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SAME AUTHOR AND SAME DATA DEPENDENCE IN META-

ANALYSIS 

 

 

 

ABSTRACT 

 

 

When conducting meta-analysis, reviewers gather extensive sets of primary 

studies for meta-analysis. When we have two or more primary studies by the same author, 

or two more studies using the same data set, we have the issues we call ‘same author’ and 

‘same data’ issues in meta-analysis. When a researcher conducts a meta-analysis, he or 

she first confronts ‘same author’ and ‘same data’ issues in the data gathering stage. These 

issues lead to between studies dependence in meta-analysis. 

In this dissertation, methods of showing dependence are investigated, and the 

impact of ‘same author’ studies and ‘same data’ studies is investigated. The prevalence of 

these phenomena is outlined, and how meta-analysts have treated this issue until now is 

summarized. Also journal editors’ criteria are reviewed.  

To show dependence of ‘same author’ studies and ‘same data’ studies, fixed-

effects categorical analysis, homogeneity tests, and intra-class correlations are used. To 

measure the impact of ‘same author’ and ‘same data’ studies, sensitivity analysis and 

HLM analyses are conducted. Two example analyses are conducted using data sets from 

a class-size meta-analysis and ESL (English as a Second Language) meta-analysis. The 

former is an example of the ‘same data’ problem, and the latter is an example of the 

‘same author’ problem. Finally, simulation studies are conducted to assess how each 

analysis technique works. 
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CHAPTER 1 

INTRODUCTION 

 

The reason we conduct meta-analysis is to find an overall conclusion about the 

direction and strength of a relationship between variables, because each primary study’s 

result is limited, and sometimes studies are contradictory. Researchers want to find 

general findings without bias. Meta-analysis can be defined as a statistical method for 

synthesizing primary studies’ findings. Meta-analysis cannot guarantee the truth, but can 

represent the present state of research results. 

The popularity and impact of meta-analysis is increasing. A large number of 

meta-analyses have appeared in research journals in psychology and related areas (Hunter 

& Schmidt, 2000). We can see the impact of meta-analysis in the fact that textbooks 

summarizing knowledge within fields increasingly cite meta-analyses rather than a 

selection of primary studies (Hunter & Schmidt, 1996). As the popularity and the impact 

of meta-analysis increase, the analyses and interpretations of results should be more 

cautious. 

Whenever a researcher conducts a meta-analysis, the meta-analyst gathers 

primary studies. When a meta-analyst gathers primary studies, they often encounter 

same-author studies on the same topic, and many studies using common public data sets 

like the Coleman et al. (1966) data set and STAR (Student Teacher Achievement Ratio) 

data (Achilles, 1994; Finn, Fulton, Zaharias & Nye,. 1989; Goldstein & Blatchford, 1998; 

Johnston et al., 1990; Mostellar, 1995;  Nye et al., 1992). These studies lead to 

dependence in effect sizes.  

This is different from the dependence discussed by Gleser and Olkin (1994) that 

arises due to multiple treatment studies and multiple endpoint studies. Those types of 

dependence are based on multiple effect sizes that use the same control group with 

different treatment groups, or repeated measures on the same samples within studies. 

However, my research issue is different because Gleser and Olkin’s dependence is within 

study dependence and dependence due to repeated measures, but my issue concerns 

http://www.heros-inc.org/factsheet.htm
http://www.heros-inc.org/factsheet.htm
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dependence between studies. For example, studies of class size and student achievement 

may have several effect sizes based on students assessed on different subjects. These 

several effect sizes have a kind of within study dependence. However, if an author writes 

several papers about the effect of class size on student achievement, or several papers 

using the STAR data set, we have the ‘same author’ and ‘same data’ issues: between 

study dependence. The ‘same author’ issue and ‘same data’ issue can have similar 

influences on effect-size estimates, so a researcher needs to consider dependence when 

estimating effect sizes from same-author studies and studies using the same data sets.  

Meta-analysts have not paid much attention to same-author papers and papers 

using the same data. However, Rose and Stanley (2005) mentioned the same-author issue 

and papers using the same data, saying that; “Some estimates are highly dependent, being 

generated by the same data, methods, or authors” (p. 350). One author could have several 

primary papers on the same issue. Nowadays, information is increasing dramatically and 

research areas are narrowing and narrowing. So there are many more possibilities of 

finding same-author papers in the data gathering stage than ever before in the history of 

meta-analysis. This phenomenon will accelerate as time goes on. 

In the process of meta-analysis, there are five stages (Cooper, 1998): Problem 

formulation, data collection (searching the literature), data evaluation (coding the 

literature), analysis and interpretation, and public presentation.  

Here, I explain the importance of and reason for this research based on these five 

stages.  Of the five stages, this research is particularly related to the data gathering, data 

evaluation, data analysis, and reporting stages, as described here: 

- Data gathering stage: Meta-analysts will try to find as many as primary studies 

they can in the data gathering stage, and they often find several same-author 

studies because authors have a tendency to specialize on particular issues. 

Also, meta-analysts may find studies using common public data sets like the 

Coleman et al. (1966) data set and the Tennessee STAR data set.  

- Data evaluation stage: Meta-analysts need to list all studies and should decide 

whether to include or exclude the same-author studies and studies using the 

same data set. 
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- Data analysis stage: If a researcher excludes all same-author studies and 

studies using the same data, it will cause loss of information. If a meta-analyst 

includes all of these studies, the researcher will encounter dependence. The 

meta-analyst then must decide how to address the dependence. 

- Reporting results: Researchers want to report results without bias, so, same- 

author studies and studies using same data must be addressed in reports to 

ensure generalizable findings in meta-analysis. 

 

Research questions 

 

In this dissertation, two research questions are investigated for the ‘same author’ 

issue and ‘same data’ issue in meta-analysis: 

First, “How can research synthesists show the dependence due to studies by the 

same author or many studies using the same data sets in meta-analysis?” 

Second, “If there is dependence because of studies by the same author and studies 

using the same data set, how can meta-analysts measure the impact on the estimate of 

effect size?” 

 

Purpose of this study 

 

The ‘same author’ and ‘same data’ issues are related to the independence 

assumption in meta-analysis, to the question of which unit of analysis is appropriate, and 

to the generalizability of research findings. To study these issues, I used several 

approaches. 

First, I examined how prevalent these phenomena are in the meta-analysis field. I 

reviewed existing meta-analyses to check how often studies by the same authors appear 

in real meta-analyses. I also assessed how many primary studies in the meta-analyses 

used common data sets, as in the above mentioned class-size review. 

Second, I investigated how meta-analysts have treated these issues until now, and 

explored journal editors’ attitudes about these issues. I also conducted a case study to 

understand the problems of these issues in depth, using two sample meta-analyses 
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involving ‘same author’ studies and ‘same data’ studies: the former is a procrastination 

meta-analysis (Steel, 2007) and the latter is a class-size meta-analysis (Shin, 2008). 

Third, given the existence of ‘same author’ studies and ‘same data’ studies in 

published meta-analyses, I proposed several statistical methods to show the dependence 

among results, including homogeneity tests, fixed-effects categorical analysis, and intra-

class correlation. I also proposed sensitivity analysis and a Hierarchical Linear Model 

(HLM) approach to measure the impact of between studies dependence in estimating 

effect size.   

Fourth, to evaluate the proposed analytical methods, empirical analyses are 

conducted using two example meta-analyses: a class-size meta-analysis (Shin, 2008) and 

meta-analysis on the teaching of English as a second language (ESL) (Ingrisone & 

Ingrisone, 2007). 

Fifth, for the ‘same data’ issue, I generated hypothetical ‘same data’ sets, and 

investigated the effect and influence of ‘same data’ sets on estimating effect size under 

various meta-analysis scenarios. For the ‘same author’ issue, I proposed a possible 

analytical model based on the characteristics of ‘same author’ studies in meta-analysis, 

and also conducted a simulation study. 

Until now, many meta-analysts have mentioned these issues only briefly when 

reporting on data gathering and data analysis. However, no one has furthered a systematic 

approach or proposed any guidelines for managing these issues thoroughly in meta-

analysis. 
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CHAPTER II 

LITERATURE REVIEW 

 

In the literature review, I have studied the following issues for the ‘same author’ 

and ‘same data’ studies. First, how prevalent are these phenomena? Second, what are the 

present ways of dealing with this issue? Third, what are journal editors’ criteria for 

accepting studies by the same author or using the same data? Journal editors’ decisions 

lead to the appearance of ‘same author’ studies and ‘same data’ studies in meta-analysis, 

because if journal editors will not accept studies on the same topic by the same author 

and studies using the same data, meta-analysts will not find these studies when doing 

meta-analyses. Fourth, I presented two case studies to illustrate the ‘same author’ and 

‘same data’ issues: a meta-analysis with many studies by one author (a synthesis of 

procrastination studies by Steel, 2007), and a meta-analysis in which many studies use 

the same public data sets (a synthesis of class-size studies by Shin, 2008). 

 

Prevalence of and way of dealing with ‘same author’ and ‘same data’ papers 

 

1. Same author issue 

I investigated a collection of existing meta-analyses to check how often multiple 

studies by the ‘same author’ appear in real meta-analyses. First, I reviewed articles in two 

journals (Psychological Bulletin and Review of Educational Research) from 2004 to 

March 2008. I found 39 and 13 meta-analysis articles among 212 and 71 total articles in 

Psychological Bulletin and Review of Educational Research, respectively; they are in 

Appendix A. These two journals are the main journals in education and psychology for 

meta-analysis. In both journals during this time frame, 18% of the articles were meta-

analyses. Surprisingly, all 52 meta-analyses had more than two ‘same author’ papers. 

This means that the ‘same author’ issue happened in every meta-analysis article I 

examined. 

In Appendix B, I show the frequency of the same-author issue in meta-analysis in 

detail using the 2006 and 2007 issues of the same two journals.  In these two journals, 
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most meta-analyses distinguished two kinds of references: one kind is cited papers, and 

the other papers used in the meta-analysis. I checked the frequencies of ‘same author’ 

papers based on a review of reference lists. Appendix B presents the frequencies of ‘same 

author’ papers in those meta-analyses. In Appendix B, the number of ‘same author’ 

papers is between 2 and 26 papers by one author. The largest numbers of papers by one 

author are 26 papers in Steel (2007) and 16 papers in Bar-Haim et al. (2007), respectively. 

Bar-Haim et al. (2007) examined the boundary conditions of threat-related 

attentional biases in anxiety. This study had 172 primary studies. I counted the number of 

‘same author’ papers in the reference list: 8 authors each wrote a pair of papers on this 

topic (16 papers), 5 authors wrote 3 papers (15 papers), 2 authors wrote 5 papers (10 

papers), 2 authors wrote 6 papers (12 papers), 1 author wrote 8 papers, and finally, 1 

author wrote 16 papers on this topic. So, the total count of ‘same author’ papers was 77 

papers. This means that 45% of all papers (77 papers among 172 papers) were in sets of 

papers with the same author. The largest number of papers by one author was 16 papers. 

However, the meta-analysts did not mention the same author effect at all. 

Similarly, Steel (2007) examined possible causes and effects of procrastination 

based on 691 correlations. This study had 216 primary studies:  17 authors wrote 2 papers 

(34 papers), 4 authors wrote 3 papers (12 papers), 3 authors wrote 4 papers (12 papers), 1 

author wrote 7 papers, 1 author wrote 9 papers, 1 author wrote 12 papers and finally, 1 

author wrote 26 papers. Appendix B shows that 52% of the papers (112 among 216 

primary studies) were among sets by the same author. One author, J.R. Ferrari, had 26 

first authored papers. I investigated Ferrari’s 26 papers to understand the characteristics 

of papers by the ‘same author’ in this meta-analysis. 

 

When I investigated the meta-analysis articles in these two major journals 

(Psychological Bulletin, Review of Educational Research), I did not find much mention 

of the ‘same author’ issue in real meta-analyses. Only two articles briefly referenced this 

issue. However, Bateman and Jones (2003) described the ‘same author’ situation in detail.  

