jn

Iδ

 

IBJJI Λ⊕= )()()1(δ  

 

(B is the flat structuring element of size 1 and Λ stands for pointwise minimum.) 

 

Definition: Erosion-based Grayscale Reconstruction 

 Let I, J be two grayscale images defined on the same domain and J ≤ I.  The 

reconstruction of I from J, denoted as , is obtained by iterating elementary 

geodesic erosions of J above I until stability is reached : 

)()( Jrec

Iϕ

 

)()( )(

1

)( JJ n

I
n

rec

I εϕ
≥
Λ=  

 

where  can be obtained by iterating n elementary geodesic dilation and the 

geodesic dilation is defined as : 

)()( Jn

Iε

 

IVBJJI )()()1( Θ=ε  
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(B is the flat structuring element of size 1 and V stands for pointwise maximum) 

 

 Now is the time to describe how the morphology reconstruction helps to eliminate 

the local minima.  Generally, grayscale dilation has the effect of eliminating specks in a 

signal, and it can be employed to smooth the gradient image.  Given the gradient image by 

applying the multiscale gradient algorithm in the last section, the prodecure of local minima 

elimination in [4] can be stated as follows: 

 

1. The gradient image MG(f) is dilated with a square structuring element Bs of 2x2 

pixels, i.e., MG(f)⊕Bs. 

2. A constant h is added to the dilated gradient image and erosion-based 

reconstruction is performed. That is, the final gradient image can be expressed as 

 ).))((()(

))(( hBfMG s

rec

fMG +⊕ϕ

 

 As an interpretation, in step 1, if the local minimum is ‘narrower’ than the size of 

Bs, it will be filled by the nature of dilation. In step 2, the local minimum with intensity in 

gradient lower than h can be filled irrespective of their absolute value.  If the local 

minimum is wide and deep, it still cannot be removed.  However, compared to 

thresholding the gradient image, it is more reasonable to use the morphological approach 

shown above to eliminate the local minima.   
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