First, Malle (2006) mentioned non-independence issues, stating “Effect sizes from 

samples collected in the same setting and by the same researchers will on average be 

correlated and may therefore inflate the effect size averages.” (p. 913). Here, ‘same 
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researchers’ mean ‘same authors’ and the effect sizes from the same researchers and 

similar settings are nested. To estimate the possible inflation effect in the same settings 

and same-researcher studies, Malle (2006) computed a per-article effect size average, but 

the effect-size value was virtually identical to the average based on the 173 individual 

studies/samples.   

As Malle (2006) said, effect sizes from samples collected in the same setting and 

by the same researchers are nested and correlated, so meta-analysts need to check if there 

is dependence or not. Malle checked if there was possible inflation or not, by computing 

a per-article effect size average. However, I do not agree with Malle’s computation 

method. Malle computed one average effect size per article to check for possible inflation 

of the overall effect-size estimate, but Malle did not distinguish ‘same author’ articles 

from ‘different authors’ articles. In this research, I have distinguished ‘same author’ 

papers and ‘same data’ papers from the ‘different author’ papers and ‘different data’ 

papers to investigate the possible dependence. 

Second, consider the situation with two versions of the same paper: one is 

published, the other is unpublished. Nesbit and Adesope (2006) chose to include the 

published journal paper rather than an unpublished one, stating “When a study was 

reported in more than one source (e.g., dissertation and journal article), the version 

published in a journal article was used for coding” (p. 442). However, Weisz, McCarty 

and Valeri (2006) chose the unpublished paper if one was published and the other 

unpublished from the same data set. This is a little bit different from the ‘same author’ 

issue because this is just two versions of the same paper. ‘Same author’ papers do not 

mean the same paper, but represent different papers on the same topic by the same author. 

 Third, Bateman and Jones (2003) described the exact situation of the present 

‘same author’ issue. Bateman and Jones (2003) described various meta-analysis models 

of woodland recreation benefit estimates, comparing a traditional meta-analysis model 

with multi-level model (MLM) techniques. They said, “Our conventional models suggest 

that studies carried out by certain authors are associated with unusually large residuals 

within our meta-analysis. However, the MLM approach explicitly incorporates the 

hierarchical nature of meta-analysis data, with estimates nested within study sites and 

authors.” (p. 235). Bateman and Jones (2003) explained the benefit of the MLM approach 
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in meta-analysis: “The MLM approach allows the researcher to explicitly incorporate 

potential nested structures within the data, and allows the researcher to relax strong and 

commonly adopted assumptions regarding the independence of estimates with respect to 

the numerous natural hierarchies within which they reside.” (p. 237). Their MLM is a 

useful approach for examining the clustering of estimates within authors. They also 

explained the problem of the traditional approach in meta-analysis: “A potential 

limitation of the application of conventional regression techniques in meta-analysis 

occurs if the observations being modeled possess an inherent hierarchy” (p. 247). Aside 

from the nested data structure issue, the traditional approach will poorly estimate 

parameters and standard errors: “Problems with standard error estimation arise due to the 

presence of intra-unit correlation” (Bateman & Jones, 2003, p. 248). If the intra-unit 

correlation is large, it will lead to underestimated standard errors and more easily rejected 

null hypotheses in the traditional approach (Bateman & Jones, 2003). Bateman and Jones 

described the same author issue very well, and their multi-level approach is one 

reasonable way to deal with the ‘same author’ issue in meta-analysis, compared to 

conventional approaches. Compared to the prevalence of the ‘same author’ problem in 

meta-analysis, meta-analysts have not much paid attention to the issue, but Bateman and 

Jones (2003) explained well the same author issue and laid out an appropriate multi-level 

approach. 

 

2. Same data issue 

I next reviewed how reviewers have treated the ‘same data’ issue in meta-analysis 

articles by investigating meta-analyses in two journals: Review of Educational Research 

and Psychological Bulletin. Compared to the ‘same author’ issue, the same data issue has 

many more references. However, these references cover concerns that are a little different 

from the present research issue. Meta-analysis articles mainly refer to ‘same sample’ 

issues, not ‘same data’ issues. The objective of the present research is to deal with the 

similarities and study level dependence that arise from repeatedly using same public data 

sets, but meta-analysis articles mainly are concerned with the dependence of effect–size 

estimates when the exact same sample appears in several studies. Most meta-analysts are 

concerned with repeated measures, and replication of samples, but my research concerns 
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similarities or dependence based on nested study structures in meta-analysis. There are 

several examples of nested study structure dependences in meta-analysis: multi-site 

studies, same-laboratory studies, studies using the same public data set, and ‘same 

author’ studies.  

Kalaian (2003) defined a multisite study as research that studies the effectiveness 

of similar, or variations of the same interventions across multiple similar or distinct sites. 

These sites can include multiple clusters of individuals, classrooms, schools and other 

similar settings. Gurevitch and Hedges (1999) presented a same-laboratory study 

example as follows, “when several effect-size estimates are computed from the same 

laboratory, there may be dependence if common materials, procedures, etc., in a 

laboratory make the outcomes of separate experiments obtained from the same laboratory 

less variable than those obtained from different laboratories” (p. 1147). Multi-site studies 

and same-laboratory studies are similar to same author studies because the data structure 

is nested in meta-analysis and a multi-level approach is suitable for meta-analysis. 

In education and other research areas, we have many large public access data sets. 

Thus, many researchers use these data sets for their own studies. However, I categorized 

the same sample issues mentioned in most meta-analyses as being indirectly related to the 

‘same data’ topic, because meta-analysts did not mention the ‘same data’ issue directly, 

and both issues involve the issue of dependence in estimating effect-size. From meta-

analyst’ treatment of the same sample issue, I have drawn some ideas about how we 

should treat the ‘same data’ issue. These are described in the following subsections. 

 

1) Choosing one study among nested studies, and excluding other papers 

using the same sample or same data. 

When meta-analysts gather articles, they can encounter papers with samples that 

overlap each other, papers using repeated measures, and longitudinal study papers having 

repeated measures taken at different times. Tolin and Foa (2006) included the larger 

study when the samples of two studies overlapped. Webb and Sheeran (2006) excluded 

two studies because the studies both used a subset of data from a larger study also 

included in the review. Kuncel et al. (2005) also chose the largest and most complete 

study and excluded smaller overlapping studies in all cases with overlapping studies. 
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However, if analysts choose one study, it will cause some loss of information in meta-

analysis. Frattaroli (2006) excluded 6 papers from a meta-analysis because the papers did 

not present new data, and used data reported in earlier sources. Else-Quest, Hyde, 

Goldsmith, and Van Hulle (2006) dropped 16 studies and 567 effect sizes using duplicate 

samples. Glasman and Albarracin (2006) also simply eliminated the statistically 

dependent within-subject measures in longitudinal papers. Exclusion of papers using the 

same sample can be an option in meta-analysis. However, the problem with excluding 

papers so as not to violate the independence assumption is loss of information. 

Furthermore, the same sample issue is directly related to violation of the independence 

assumption, but the same data issue is indirectly related to the violation of the 

independence assumption. If meta-analysts include papers using the same public data sets, 

they can use the same data sets between studies, but it is not as clear as the repeated use 

of the exact same sample within a study. With large public data sets, many researchers 

use the same data set, but they may use different parts of the data set based on their 

research question: For example, in using the STAR data set, the grade levels of students 

were not the same: Mostellar (1995) analyzed only first-grade data, and Achilles (1994) 

reported K-3 results, but the sample size and the results for the first grade sample were 

not the same as those of Mostellar’s (1995) first-grade data. 

It is not always clear that they have used exactly the same samples, but studies 

that have used the ‘same data’ set often have similarities which are different from the 

exact dependence existing for papers using the exact same samples. 

 

 2) Average or weighted average for multiple outcomes. 

 When meta-analysts have multiple effect sizes in a single study, making an 

average is also an option in synthesizing effect sizes in meta-analysis. Multiple outcomes 

are different from the ‘same data’ issue in that multiple outcomes are a within study issue, 

but the ‘same data’ issue is a between studies issue. Nestbit and Adesope (2006) coded 

the weighted average effect across multiple treatment groups when data from multiple 

experimental or comparison treatments were reported. 

  

3) Shifting unit of analysis in a meta-analysis.  
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Meta-analysis authors are concerned with the independence assumption, unit of 

analysis and generalizability issues. Effect sizes are assumed to be independent, and 

considerable dependence among data points can threaten the validity of meta-analytic 

findings (Malle, 2006). To achieve statistical independence among effects, Sirin (2005) 

suggested three alternative approaches for choosing the unit of analysis in meta-analysis: 

each study as the unit of analysis, each effect size as the unit of analysis, or “shifting unit 

of analysis”. Using study as the unit of analysis will lead to loss of information when a 

study has several effect sizes in it, while using the effect size as a unit of analysis will 

leave dependence within a study. The “Shifting unit of analysis” is a kind of compromise 

between study and effect size in the choice of unit of analysis.  

When researchers estimate a total effect size, they effectively use the study as a 

unit, however, when researchers estimate effect sizes for sub-groups, they can use the 

effect size as a unit. When meta-analysts study the effect of class-size on student 

achievement, there are reading, math, and science achievement outcomes for the same 

samples. When the analyst measures effect size for each subject area, the unit of analysis 

is the effect size for each subject. However, when the meta-analyst measures the overall 

effect size, the researcher will use the study as the unit of analysis for the independence 

assumption thus averaging across the subject areas. Shifting units of analysis is a good 

strategy because no information is lost and the independence assumption is not violated. 

However, shifting the unit of analysis is a reasonable analysis method when multiple 

measures or multiple subgroups exist within a study. As another application of shifting 

units of analysis, reviewers may choose the author or the data set as the unit of analysis in 

meta-analysis. 

 

 4) Sensitivity analysis.  

Other authors have proposed alternative methods related to same sample and data 

issues. Glasman and Albarracin (2006) suggested sensitivity analysis to analyze 

dependent data in meta analysis: “19 studies were based on longitudinal measures 

completed by the same group of participants. However, because the inclusion of the 

longitudinal reports violates statistical independence assumptions, we present report 

results that both include and exclude the dependent conditions.” (p. 783). 
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 Sensitivity analysis can be a good option for the ‘same data’ issue, for example, 

because reviewers can report both including the STAR studies and excluding the STAR 

studies when there are several papers from the STAR data sets. 

 Goldberg, Prause, Lucas-Thompson, and Himsel (2008) examined the 

relationship between children’s achievement and mother’s employment. Many studies 

used the National Longitudinal Survey of Youth (NLSY) to study this issue because the 

NLSY is widely accessible. The authors included several NLSY papers, “Despite the 

common source, analyses with the NLSY data have led to varying conclusions, reflecting 

differences in the subsets of the NLSY sample selected for analysis, measures of maternal 

employment, child outcome, and the choice of control variable” (Goldberg et al., 2008, p. 

80). Goldberg et al. (2008) is an exact example of the same data issue. As the authors said, 

‘same data’ studies can give various conclusions because of different analytical choices 

including various outcomes, constructs, and study characteristics. Goldberg et al. (2008) 

analyzed 19 studies from the NLSY among a total of 68 studies. The authors considered 

the dependence of NLSY studies, “The potential nonindependence of the NLSY samples 

and their overrepresentation in the findings for formal tests of achievement and 

intellectual functioning prompted us to devise procedures for handling these studies. To 

represent the range offered by the NLSY studies, the studies with the most negative and 

the most positive effects were designated as NLSY-low and NLSY-high, respectively”  

(p. 89). The authors ran their analysis once with the NLSY-low study and once with the 

NLSY-high study for the purpose of estimating the effect sizes for testing moderators. In 

this way, the authors analyzed NLSY studies that represent each “end” of the NLSY 

contribution to the effect size. These authors have another reasonable approach for the 

NLSY studies, “An additional strategy to give just due to these nationally representative 

studies was to use the full set of relevant NLSY studies as a moderator in analyses that 

directly contrasted the effect sizes from NLSY-based studies to those of non-NLSY-

based studies” (Goldberg et al., 2008, p. 89). This strategy is good in two aspects: first, 

the authors used the full set of relevant NLSY studies as a moderator in analysis, second, 

they contrast the effect size from NLSY-based studies to that from non-NLSY-based 

studies. 
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Sohn (2000) employed a Monte-Carlo simulation to evaluate a situation in which 

several marketing studies had produced sets of more than one effect in military recruiting 

studies. She considered a situation similar to the ‘same data’ issue, “an estimated effect in 

one model could be correlated to the corresponding effect in the other model due to 

similar model specification or the data set partly shared, but their correlation is not 

known.” (p. 500). Her study is similar in that the data set can be partly shared, but the 

correlation is not known because the meta-analyst does not know how each data point is 

shared. The main purpose of Sohn’s study was to evaluate the impact of disregarding the 

potential correlation, and to ask whether such negligence led to biased estimates, 

potentially misleading the reader. Her study approach is a good reference for the ‘same 

data’ issue in that she has distinguished two variances: sampling error and random error 

variance. She analyzed the impact of the relative size of the variance component because 

the multi-level approach needs to distinguish level 1 (effect-size level) sampling error 

from level 2 (study level) random error when analyzing the ‘same data’ studies in meta 

analysis. 

 

Journal editor’s criteria for accepting the ‘same author’ and ‘same data’ studies 

 Compared to the prevalence of ‘same data’ studies in meta-analysis, meta-

analysts have not paid attention to this issue.  In this section, journal editors’ criteria are 

investigated as the origin of ‘same author’ studies and ‘same data’ studies in meta-

analysis. 

Journal editors’ criteria affect the prevalence of ‘same author’ papers and ‘same 

data’ papers in meta-analysis. If journal editors did not accept papers by the ‘same 

author’ on a particular topic, there would be no ‘same author’ papers in meta-analysis. If 

journal editors decide not to accept papers using publicly accessible data sets, there will 

not be multiple papers using the ‘same data’ in meta-analysis. 

Below, I have examined journal editors’ standards for accepting papers to 

understand how the ‘same author’ and ‘same data’ articles are published. This section 

describes the origin of this phenomenon, and how it relates to guidelines regarding 

publication of ‘same author’ studies and ‘same data’ studies. After first reviewing the 
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general guidelines of acceptance criteria from several research domain, I describe the 

specific reasons or exceptions to rules related to ‘same author’ and ‘same data’. 

Marketing journal editors have described three minimum criteria for publishing 

articles, as follows
1
: “First, the paper should make a contribution to the science and 

practice of marketing. Second, the paper should be based on sound evidence--literature 

review, theory and/or empirical research. Third, the paper should be valuable to 

marketing academicians and/or practitioners”. These criteria (or similar ones) will be 

applicable to other journals and research domains. General guidelines for accepting 

journal articles are described above, and below I have examined the specific reasons, or 

exceptional rule of accepting ‘same author’ papers and ‘same data’ papers in journal 

publication. Common sense would suggest that not every paper should be a replication by 

the same author on the particular topic, and a researcher should not use the ‘same data’ to 

replicate the same study repeatedly. However, it is clear that specific reasons and 

exceptions exist, because ‘same author’ papers are prevalent and because so many papers 

using the ‘same data’ set appear in various areas. The specific reasons are next described.  

Editors have mentioned the “best benefit” and/or benefit of audience. The 

‘International Committee of Medical Journal Editors’ (ICMJE)
2
 has discussed duplicate 

submissions, noting that “Editors of different journals may decide to simultaneously or 

jointly publish an article if they believe that doing so would be in the best interest of the 

public’s health.” The best interest of the public could be one reason for ‘same author’ 

papers, ‘same data’ papers and duplicate publications. For this reason, meta-analysts need 

to decide if two papers are exactly the same or not, and whether to include all of them in 

the meta-analysis. 

 Second, there are editorial guidelines on redundant publications for ‘same author’ 

papers. ICMJE also gives some guidelines for such redundant publications. After an 

author publishes a preliminary report, the author can publish a complete report. If an 

author presents a paper at an academic conference, the author can publish the paper in a 

journal. Meta-analysts usually search for unpublished papers (conference 

papers/dissertations) to include along with published papers, to reduce publication bias. 

                                                           
1  “Journal of Marketing” website: http://www.marketingjournals.org/jm/ama_edpolicy.php 
2 International Committee of Medical Journal Editors: http://www.icmje.org/ 
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This is one way an author can have two reports on the same topic: an unpublished one 

(conference paper/dissertation) and a published one. In this case, meta-analysts need to 

choose one source for which to estimate effect sizes if the two reports are exactly the 

same. 

 Third, editors believe in acceptable secondary publications for papers using the 

‘same data’. There is publication tips
3
 in the American Educational Research Association 

(AERA) website. The situation of using the ‘same data’ is discussed in the tips; A 

question addressed there is, “Can I use the same data for another journal article if the 

emphasis of that article is different from the original publication?” The answer is “You 

may refer to the same data, but you should not describe it to the depth of the original 

piece. Typically, but not always, this occurs when a second article also addresses a 

different audience. You will be using the data in a different way, depending on the 

audience and therefore it is ethical and permissible”. 

Even though a researcher has used the ‘same data’ set in two reports, both may be 

published if the audience and uses of data are different. Clearly if an author can use the 

‘same data’, different authors can also. ICMJE also refers to acceptable secondary 

publications, giving examples like publishing in a different country, publishing for a 

different group of readers, and publishing with the previous notice of secondary 

publication to the readers in the article. 

 Fourth, editors consider competing manuscripts based on the same database. This 

is directly related to the present research interest in the ‘same data’ set issue. On its 

website ICMJE states, “Editors sometimes receive manuscripts from separate research 

groups that have analyzed the same data set, e.g., from a public database. The 

manuscripts may differ in their analytic methods, conclusions, or both. Each manuscript 

should be considered separately. Where interpretations of the same data are very similar, 

it is reasonable but not necessary for editors to give preference to the manuscript that was 

received earlier. However, editorial consideration of multiple submissions may be 

justified in this circumstance, and there may even be a good reason for publishing more 

                                                           
3 Publishing Educational Research Guidelines and Tips 

https://www.aera.net/uploadedFiles/Journals_and_Publications/Journals/pubtip.pdf 
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than one manuscript because different analytical approaches may be complementary and 

equally valid.” 

Based on the paragraph above, we can have many papers using the ‘same data’ if 

they are different in analytical methods, conclusions or both. Researchers can publish 

articles using the ‘same data’ set if the researcher uses advanced methods, or takes a 

different perspective in the conclusions. 

If ‘same author’ papers and papers using the same data set exist, meta-analysts 

will have their own inclusion and exclusion criteria for ‘same author’ papers and ‘same 

data’ papers for generalizability of findings. The journal editors’ acceptance criteria will 

have implications for meta-analysts in the data gathering and data analysis stage. In the 

following section, the characteristics of ‘same author’ studies and ‘same data’ studies will 

be investigated to better understand this issue. 

 

Two case studies: ‘Same author’ studies and ‘same data’ set studies 

 In this section I describe two case studies of meta-analyses with many ‘same 

author’ studies and ‘same data’ studies. I have investigated these to understand the 

characteristics of these issues in detail. One example is class-size and student 

achievement, as a case of a meta-analysis faced with the ‘same data’ issue. The other is a 

review of the literature on the nature of procrastination, as an example of the ‘same 

author’ issue.  

 

Study 1: ‘Same data’ case study (Tennessee STAR class-size project) 

The relationship of class-size and student achievement has a long history and is 

still an interesting topic for educational policy makers. The assumption of this research is 

that smaller class-sizes will increase student achievement. When I searched for primary 

studies, I found 123 primary studies for this issue shown in Appendix C. There are many 

same author studies, and also same data studies involving data from the Tennessee STAR 

project. For example, Achilles was the first author of 14 studies and Nye was the first 

author of 5 class size studies. Among the 123 papers in Appendix C, 26 papers were 

related to the STAR project. After I set some inclusion criteria and coded all studies, 16 

studies were left for analysis as attached in Appendix D. Many studies had no data at all, 
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and some studies had data but were not sufficient for analysis. For example, in some 

studies the author had reported effect size without reporting sample size. So, most of the 

123 studies could not be included in the analysis, and only 16 studies were included and 

used for analysis. 

Among the 16 studies, 8 studies had used STAR data. This description of STAR 

papers will give us some implications. First, differences between the ‘same data’ issue 

and ‘same sample’ issues (replication of samples) within studies are clarified. Second, a 

full description should give us a better understanding of ‘same data’ studies, including 

several reasons why meta-analysts might wish to analyze such papers and not exclude 

them from meta-analysis. Furthermore, this case study will give us the characteristics of 

similarities or possible dependence when using the ‘same data’ studies in meta-analysis. 

Finally, this description of STAR studies as a case study of ‘same data’ papers will have 

the implications for how to analyze ‘same data’ studies when conducting meta-analysis. 

There are three phases of the Tennessee project: the STAR, the ‘Lasting Benefit 

Study’, and the ‘Project Challenge’. The STAR studies began 1985 and finished in 1989. 

Seventy nine schools participated and the number of students in small classes was 13-17, 

and the number of students in large classes was 22-25. There were 108 small classes and 

101 regular classes. Later, the ‘Lasting Benefit Study’ began as a follow up study in 1989. 

The experimental group students who had been in small classes during STAR returned to 

regular sized classes in grade 4, 5 and 6 and beyond. Researchers investigated the benefit 

of the earlier small class experience in grades K to 3 as a follow up study. Third, ‘Project 

Challenge’ also began in 1989, and investigated 17 economically poor school districts 

from among 139 school districts. The sample for ‘Project Challenge’ is K-3 students in 

small classes. Based on these three phases of the Tennessee project, there are a lot of 

class-size papers. Each study used data from the Tennessee class-size project, but their 

samples were not the same. 

First, the experimental periods and samples drawn during each period were not 

exactly the same. For example, Mostellar (1995) reported first year results, Goldstein and 

Blatchford (1998) reported results from the first four years (1985-1989), and Finn, Fulton, 

Zaharias, and Nye (1989) reported follow-up study results. Actually, the STAR project 

studied K-3 students for four years: 1985-1989. However, Finn and Achilles (1999) 
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reported that several operational complexities affected the composition of their sample 

because some students participated from first grade without attending the Kindergarten 

experiment. Some students moved away from their original project schools, so the 

participants in different experimental periods were not the same.  

Second, the grade levels of students included in these studies were not the same. 

Mostellar (1995) analyzed only first-grade student data, while the full STAR project 

examines grades K-3 from 1985 to 1989. Achilles (1994) reported K-3 results, but the 

number of students and the results in his first grade sample were not same as those of 

Mostellar (1995).  

Third, the Tennessee project had three phases as described above and several 

original principal investigators worked on the Tennessee Project including C.M. Achilles, 

H.P. Bain, F. Bellot, J. Folger, J. Johnson, and E. Word. They continued to reanalyze the 

STAR database to answer new questions, through all three phases of the STAR project. 

This is one reason for the existence of many published papers on the Tennessee project. 

Also the data set of STAR is now open to public access; this also makes it possible for a 

variety of researchers to produce many STAR papers.  

In conclusion, I cannot say that these researchers used the same sample and that 

their focus has the same. So, it would be very difficult to choose only one paper for 

inclusion in a meta-analysis in this case, and much information would be lost if the meta-

analyst does not use all of the papers. Based on this case study, it is clear that in some 

cases reviewers should not simply exclude papers using the ‘same data’. However, meta-

analysts should consider and treat the papers using the ‘same data’ set as dependent 

because the samples are often much more similar than samples from different data sets in 

terms of experimental conditions and experiment procedures. Papers using the ‘same 

data’ set appeared similar and related, but it was not clear if the exact same sample was 

repeatedly used. Reviewers need to pay attention to such similarities when doing data 

evaluation and data analysis. Similarities among papers using the ‘same data’ set may be 

similar to the nested structures in the hierarchical linear modeling, such as students being 

nested in the same classroom. 

 

Study 2: ‘Same author’ studies (Steel 2007 meta-analysis) 
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The main question of this case study is follows: “What is the relatedness of same 

author papers in meta-analysis?” 

I investigated Ferrari’s 33 papers among the 216 primary studies in Steel’s (2007) 

meta-analysis because Ferrari was the author who had the most papers as a first author in 

this meta-analysis. I have attached Appendix F; a review of these 33 ‘same author’ papers 

from this meta-analysis. The 33 papers include Ferrari’s dissertation and journal articles 

based on it. To investigate the characteristics of the ‘same author’ studies, I retrieved 25 

of these 33 papers. Below I describe the characteristics of these 25 papers. Most of these 

studies used similar participants and had similar characteristics. 

First, students who were in introductory psychology classes participated in the 

experiments in 20 of the 25 papers. 

Second, the age of students was 18-22 in 22 papers. 

Third, the incentive for participation was extra class credit in 15 papers. One 

paper gave money as an incentive, and for two papers participants were unpaid volunteers. 

Fourth, in 10 papers, the location of the experiments was a university in the 

Midwest of the U.S.  

Fifth, the instrument was also often the same. Twelve papers used the AIP (Adult 

Inventory of Procrastination), and fourteen papers used the DP (Decisional 

Procrastination) questionnaire as the instrument of measurement.  

However, Steel (2007) did not mention anything about the same-author issue, nor 

were any moderator variables investigated, like age of sample, incentive, and 

measurement instrument used when synthesizing these studies’ results.  
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CHAPTER III 

METHODOLOGY 

 

In this chapter, methods of showing dependence are proposed, and analysis 

methods for showing the impact of ‘same author’ studies and ‘same data’ studies are 

suggested. Homogeneity testing, fixed effect categorical analysis, and an intraclass 

correlation approach are described to show dependence of ‘same author’ studies and 

‘same data’ studies. After showing dependence, sensitivity analysis and a hierarchical 

linear modeling (HLM) approach are described as ways of measuring the impact of ‘same 

author’ studies and ‘same data’ studies in meta-analysis. 
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Homogeneity test 

 

To synthesize research findings, reviewers check whether the finding shares a 

common population effect size or not. The homogeneity test has an important role in 

synthesizing research findings when meta-analysts determine the overall effect size. The 

homogeneity test is investigated here as a tool to show the relatedness of ‘same author’ 

studies and ‘same data’ studies. First, I present an overview of homogeneity testing in 

meta-analysis.  Later, I describe a possible approach to showing dependence using the 

homogeneity test including quantification of heterogeneity. 

 

1. Homogeneity test in meta-analysis  

To check homogeneity, in general, meta-analysts use the Q statistic (Cooper and 

& Hedges, 1994): 
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Generally speaking, if Q is greater than the critical value of a chi-square at k-1 

degrees of freedom, the observed variance in effect sizes is said to be significantly larger 

than what we would anticipate by chance if effect sizes in all studies  shared a common 
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population effect size (Hedges, 1994, p. 266). If Q is significant, it means the estimated 

effect sizes are heterogeneous, and the effect sizes do not share a common population 

effect size. However, Q depends on within-study sample size: If the sample sizes within 

study are very large, Q will be statistically significant even when the effect sizes are quite 

homogeneous; in such cases, meta-analysts may wish to  pool effect-size estimates 

anyway because the Q is significant based on large within study sample size, not on 

heterogeneity  (Shadish & Haddock, 1994, p. 266). This is a key characteristic of the 

STAR studies in the meta-analysis of class-size and student achievement. The STAR 

studies are based on a statewide experiment, so the sample size of this experiment is 

larger than those of other class-size studies. The overall Q for class-size studies  may be 

significant because the within-study sample sizes in each report on the STAR study are 

very large.  

 

2. Homogeneity test as an index of relatedness of ‘same author’ studies and ‘same 

data’ studies 

The main question in research synthesis is whether there is methodological, 

contextual, or substantive variation in primary studies related to variation in estimated 

effect size parameters (Hedges, 1994, p. 286). Meta-analysts can sort their effect sizes 

into independent groups according to whether they are based on the ‘same author’ and 

‘same data’, or not. The variance of effect sizes can be partitioned into two parts: 

between studies variance and within study variance. In the traditional analysis of variance, 

to test heterogeneity, ratios of sums of squared deviations from group means are used to 

test for systematic sources of variance. Because different sources of variation can 

partition the sums of squares, between groups and within-groups’ sources can be 

separately computed from the total variation about the grand mean (Hedges, 1994, p. 

289). “The total heterogeneity statistic Q = TQ (Weighted total sum of squares about the 

grand mean) is partitioned into a between-groups-of-studies part BETQ (the weighted sum 

of squares of group means about the grand mean) and a within-groups-of-studies part 

WQ (the total of the weighted sum of squares of the individual effect estimates about the 
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respective group means)” (Hedges, 1994, p. 289). Meta-analysts should distinguish three 

Q statistics in homogeneity testing: overall Q, BETQ  and WQ . 

The overall Q tests if the full set of studies share a common effect size, and  BETQ  

tests if there is variation between groups,  “ BETQ  is just the weighted sum of squares of 

group mean effect sizes about the grand mean effect size to test the hypothesis that there 

is no variation across group mean effect size” (Hedges, 1994, p. 289). If meta-analysts 

make groups of ‘same author’ and ‘same data’ studies, the BETQ  will indicate whether 

there are differences between ‘same author’ studies and different author studies, or 

between ‘same data’ studies and different data studies. If BETQ  is significant, it is an 

indication that variation is due to the ‘same author’ variable, or the ‘same data’ variable.  

The WQ  tests whether results are homogeneous within sets of studies, “The 

hypothesis of WQ is that there is no variation among population effect sizes within groups 

of studies.  Although QW provides an overall test of within-group variability in effects, it 

is actually the sum of p separate (and independent) within-group heterogeneity statistics, 

one for each of the p groups of effects. These individual within-group statistics are often 

useful in determining which groups are the major sources of within-group heterogeneity 

and which groups have relatively homogeneous effects.” (Hedges, 1994, p. 290). In my 

framework, the group of ‘same author’ or ‘same data’ studies should be tested for 

homogeneity. Thus, the ‘same author’ and ‘same data’ factors are tested to see if they 

explain variation, and the meta-analyst then determines whether most of the total 

heterogeneity is between groups and relatively little remains within groups. If ‘same 

author’ and ‘same data’ factors can not explain variation or the heterogeneity between 

studies, it indirectly means that ‘same author’ and ‘same data’ studies have little 

dependence between studies. However, as an exceptional case, reviewers may have small 

BETQ  values and also a small WQ , which may indicate the relatedness of same author (or 

same data) studies: If average effects are roughly equal but same-author or same-data 

studies are more homogeneous, BETQ  would be small but WQ  might also be small for 

same author/data studies, but larger for the other studies. This is the case for the ESL 

meta-analysis used to illustrate the ‘same author’ issue in chapter V.  
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Our interest in variance is based on the assumption that ‘same author’ studies and 

‘same data’ studies will be more homogenous than different-author and different-data 

studies. Rose and Stanley (2005) mentioned the ‘same author’ and ‘same data’ issue, 

saying that; “Some estimates are highly dependent, being generated by the same data, 

methods, or authors” (p. 350). I investigated the characteristics of ‘same author’ papers in 

Appendix F. Most of the ‘same author’ studies used similar participants and used similar 

incentives and instruments. This suggested that the ‘same author’ studies would be more 

homogenous than different author (or different data) studies. 

Researchers do not pay as much attention to the variance in other statistical 

analyses as is paid in meta-analysis, because the variance is considered as a nuisance 

parameter in standard statistical analysis. So it is included in the model, but is not 

interpreted (Hox, 2002). However, in meta-analysis, it is important to decide whether the 

estimated effect sizes are homogeneous or not. Outcomes from studies by the ‘same 

author’ can be similar because that author may employ similar sampling methods, use 

similar experimental manipulations, or measure the outcome with similar instruments.  

If we do not know how consistent the estimates of effect size are, we cannot 

decide how generalizable the results of the meta-analysis may be (Higgins, Thompson, 

Deeks, & Altman 2003). The homogeneity test measures the consistency of findings, but 

it can also be used as an alternative way or indirect way to show the relatedness of ‘same 

author’ studies and ‘same data’ studies. This use of the homogeneity test would be a little 

bit different from the conventional use of the homogeneity test. 

 

3. Quantification of heterogeneity 

  For quantification of heterogeneity, Higgins and Thompson (2002) proposed a 

simple, universal statistic which represents heterogeneity in meta-analysis. Their index 

makes it possible to account for how much heterogeneity is based on study-level 

covariates, or particularly influential studies. So, this quantification could be used to 

determine the impact of ‘same author’ studies and ‘same data’ studies in meta-analysis. 

Higgins and Thompson (2002) proposed H and I
2 

to quantify heterogeneity in meta-

analysis. They can be defined as follows, “H may be interpreted approximately as the 
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ratio of confidence interval widths for single summary estimates from random effects and 

fixed effect meta-analyses. I
2
 describes the percentage of variability in point estimates 

that is due to heterogeneity rather than sampling error” (p. 1553). 

 The authors also defined I
2
 = 

22

2

στ
τ
+

, where 2τ is the between-study variance, and 

2σ is sampling error. 

It is very similar in concept to the intraclass correlation. Higgins et al. (2003) also 

proposed a simple method to calculate I
2
: “I

2
 can be readily calculated from basic results 

obtained from a typical meta-analysis as I
2
 = 100 %*( Q – df)/Q, where Q is Cochran’s 

heterogeneity statistic and df the degrees of freedom” (p. 558). Higgins et al. (2003) 

proposed to interpret the index of I
2 

as follows “A naïve categorization of values for I
2
 

would not be appropriate for all circumstances, although we would tentatively assign 

adjectives of low, moderate, and high to I
2
 values of 25%, 50%, and 75%.” (p. 559). 

In this research, H, and I
2
 are used as indirect indexes of dependency among ‘same 

author’ studies and ‘same data’ studies in addition to the Q statistics. Below I have 

examined the results of H, I
2
, and Q statistics as indexes of consistency or dependency 

estimates for ‘same author’ studies and ‘same data’ studies. If the study results are more 

similar because of dependence, meta-analysts would expect to find higher H and lower I
2
 

values for the same author/data studies. 
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Fixed-effects categorical analysis 

 

To show the similarities and dependence of same author/data studies, we first 

examine homogeneity across all primary studies. If the homogeneity test is not significant, 

meta-analysts may not investigate the characteristics of primary studies to find sources of 

heterogeneity. However, if the results are heterogeneous, analysts will pay attention to 

the characteristics of studies based on particular grouping variables to explain the 

heterogeneity. Rosenthal and DiMatteo (2001, p. 67) explained, “Nonindependence may 

be a problem if the same research lab contributes a number of studies and this fact is 

ignored. It is possible and often valuable to block by laboratory or researcher and 

examine this as a moderator variable”. Laboratory and researcher can be a grouping 

variable or moderator for nonindependence or heterogeneity in meta-analysis. 

In this categorical fixed-effects model, the researcher will use a ‘same author’ or 

‘same data’ variable as a between studies characteristic and will make groups of primary 

studies based on the categories of same author and same data variables. The grouping is 

based on putting each author’s studies and each data set’s studies in a group, because all 

‘same author’ group studies will not be homogenous with each other. If a review has 

many authors with just one paper each, one could categorize these studies into two 

groups: a particular author’s studies vs. all other authors’ studies. This research focused 

on the particular author or data studies’ relatedness, compared to all other studies. 

 For each group of effect sizes, the researcher will make a plot of effect sizes, a 

confidence interval and box plot to compare the characteristics of same author and same 

data studies with those of different author/data studies.  

Using this graphical approach, meta-analysts can indirectly assess and show the 

similarities or relatedness of same author and same data studies. In the fixed-effects 

categorical analysis, meta-analysts expect ‘same author’ and ‘same data’ studies to be 

less variable than different author and different data studies.  

The fixed effect categorical analysis approach is an easy way to get a quick grasp 

of the big picture that shows the relatedness of ‘same author’ studies and ‘same data’ 

studies. 
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Intraclass correlation 

 

The intraclass correlation (ICC) is described as a third option to show dependence 

of ‘same author’ studies and ‘same data’ studies. For example, “an ICC of .10 indicates 

that 10% of the variance in individual level responses can be explained by the group-level 

properties of the data” (Bliese & Halverson, 1998a, p. 159). “The strength of the ICC is 

that it allows determination of how much of the total variability is due to group 

membership. Also ICC values are not affected by group size” (Castro, 2002, p. 73). The 

ICC thus provides an estimate of the group-level properties of the data that are not based 

on either group size or the number of groups in the sample. Group means the same author 

vs. different author grouping in this study. 

 

1. Correlation and ICC 

‘Same author’ studies and ‘same data’ studies have a relatedness and similarities. 

Typical correlations can not measure this kind of relatedness directly because there are no 

matched samples, or pairs of scores. ‘Same author’ studies and ‘same data’ studies are 

groups of studies, so their characteristics are similar to a nested data situation. So, to 

measure this kind of relationship, the intraclass correlation is considered as an alternative 

method to measure the dependency in ‘same author’ and ‘same data’ studies.  

The intraclass correlation is based on variance partitioning like the homogeneity 

test, but gives a different perspective on the ‘same author’ and ‘same data’ issues. Donner 

(1986) explained that the intraclass correlation coefficient has a long history of 

application in several different fields of research: epidemiological research for familial 

resemblance, psychology for reliability theory, genetics for the heritability of selected 

traits, and sensitivity analysis for effectiveness of experimental treatments. These fields 

seem to have parallels with the ‘same author’ studies and ‘same data’ studies. The 

situation suggests a need to find some relatedness among groups or samples within 

groups, compared to variation between groups. Murray and Blistein (2003) conducted 

research on “Group-randomized trials (GRTs)”. GRTs have a hierarchical or nested data 

structure with members nested within groups, much like studies nested in the ‘same 

author’ or using the ‘same data’. The research of Hannan et al. (1994) shows that 
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community trials involve the assignment of intact social groups to study conditions and 

are getting popular in epidemiological research. Such studies have used the intraclass 

correlation coefficient for measuring the effect of treatment differences between groups. 

The similarities are in the intact groups, and in the nested and hierarchical data structures 

to which the intraclass correlation is applied. 

However, the reason why researchers in other fields measure the intraclass 

correlation is different from the ‘same author’ and ‘same data’ issues. In the above 

research fields using the intraclass correlation, they want to measure the treatment effect 

without inflating type I error due to the dependence caused by the nested data structure. 

Wampold and Serlin (2000) described three reasons why researchers have ignored nested 

factors in treatment studies: analysis is simpler when data are treated as independent, an 

inflated type I error rate may lead to an inflated treatment effect, and analysts have 

emphasized effect sizes rather than statistical significance, so researchers have ignored 

the dependence while analysts pay attention to effect size. Ignoring the ICC can cause 

inflated type I error rates and inflated effect sizes (Wampold & Serlin, 2000). In the 

‘same author’ studies and ‘same data’ studies, the ICC can show the dependence within 

‘same author’ studies and within ‘same data’ studies, which ordinary correlations can not 

show. ICCs are used to evaluate the group level properties of data, or the ratio of between 

group variance to total variance (Castro, 2002). The ICC is useful for measuring the 

degree of dependence of observations within a group and the ICC can be defined using 

the decomposition of the variance in a random effects model (Commenges & Jacqmin, 

1994). The most fundamental interpretation of an ICC is that it is a measure of the 

proportion of variance that is attributable to study characteristics like the ‘same author’ 

factor and ‘same data’ factor (Shrout & Fleiss, 1979). However, for ‘same author’ studies 

and ‘same data’ studies, the ICC can be used to check if there is more relatedness within 

the ‘same author’ studies and ‘same data’ studies rather than for different author studies 

and different data studies. The reviewer will categorize the primary studies into two sets 

based on the ‘same author’ factor and ‘same data’ factor. In these groups of ‘same author’ 

studies and ‘same data’ studies, the ICC is used as an index to check whether the ‘same 

author’ and ‘same data’ studies variable explains any of the variance in the meta analysis. 
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This is very similar to BETQ , but the ICC should indicate the amount of variation 

explained by the group-level properties of data. 

Shrout and Fleiss (1979) introduced six different forms of the ICC for estimating 

rater reliability. Shrout and Fleiss (1979) consider the ICC as a reliability index, but the 

concept is similar to that used in the HLM context, “Many of the reliability indices 

available can be viewed as versions of the intraclass correlation, typically a ratio of the 

variance of interest over the sums of the variance of interest plus error” (p. 420). 

 

Table 1: Comparison of two ICC approaches  

 Rater reliability  

(Shrout and Fleiss 1979) 

HLM 

(Raudenbush and Bryk 

2002) 

1. Definition 

of ICC 
ICC = 

wgb

wb

MSNMS

MSMS

∗−+
−

)1(
,  

Where MSb is the between-group mean square,  

MSw is the within-group mean square, and  

Ng is the group size (Castro 2002). 

Form of variance ratio: 

)/( 222

WTT σσσρ +=  

)/( 00

2

00 τστρ +=  

 

2. Statistical 

Model of 

ICC 

One way ANOVA 

ijjij wbx ++= μ  

μ is the overall population mean of the ratings 

ijb is the difference from μ of the jth target’s true 

score 

ijw  is residual component 

The one-way ANOVA 

The level-1 or student-

level model is  

ijjij rY += 0β , 

At level 2 or the school 

level, jj 0000 μγβ +=  

ijjij rY ++= 000 μγ  

3. Unequal 

sample size 

consideration 
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When I reviewed the literature on the use of the ICC, I found that the ICC was often used 

as an inter-rater reliability measure (including coder reliability in meta-analysis), and also 

used in HLM. These two ICCs have different formulas, but are almost the same in Table 

1. The one-way random-effects model will be used to estimate ICC because this 

represents a nested design, with unordered observations nested within groups (McGraw 

& Wong 1996).  

In the general calculation of ICC as a reliability estimate, equal sample sizes 

across groups are often assumed. However, in meta-analysis, different sample sizes 

across groups are more typical. Bliese and Halverson (1998b) note that articles discussing 

the calculation of the ICC rarely address the issue of unequal group sizes. Bliese and 

Halverson (1998b) presented a formula for unequal sample size, noting “Blalock (1972) 

presents a formula from Haggard (1958) recommending that Ng be calculated as follows: 

∑
∑

∑
=

=

=−=
k

i
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i
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where Ni represents the number of cases in each group, and k represents the number of 

groups” (Bliese & Halverson, 1998b, p. 168) 

The ICC in the HLM approach also supposes an one-way ANOVA model with a 

random effect in HLM. The definition of ICC is )/( 00

2

00 τστρ += . “This coefficient 

measures the proportion of variance in the outcome that is between groups (i.e., the level-

2 units). It is also sometimes called the cluster effect. It applies only to random-intercept 

models (i.e., 11τ  = 0)” (Raudenbush & Bryk, 2002, p. 36). The one-way ANOVA model 

with random effects usually presents preliminary information about partitioning variance 

in the outcome into within and between groups portions. The model of one-way ANOVA 

in HLM can  be applied directly to meta-analysis (Raudenbush & Bryk, 2002, p. 69-70), 

noting “The level-1 is ijjij rY += 0β , assuming ijr ~ independently N (0, 2σ ) for i =1, to 

jn effect size in study j, and j = 1, … J studies. 2σ  is the level-1 variance”. 

Notice that this model characterizes the effect size in primary studies in meta-

analysis with just an intercept, j0β , which in this case is the mean effect size across 
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studies. At level 2 or the study level, each author’s mean effect size, j0β , is represented as 

a function of the grand mean, 00γ , plus a random error, j0μ : 

jj 0000 μγβ += , assuming j0μ  is distributed independently N (0, 00τ ). 00τ  is the second 

level variance. This yields a combined model, also often referred to as a mixed model, 

with fixed effect, 00γ , plus two random errors, j0μ  and  ijr : ijjij rY ++= 000 μγ .  

The formula for the ICC in rater reliability is almost same to the ICC in HLM 

approach. Using this formula, the ICC coefficient is the percent of variance explained by 

between group variables (Raudenbush & Bryk 2002, p. 69-70). The ICC will now be 

used to estimate the effect of ‘same author’ and ‘same data’ variables. I expect the 

between studies variance of the same author/data studies will generally be smaller than 

that of different author/data studies when examined in terms of the ICC. 
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Sensitivity analysis 

 

The best way to deal with ‘same author’ and ‘same data’ issues remains open to 

debate and exploration. Sensitivity analysis is a way to discover the impact of particular 

problematic observations, like outliers in ordinary statistical analysis. In this research, 

‘same author’ and ‘same data’ studies in meta-analysis may be problematic, so we may 

want to check the impact of removing them on the synthesis of research findings. 

Rappaport (1967) said, “The ‘what if’ question may be viewed as an introduction 

to sensitivity analysis in the face of uncertainty. Uncertainty refers to situations for which 

probabilities of outcomes cannot even be predicted in probabilistic terms” (p. 441). In 

synthesizing research results, no one can predict the effect of ‘same author’ and ‘same 

data’ studies even though it is essentially related to the generalizability of synthesizing 

research results. In synthesizing research findings, if ‘same author’ papers and ‘same 

data’ papers will are very similar and dependent, and the impact of these papers is larger 

than that of other papers, it will be very difficult to safely generalize the results of the 

meta-analysis. In that case, reviewers need to distinguish the same author/data papers 

from the overall synthesis results by sensitivity analysis. In every stage of the meta-

analysis, reviewers make decisions: which papers to gather, which papers to include in 

the analysis, which analysis results to report. The decision will have an impact on the 

results of estimating effect size like sensitivity analysis. 

 Greenhouse and Iyengar (1994) also mentioned, “Since at every step of a 

research synthesis decisions and judgments are made that can affect the conclusions and 

generalizability of the results, we believe that sensitivity analysis has an important role to 

play in research synthesis” (p. 397). They think that the findings of meta-analysis will 

convince a wider range of readers if meta-analysts assess the effect of these decisions and 

judgments. “At every step in a research synthesis decisions are made that can affect the 

conclusions and inferences drawn from the analysis. It is important to check how 

sensitive the conclusions are to the method of analysis or to changes in the data” 

(Greenhouse & Iyengar, 1994, p. 384). Each decision can affect the generalizability of 

the conclusions of the meta-analysis: ‘same author’ papers and ‘same data’ papers are 

dependent, if reviewers decide not to include all the same author/data papers, they will 
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lose much information. If reviewers decide to include all the same author/data papers, it 

will be problematic because of the violation of independence assumption. 

The present research will investigate the same author/data issues from the 

perspective of sensitivity analysis as follows: Effect size of all studies vs. effect size of all 

studies excepting the same author/data group studies 

The sensitivity analysis results of removing the ‘same author’ and ‘same data’ 

studies will have an effect on the direction and amount of effect sizes for all studies. So, 

if the meta-analyst removes the same author/data studies that have a smaller effect size 

than the mean effect size of all studies, the overall summary measure will increase, and 

vice versa. Meta-analysts need to present the various results of sensitivity analysis to 

readers considering ‘same author’ and ‘same data’ factors. This is a way to deal with 

these issues for remaining open to debate and to explore research findings in case of 

having ‘same author’ and ‘same data’ studies in synthesizing research findings. This 

sensitivity analysis focuses on the effect size of all studies vs. the effect size of all studies 

except the same author/data studies, while the categorical analysis pays attention to the 

effect size of same author/data studies vs. different author/data studies without 

considering the direction and effect of each on the overall effect size. 

Based on sensitivity analysis results, reviewers need to investigate why the results 

differ between the effect size of all studies vs. the effect size of all studies except same 

author/data papers. 
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HLM 

 

In meta-analysis, the results of primary studies are inconsistent because of various 

reasons. Meta-analysts investigate the homogeneity, and if the results are not 

homogeneous, meta-analysts will check the study characteristics to explain the variation 

between studies. This research focuses on ‘same author’ and ‘same data’ factors because 

these factors can influence the variability in estimating effect size. The similarity of 

‘same author’ studies and ‘same data’ studies is investigated by using HLM. 

 

1. Advantages of meta-analysis using HLM 

HLM provides a useful framework for addressing the problem of components of 

variability in meta-analysis (Raudenbush & Bryk, 1985). The hierarchical model will 

show the variability that result from different study characteristics. In ‘same author’ 

studies and ‘same data’ studies, analysts can misestimate standard errors because the 

analysts fail to take into account the dependence within ‘same author’ and ‘same data’ 

studies. “Hierarchical linear models can resolve this problem by incorporating into the 

statistical model a unique random effect for each within study and between study units” 

(Raudenbush and Bryk, 2002, p.100). 

 

2. Nested structure in meta-analysis 

The difference between the traditional linear model and hierarchical linear model 

is the data structure. The traditional model assumes that subjects respond independently, 

but the hierarchical linear model supposes a “nested” data structure. Subjects are nested 

in the organizations where the subjects belong, like classrooms and schools. When 

analysts ignore the nested structure of data, it leads to the problem of aggregation bias 

and misestimated results (Raudenbush, 1988). Raudenbush and Bryk (2002) explained 

the hierarchical structure of meta-analytic data (p. 206). In meta-analysis, analysts need a 

model to take into account variation at the subject level and study level because subjects 

are nested within studies. Meta-analysts need to learn about sources of variation among 

subjects and to sort out variation across studies. 
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3. Nested structure and homogeneity 

In meta-analysis, to investigate the variance between studies is very important. 

Little variation means that the results of primary studies are very similar to each other. 

The nested data structure in HLM is very closely related to homogeneity issues in meta-

analysis because nested samples are more similar to each other than people randomly 

sampled from the entire population. Nested samples have similar experiences which may 

lead to increased homogeneity over time (Osborn, 2000). 

It is not satisfactory to treat ‘same author’ studies and ‘same data’ studies 

independently or to average results for the ‘same author’ studies and ‘same data’ studies. 

Meta-analysts need to disentangle a study effect and group of studies effects (same 

author/data factors) in estimating effect size. 

 

4. Same author/data characteristics: Nested and unbalanced 

 To show the similarities and impact of ‘same author’ studies and ‘same data’ 

studies, the characteristics of ‘same author’ studies and ‘same data’ studies need to be 

clarified. ‘Same author’ studies and ‘same data’ studies have two characteristics: one is 

nested within ‘same author’ studies and ‘same data’ studies, and the other is unbalanced 

in the number of studies within ‘same author’ groups or ‘same data’ groups. 

First, a nested data structure means that if one author writes several papers on a 

single issue or if different authors write many papers using common public data sets, 

these papers will be more similar than papers by different author and papers using 

different data sets. It is a very similar situation to that of students nested in a classroom, 

school and district.  

Second, an unbalanced data structure means that every study has an author and 

data set, but if a meta-analyst tries to group effects using a same author/data factor, the 

number of papers per author/data set is not likely to be balanced. Structured experiments 

or surveys with equal cluster sizes will have a balanced data structure. Sliwinski and Hall 

(1998) described the unbalanced situations that can occur in multi-site studies because 

there are unequal numbers of observations within each unit of analysis and within 

experiments. The multi-site studies are very similar to same author/data studies from the 

perspective of unbalanced data structure. A multi-site study often is used in research to 
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study the effectiveness of similar interventions or variations of the same intervention 

across multiple similar or distinct sites (Kalaian, 2003).  

Nested and unbalanced data structures are the main characteristics of same 

author/data studies in meta-analysis. These characteristics suggest the use of the HLM 

approach to investigate the relationship of the same author/data studies in meta-analysis 

 

5. Dependence in meta-analysis 

In meta-analysis, dependence is a very important topic in unbiased estimation of 

effect size. There are at least two kinds of dependences in meta-analysis. One is repeated 

measures’ dependence and the other is the similarities or dependences based on nested 

study structure in meta-analysis. Two different labels of dependence will need different 

approaches in estimating effect sizes. Gurevitch and Hedges (1999) distinguish two 

fundamentally different dependences based on different sources of variation: one is 

within-study sampling error, the other is between-study variation. 

The first dependence has several characteristics: replication of sample, correlated 

data, and within-study similarities. However, meta-analysts have rarely paid attention to 

dependences of between studies. Most meta-analyses have paid much attention to the 

variance component of primary studies in meta-analysis. 

Gurevitch and Hedges (1999) distinguish between these two dependences in 

ecology research. The similarity of studies from the same laboratory is very close to the 

‘same author’ studies. In studies from the same laboratories, the procedure, sampling and 

research method will be similar. 

For the dependence based on the between studies variation, there are several 

similar situations including same laboratories, same site studies, same public data studies 

and same author studies. These studies will have less variability, and they will have non-

zero intraclass correlations. The possible solution of this dependence is based on the 

nested study characteristics. Gurevitch and Hedges (1999) proposed a hierarchical linear 

modeling (HLM) approach for this dependence. The meta-analyst can estimate 

components of variance within and between studies to consider relatedness between 

studies. If the meta-analyst fails to disentangle the between study and within study effects, 

it leads to several problems in estimating effect sizes in meta-analysis. Gurevitch and 
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Hedges (1999) were concerned about the underestimation of the standard error of the 

mean effect, and liberal evaluation of the statistical significance of effects. Sliwinski and 

Hall (1988) also worried that a misleading 2
R  could arise as a result of failing to 

disentangle between-study from within-experiment effects. 

 

6. Function of HLM in meta-analysis 

The purpose of same author/data meta-analysis using HLM is as follows: first is 

to estimate the variance of the effect size parameters in a random effect unconditional 

model. If there is heterogeneity in a random effect unconditional model, the second is to 

explain variation in the effect-size parameters in a fixed-effects conditional model 

incorporating the same author/data factor. A third goal is to estimate the residual variance 

of the effect-parameter in a random effects conditional model, and is to estimate how 

much variance is explained by the same author/data factor. Meta-analysis applications in 

HLM have several characteristics different from other HLM contexts (Raudenbush & 

Bryk, 2002): First, meta-analysis has no raw data. Meta-analysis usually uses summary 

statistics for analysis. Second, meta-analysis uses different outcome measures. However, 

the analysis can use different outcome measures by putting them onto a standardized 

scale such as by using the standardized mean difference effect size. Third, meta-analysis 

assumes each data point’s sampling variance is known. Raudenbush and Bryk (2002) 

refer to this situation as the level-1 variance known problem: “The essential statistical 

features of meta-analysis applications that distinguish them from the others discussed in 

this book are two: Only summary data are available at level 1; and the sampling variance, 

jV , of the level-1 parameter estimate, jd , can be assumed known” (p. 217). 

 

7. HLM analysis procedure in meta-analysis 

Meta-analysis using HLM can be performed under the known variance model and 

HLM considers two analyses: unconditional and conditional models. Unconditional 

analysis is conducted first. The Unconditional analysis does not include any level-2 

variables in the model. The unconditional analysis estimated the mean in the fixed-effects 

model and variance of the true effects in the random-effects model. If the results are 

homogeneous across studies, the next step is not performed. If the results show 
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heterogeneity across studies, a conditional analysis is performed. Conditional analyses 

include level 2 variables. The conditional analysis estimate the effect size in the fixed-

effects model and the residual variance of the effect sizes in the random-effects model. 

For this study, analysts run the unconditional model first, and if there is heterogeneity, 

analysts examine the ‘same author’ and ‘same data’ factors in the conditional model to 

explain the impact of these factors in meta-analysis. 

Kalaian (2003) proposed a meta-analytic methodology as the application of the 

mixed-effects linear model via hierarchical linear modeling. A within-study model 

formulates each primary study effect size as a function of the true effect size and 

sampling error. “A between-studies model formulates the distribution of the true effect 

sizes from the within-study model as a function of study characteristics and random 

errors” (Raudenbush & Bryk, 2002, p. 209). Hierarchical linear modeling software needs 

information: the study identification numbers, study effect sizes, their variances, and 

coded study characteristics like the same author/data factors. 

 

Within-study model 

In the within-study model for the mixed-effects meta-analysis, the calculated 

study effect size, id , of study i, depends upon a population study effect size iδ  plus a 

random sampling error, ie . Thus, the basic within-study model for study i can be 

represented as  

iii ed += δ ,             i = 1,2,….,J. 

We assume ie  ~ N(0, iV ). 

 

Between-studies model 

 In the between-study model, the population study effect size, iδ , depends on 

study characteristics and a level-2 random error: 

∑ ++=
s

isisi uWγγδ 0 , 

where 

siW  is a study characteristics predicting these effect sizes; 
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sγ  is regression coefficient; and 

iu  is a level-2 random error for which we assume iu ~ N (0, τ ). 

 

8. Strength of HLM in meta-analysis: Intraclass correlation, and ‘variance 

explained statistics’ 

Meta-analysis using HLM is a good way to estimate effect size in nested and 

unbalanced data structures like same author/data studies and it allows the meta-analysts 

to distinguish two variances (level-1 sampling error variance and level-2 random error) 

simultaneously.  

When analysts use HLM approach for meta-analysis, the analysis will produce 

two pieces of the information: the intraclass correlation and ‘variance explained’ at level 

2. 

In the One-Way ANOVA model, the intraclass correlation represents the 

proportion of variance in effect sizes ( jd ) between studies, via 

)/( V+= ττρ  

 

The One-Way ANOVA model is an unconditional model which has no level 2 

predictors, specifically 

+= 0γδ j ju  . 

When analysts take into account study characteristics like same author and same 

data factors, the analysts can use conditional model, 

jjj uW ++= 110 γγδ  

By comparing the τ  estimates across the two models: the unconditional model 

and the conditional model, analysts can develop an index of ‘variance explained’ at level 

2, specifically the proportion of ‘variance explained’ in iδ  is 

= 
model) onal(unconditi

model) al(condition  - model) onal(unconditi 

τ
ττ

. 

Using the HLM approach for meta-analysis, we can get the intraclass correlation 

and ‘variance explained’ information. Intraclass correlations in the unconditional model 

indicate how much variance in effect size lies between studies, and the ‘variance 
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explained’ indicates the percentage of variance accounted for by study characteristics like 

‘same author’ and ‘same data’ factors. 

The HLM approach efficiently performs two goals simultaneously compared to 

conventional meta-analysis, and gives a direct indication of the explanation of variability 

in the two models: the unconditional model and the conditional model.  
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CHAPTER IV 

SIMULATION 

 

Introduction 

 In this chapter, I describe how I generated data to represent the ‘same data’ and 

‘same author’ situations. These data are used to examine the proposed methods and 

investigate several possible factors in meta-analysis such as the number of studies, the 

sizes of samples (study size), and magnitudes of effect size. For the ‘same data’ issue, 

raw scores are generated, and the effect of overlapping samples is investigated. For the 

‘same author’ issue, effect sizes are generated, and the author effect is examined as the 

main study characteristic. 

 

‘Same data’ issue 

In order to examine the proposed analysis methods for ‘same data’ studies, raw 

data sets similar to the STAR data set are generated. A simulated data set should be 

similar to a real situation. Thus, the data structure and characteristics of the STAR data 

set are described briefly. The STAR studies began in 1985 and finished in 1989. A total 

of 79 schools participated and the number of students in small classes was 13-17, and the 

number of students in large classes was 22-25. There were 108 small classes and 101 

regular classes in the 79 schools.  

Data generation for ‘same data’ studies requires a two-stage process. At the first 

stage I generate population data sets, and at the second stage, I extract sub-samples and 

report effect sizes of sub-samples which form hypothetical primary studies. 

First, I generate the population data sets considering the number of schools, 

number of small classes and large classes per school, and the number of students per 

small class and large class. I use a three level data generation model including random 

effects at each level. To generate the student test scores, the generated data include school 

effects, a class-size effect, and between student variance for the student test scores. 

School effects and class-size effects also include a variance for each effect in the data 

generating process. 
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The data generating model given here generates test scores for students in small 

classes. Specifically, jklklljklT ηγβαμ ++++= , with the following components: 

jklT : Test score for student j in a small class, 

μ : Mean for a large class, 

α : Mean difference between small classes and large classes, 

lβ : School effect in school l, where we assume lβ  are distributed independently as N (0, 
2

βσ ),  

2

βσ : Between school variance, 

klγ : Class effect in class k in school l, where we assume klγ are distributed independently as N (0, 
2

γσ ), 

2

γσ : Between class variance, 

jklη : Effect for student j in class k in school l, where we assume jklη are distributed independently N (0, 

2

ησ ), and 

2

ησ  : Between student variance. 

 

To generate test scores for students in large classes, the mean difference α  = 0 

and the other terms are the same as for small-class students’ test scores. 

 

After generating the population data of the student test scores, school indicators, 

and class-size indicators, at the second stage I extract random sub-samples from the 

generated population data set. Randomly making sub-samples is similar to generating a 

“hypothetical primary study” in the real ‘same data’ situation. A researcher would select 

a certain number of small classes and large classes from the larger data set, and get test 

scores for all of the students in these classes, for their own study. The main point of this 

simulation is to investigate the effect of taking overlapping nonindependent samples from 

the ‘same data’ set.  Thus, the next step is to replicate making the random overlapping 

sub-samples, and to calculate an effect size based on each randomly extracted sub-sample. 

Using the studies generated via the above process, the methods proposed in chapter 3 are 

examined.  
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The simulation factors in this research are 

a) The size of the large initial data set (N = 10,000, 50,000, or 100,000 cases),  

b) The overlap ratio of the number of cases in all sub-sample pseudo studies (Σni) to the 

size of the initial data set (N) as an indicator of overlap: Ratios 0.04, 0.1, 0.2 and 0.5 

indicate small degrees of overlap, the ratios 1 and 3 represent medium overlap and the 

ratio of 5 means much overlap among the sub-samples. 

c) The magnitude of effect size (δ  = 0.2, 0.5, and 0.8 defined below), and 

d) The ratio of pseudo-study-size (ni) to N, the size of the population data set, with values 

0.02, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. 

 

The size of the large initial data set represents the size of a hypothetical public 

data set such as the STAR data in the ‘same data’ situation. The factors b) and d) are the 

main factors for estimating effect size in meta-analysis. The reason we consider the factor 

b) is to examine the effect of having overlapping samples in the ‘same data’ situation. 

The population effect size is calculated as scoreσαδ /= , where 
2222

ηγβ σσσσ ++=score . In 

the effect-size calculation, the generated student test scores include the school effect, 

class-size effect, and within-class student effect. Thus, 2

scoreσ  includes the variances of 

school, class, and student effects together and is the pooled variance, and α  is the mean 

difference between small-class and large-class test scores. 

 

Examination of proposed statistical methods 

For evaluation of each condition of generated ‘same data’ studies, I summarize 

and make graphs for H, Q, the width of the confidence interval (CI), or the between 

studies variance based on the 1,000 replications. Then I compare these values for 

different simulation conditions. 

I investigate the results of these generated data sets to determine if the analysis 

results are consistent with expectations, and with the results of the empirical analyses in 

chapter 5. We might expect that the more the sub-samples overlap, the more similar 

outcomes will be, according to H, Q, the width of the CI, and between studies variance. 

The simulation factors b) (overlap ratio) and d) (study-size ratio) are of primary interest 

in this simulation. 
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Results 

This study aims to show the extent of dependence between studies, and focuses on 

the variability of the ‘same author’ studies and ‘same data’ studies. The measures of 

variability are related to the homogeneity test in meta-analysis. Several researchers have 

reported that measures of variability and homogeneity test values are dependent on 

sample size and number of studies in the meta-analysis (Higgins & Thompson, 2002; 

Kim, 2000; Rucker, Schwarzer, Carpenter, & Schumacher, 2008). I proposed several 

methods to show the between studies dependence. The results are expected to reflect 

which methods are dependent on the sample size or number of studies in this simulation. 

Table 2 present the characteristics of data generation for the ‘same data’ issue, for 

an initial data set of 10,000 cases. The number of studies is dependent on the overlap 

ratio, so as the overlap ratio increases, the number of studies increases automatically in 

Table 2. Study-size ratio is the ratio of study size (ni) divided by the initial data set size N.  

Overlap ratio is the ratio of total sample size (Σni) divided by the initial data set size N. 
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Table 2: Characteristics of ‘same data’ simulation data generation (Initial data set size N 

10,000)  

Study ID 
Initial data 

set size N

Sample 

size ni 

Study-size 

ratio ni /N

Number 

of studies 

k 

Total 

sample 

size Σni 

Overlap 

ratio Σni/N 

Effect 

size 

*A**4 10000 200 0.02 2 400 0.04 0.2 

A10 10000 200 0.02 5 1000 0.1 0.2 

A20 10000 200 0.02 10 2000 0.2 0.2 

A50 10000 200 0.02 25 5000 0.5 0.2 

A100 10000 200 0.02 50 10000 1 0.2 

A300 10000 200 0.02 150 30000 3 0.2 

A500 10000 200 0.02 250 50000 5 0.2 

B10 10000 500 0.05 2 1000 0.1 0.2 

B20 10000 500 0.05 4 2000 0.2 0.2 

B50 10000 500 0.05 10 5000 0.5 0.2 

B100 10000 500 0.05 20 10000 1 0.2 

B300 10000 500 0.05 60 30000 3 0.2 

B500 10000 500 0.05 100 50000 5 0.2 

C20 10000 1000 0.1 2 2000 0.2 0.2 

C50 10000 1000 0.1 5 5000 0.5 0.2 

C100 10000 1000 0.1 10 10000 1 0.2 

C300 10000 1000 0.1 30 30000 3 0.2 

C500 10000 1000 0.1 50 50000 5 0.2 

D60 10000 2000 0.2 3 6000 0.6 0.2 

D100 10000 2000 0.2 5 10000 1 0.2 

D300 10000 2000 0.2 15 30000 3 0.2 

D500 10000 2000 0.2 25 50000 5 0.2 

E60 10000 3000 0.3 2 6000 0.6 0.2 

E90 10000 3000 0.3 3 9000 0.9 0.2 

E300 10000 3000 0.3 10 30000 3 0.2 

E500 10000 3000 0.3 17 51000 5 0.2 

F80 10000 4000 0.4 2 8000 0.8 0.2 

F120 10000 4000 0.4 3 12000 1.2 0.2 

F320 10000 4000 0.4 8 32000 3.2 0.2 

F480 10000 4000 0.4 12 48000 4.8 0.2 

G100 10000 5000 0.5 2 10000 1 0.2 

G300 10000 5000 0.5 6 30000 3 0.2 

G500 10000 5000 0.5 10 50000 5 0.2 

1) *In the study ID, A, B, C, D, E, F and G represent the study-size (ni) 

2) **In the study ID, 4, 10, 20, 50, 100, 300, and 500 represent the overlap ratio: 

Σni/N*100% 
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Next I discuss results of the simulation. All figures follow the description of these 

results. Overlap ratio in Table 2 expressed as the percent of overlap ratio in Figures 1-6 

(overlap ratio × 100). 

 

H 

A value of H = 100% indicates perfect homogeneity because this indicates the 

fixed-effects confidence interval width exactly matches with the random-effects 

confidence interval width. When many studies examine the ‘same data’ set, meta-

analyses with more overlapping studies will likely be more homogenous. So, meta-

analyses with more overlap among studies are expected to have higher H values 

compared to other meta-analyses. 

Figure 1 shows the H values calculated for the ‘same data’ studies. Seven 

different overlap ratios (Σni/N) represent 4%, 10%, 20%, 50%, 100%, 300% and  500% 

overlap for the ‘same data’ studies as described in Table 2. For the smaller study-size 

ratios (ni/N) such as 2%, 5% and 10%, H does not show the expected trend, possibly 

because smaller studies from the ‘same data’ will not have much similarity. For the 

study-size ratio over 20%, Figure 1 shows that larger overlap ratios have higher H values 

as we expected. This indicates that the overlap ratio effect will not be large if the study-

size ratio is less than 20%. In the ‘same data’ situation, if a researcher uses only small 

samples (e.g., the study-size ratio is less than 20%), the similarities among ‘same data’ 

studies will not be large.  

Figure 1 also shows the effect of study-size ratio (ni/N). The larger study-size 

ratios show larger H values as I expected. 

 

Functions of Q 

Based on functions of Q, the percent of significant Q tests and the averages of the 

Q statistic values are next summarized. Also the Birge ratio, a function of Q, is discussed. 

To check homogeneity, in general, meta-analysts use the Q statistic (Cooper & 

Hedges, 1994): 
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∑
=

•−=
k

i

ii vTTQ
1

2 ]/)[( ,           

where Ti is the observed effect size of ith study, •T  is the weighted average effect size, 

and iv  is the conditional variance of the ith standardized mean effect size. 

Generally speaking, if Q is greater than the critical value of a chi-square with k-1 

degrees of freedom, “the observed variance in study effect sizes is significantly greater 

than what we would expect by chance if effect sizes in all studies shared a common 

population effect size” (Cooper & Hedges, 1994, p. 266). If Q is significant, this indicates 

the estimated effect sizes are heterogeneous, and the effect sizes do not share a common 

population effect size. The Birge ratio, Q/(k-1) will be large when effects are 

heterogeneous, and vice versa. 

 

1) Birge ratio 

Figure 2 shows that the Birge ratio values are inconsistent (decreasing, flat, or 

increasing) but fairly similar as the overlap ratio increases. However, Figure 2 shows that 

the Birge ratio values decrease as the study-size ratio increases. The Birge ratio values 

show a pattern similar to that of the between studies variance in Figure 6. 

 

2) Percent of significant Q values 

Figure 3 shows that, in general, the percent of Q values significant at the .05 level 

decreases as the overlap ratio increases. However, when the study-size ratio is small, 

specifically when the study-size ratio is 2%, the pattern is not exactly as we expected. 

Figure 3 shows that for all other study-size ratios, the percent of Q values significant at 

the .05 level decreases as the overlap ratio increases. Figure 3 also shows that the percent 

of significant Q values significant at the .05 level decreases as the study-size ratio 

increases. This is a pattern similar to that for H and the Birge ratio 

  I checked the confidence interval (CI) of the percent of significant Q values based 

on the formula, 0.05±1.96SE, with SE = 
repsN

)1(* αα −
= 

1000

)95(.*05.
 = 0.007. So, the CI 

goes from 0.036 to 0.064 if the null hypothesis of homogeneity for k independent effects 
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were true. This indicates that the percent of significant Q value would be between 0.036 

and 0.064. Figure 3 shows the number of significant Qs is within the 95% confidence 

interval even when study-size ratio (ni/N) is 2%.  

 However, for the study-size ratios larger than 2%, Figure 3 shows that the percent 

of Q values significant at the .05 level is much smaller than the 95% confidence interval 

limit. This indicates that the ‘same data’ studies with large study-size ratios have large 

similarities. 

 

3) Average Q values 

Figure 4 needs a more complex interpretation, because according to statistical 

theory Q increases as the number of studies increases. However, Figure 4 shows that Q 

decreases as the study-size ratio increases.  

The real issue here is whether the mean Q is lower than expected. Under H0, the 

means should be at or near the approximate df in Figure 4. So for k = 250, df = 249, k = 

150, df = 149 etc. The case where the means are really where they should be seems to be 

when study-size ratios are small such as 2%, 5%, and 10% in Figure 4. The average Q 

values show a pattern similar to that of the H in Figure 1. 

 

Width of confidence intervals 

 Figure 5 shows the effect of overlapping studies on fixed-effects and random-

effects confidence interval widths. Viechtbauer (2007) said, “it may be also be useful to 

report a confidence interval for the amount of heterogeneity, which not only indicates the 

precision of the heterogeneity estimate, but also communicates all the information 

contained in corresponding homogeneity tests” (p. 38). Figure 5 shows that the 

confidence interval widths of higher overlap studies are smaller than those of other meta-

analyses. Figure 5 also shows the study-size ratio’s effect on the width of the confidence 

interval. Both confidence intervals decrease as the study-size ratio increase, as expected. 

 

Between-studies variance in effect sizes 

The amount of variance among the effect-size estimates is investigated. When 

many studies examine the ‘same data’ set, meta-analyses with more overlap among 



 

 

49

studies will be more homogeneous. So, meta-analyses with more overlap among studies 

are expected to have smaller between studies variance, compared to other meta-analyses. 

Figure 6 shows that the between studies variance is fairly consistent as the overlap ratio 

increases. However, Figure 6 clearly shows that between studies variance decreases as 

study-size ratio increases. This is a pattern to similar to that for H and the Birge ratio. 

  

Conclusion  

Values of H, the Birge ratio, percent of significant Q values, the width of the CI, 

and between studies variance worked well to show dependence. The Q average values are 

dependent on the number of studies (k) because Q is a chi-square with degrees of 

freedom equal to k-1.    

 The first lesson in this simulation is that reviewers should pay attention to study-

size ratio in addition to overlap ratio, if many ‘same data’ studies exist when doing meta-

analysis. The study-size ratio is another factor that helps to determine the similarities 

among ‘same data’ studies in this simulation. As I discussed before, H does not show the 

expected trend when study-size ratio is 2%, 5% and 10%. The pattern of percent of 

significant Q values is not exactly as we expected when the study-size ratio is 2%. Based 

on the results for H and percent of significant Q values, the reviewer should investigate 

the study-size ratio first. If the study-size ratio is less than 10%, we can assume the 

similarities among studies will not much matter. However, if the study-size ratio is larger 

than 20%, reviewers should pay attention to dependence issues for the studies using 

‘same data’ sets. This is the most important finding in this simulation. 

The other lesson for the ‘same data’ issue is that the homogeneity test based on Q 

for meta-analysis should be cautiously interpreted because the homogeneity test can be 

dependent on study size, number of studies, and similarities between studies. Reviewers 

need to check H, the Birge ratio, the width of the CIs and between studies variance in 

addition to the homogeneity test (Q) in meta-analysis. 

Overall, when reviewers investigate the dependence of ‘same data’ studies, 

reviewers should pay attention to study-size ratio first, in addition to overlap ratio, and 

can use H, the Birge ratio, the width of the CI and between studies variance to represent 

the degree of dependence. 
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Results for other initial data set sizes (50,000 and 100,000 cases) are attached in 

Appendix J. Their results show the same pattern as is reported for the initial data sets of 

10,000 cases. 
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Figure 1: H for ‘same data’ issue for N = 10,000. 
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Figure 2: Birge ratio for ‘same data’ issue for N = 10,000. 
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Figure 3: Percent of significant Q values for ‘same data’ issue for N = 10,000. 
* In the Y-axis, 0.01 to 0.07 represent 1% to 7%. 
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Figure 4: Average Q values for ‘same data’ issue for N = 10,000.
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Figure 5: The width of the CI for ‘same data’ issue for N = 10,000.
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Figure 6: Between studies variance for ‘same data’ issue for N = 10,000.
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‘Same author’ issue 

Reviewers suppose that ‘same author’ studies will be similar and dependent with 

each other, however, it is very difficult to show their dependence. The ‘same author’ 

dependence is different from the dependence among papers using the ‘same data’, and the 

data generation will be different from the ‘same data’ situation. Instead of raw score 

generation, simulated hypothetical effect sizes are generated.  

The assumption is that the ‘same author’ papers are nested within author. For the 

effect-size generation, author effects are considered using correlated effect sizes to 

represent hypothetical ‘same author’ papers. 

Based on the literature review and case study of the ‘same author’ issue, we 

expect that each author will make similar choices of samples, measurement instruments, 

incentives for participants, and experimental conditions. However, it is difficult to 

generate such conditions for ‘same author’ studies in a simulation study. I will use 

different degrees of correlation between effect sizes to represent the ‘same author’ 

situation. I assume if the proposed methods in chapter 3 can detect the similarities among 

the correlated effects in the simulation study, the methods can also show the similarities 

among ‘same author’ studies in empirical meta-analyses. 

For the ‘same author’ data generation, let us imagine a study of the relationship 

between SAT scores and college GPA. The effect size can be a correlation between SAT 

score and college GPA. One author may conduct several studies of this relationship using 

different samples. 

The correlated effect sizes will be generated for the ‘same author’ situation 

considering study size (sample size), the number of ‘same author’ studies, the degree of 

correlation between the effect sizes, and the magnitude of effect size. However, I 

acknowledge that this correlated effect-size format is not the real covariance structure for 

correlational data in multivariate meta-analysis.  

The objective of this study is to examine the methods proposed in chapter 3 to 

detect the dependence for the ‘same author’ situation, which is not the exactly the same 

as the multivariate meta-analysis situation, so I do not need to make the data correlated as 

in the Olkin and Siotani (1976) multivariate sense. In this study, I will generate 

equicorrelated effect sizes to represent hypothetical ‘same author’ studies. First, I 
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describe how I generate equally correlated “true” effect sizes for the sets of studies done 

by each hypothetical researcher. Second, I also explain the generation of equicorrelated 

errors in the study effects, with variance determined by the sample size of each study. 

First, to generate equally correlated “true” effect sizes, we assume that six studies 

are done by the same researcher. Consider the Fisher-transformed correlation Zi, where  

 EZi = )|( iiZE ζ  = iζ , and  Zi is the observed effect size for the ith study for an author; Zi 

is a Fisher Z transformed correlation coefficient (Hedges & Olkin, 1985), and iζ  is the 

true effect size for the ith study for an author.  

In the hypothetical effect-size generation, several effect sizes per author are 

generated, and we consider each true effect size as a linear function of two variables X 

and Yi. For example, 1ζ  = ( a X+b Y1), 2ζ  = ( a X+b Y2), ….. , kζ = ( a X+b Yk). X and Yi 

are both distributed as standard normal variables: X, Yi ~ N (0,1). 

So, E( a X+b Yi ) = a *E(X) + b *E(Yi) = 0,  

Var ( a X+b Yi) = 
2

a *V(X) + 
2

b *V(Yi )= 
2

a  + 
2

b  = 2σ . 

The covariance of a pair of these effect sizes is  

Cov ( a X+b Yi, a X+b Yj) = 
2a . 

The correlation of these effect sizes is 

Corr ( a X+b Yi, a X+b Yi`) = ρ=
+ 22

2

ba

a
. 

In the above effect-size generation process, a  and b  are determined by the formulas, 

ρσ=a  and 

22 ab −= σ . 

By specifying the ρ  and σ  values in the simulation program in given Appendix I, the 

values of a  and b  are determined and used to generate the true effect sizes 1ζ  through 

kζ . 

Second, I generate equicorrelated sampling errors with variance determined by 

sample size. The observed effect sizes ( iZ ) are determined by the true effect size ( iζ ) 

and error term ( ie ). Consider a case with 6 effect sizes. In such a case,  
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The above true effect sizes are generated by specifying the ρ  and σ values given 

in the R program in the Appendix I. iζ  represents the true effect size for the ith study in a 

set of ‘same author’ papers, and consists of a common overall effect (ζ ), and varies 

based on random error ( 2σ ) plus the correlation between studies. In other words, our 

example shows six studies for one author, and those six studies have overall effect ζ  

and vary based on variance 2σ  with correlation ρ  which I specify. The variance ( 2σ ) 

represents the variance in overall effects due to the different designs of experiments, 

different conditions, samples and instruments for the ‘same author’ studies.  
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Next, the error term ( ie ) is determined by correlation 2ρ  which I specify in the 

program in Appendix I, and the variance determined by the sample size ( )
3

1
(

−
=

i

i
n

v ) 

for the Fisher Z transformation. 

 

The correlations of both true effect sizes and error terms show the different degree 

of similarities of studies by the same author. (In this research, I use the same correlation 

values for these two correlations to simplify the simulation conditions). 

These two correlations represent the relatedness of two errors in meta-analysis: 

random between-studies error and sampling error. Correlated error represents the 

similarities that arise when similar samples are selected by one author, whether it is 

intended or unintended. However, two correlated errors were specified with the same 

value for my simulation studies, so considering two errors is not the big issue for my 

simulation study. The correlation among the effect size is the main factor to investigate 

for my simulation. 

 

The simulation factors in this study are: 

a) Study size (n = 100, 1000, and 10000),  

b) The number of studies for each author (k = 2, 3, 4, 5, 10, and 30), 

c) The magnitude of effect size (δ  = 0.2, 0.5, and 0.8), and 

d) The magnitude of correlation within ‘same author’ studies: ( ρ  = 0.0, 0.2, 0.5, and 0.8).  

As a result, data were generated for 216 simulation conditions (3*6*3*4) in this 

research. For each simulation condition, the hypothetical syntheses will be replicated 

1000 times for each condition. 

 

Examination of proposed statistical methods 

For evaluation of each condition of the generated ‘same author’ studies, I treat the 

different correlated effect sizes as hypothetical ‘same author’ studies. These different 

correlated effect sizes are investigated using the methods proposed in chapter 3. I 

summarize and make graphs for H, the Birge ratio, the percent of significant Q values, 

the average Q, the width of the CI and the between studies variance for each condition 
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based on 1000 replications for each correlation scenario: No correlation and low (0.2), 

medium (0.5), or high (0.8) correlations among ‘same author’ studies.  

I anticipate that the more highly correlated effect sizes are among the ‘same 

author’ studies, the more similar the outcomes will be. However, this will not occur in the 

uncorrelated studies. I investigate the results of these generated data sets to see if the 

analysis results are consistent with the results of the empirical analyses in chapter 5.  
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Results 

After generating hypothetical effect sizes for each condition, the proposed 

indicators were calculated. The magnitudes of correlation and number of studies within 

‘same author’ studies are investigated as main factors for this ‘same author’ issue 

simulation. Table 3 presents the characteristics of data generation for the ‘same author’ 

issue with study-size ni = 100. 

 

 

Table 3: Characteristics of ‘same author’ data generation (n = 100) 

A: 2, 3, 4, 5, 10, and 30 represent the number of studies per author, 

B: 0, 2, 5, and 8 of the last digit of the ID represent the correlation values. 

ID
A,B

 

Number of 

studies per 

author 

Sample size 

( ni) 

Magnitude of 

ζ   
Magnitude of 

correlation 

20 2 100 0.2 0.0 

30 3 100 0.2 0.0 

40 4 100 0.2 0.0 

50 5 100 0.2 0.0 

100 10 100 0.2 0.0 

300 30 100 0.2 0.0 

22 2 100 0.2 0.2 

32 3 100 0.2 0.2 

42 4 100 0.2 0.2 

52 5 100 0.2 0.2 

102 10 100 0.2 0.2 

302 30 100 0.2 0.2 

25 2 100 0.2 0.5 

35 3 100 0.2 0.5 

45 4 100 0.2 0.5 

55 5 100 0.2 0.5 

105 10 100 0.2 0.5 

305 30 100 0.2 0.5 

28 2 100 0.2 0.8 

38 3 100 0.2 0.8 

48 4 100 0.2 0.8 

58 5 100 0.2 0.8 

108 10 100 0.2 0.8 

308 30 100 0.2 0.8 
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Next I discuss results of the simulation for same-author issue. All figures follow the 

descriptions of these results. 

 

H 

Figure 7 shows the H values calculated for the ‘same author’ studies. The number 

of studies and different levels of inter-correlation are examined. Figure 7 shows that H 

increases as the degree of correlation increases, as expected. Figure 7 shows that H 

increases as the number of studies increases except when the correlation is equal to zero. 

This indicates when correlation is zero (or, when no similarities exist in the ‘same author’ 

studies), H decreases as the number of studies increases. This is very similar to the ‘same 

data’ simulation results in Figure 1. When the study-size ratio is small in the ‘same data’ 

situation or when ‘same author’ studies are uncorrelated, no similarities exist in both 

Figures 1 and 7. 

 

Functions of Q 

1) Birge ratio 

Figure 8 shows that the Birge ratio is constant as the number of studies increases, 

Figure 8 also shows that the Birge ratio decreases as the level of correlation increases. 

Figure 8 shows a pattern similar to that for Figure 12 showing the between-studies 

variance. 

 

2) Percent of significant Q values 

Figure 9 shows that the percent of Q values significant at the .05 level decreases 

as the number of studies increases. Figure 9 also shows the highly correlated studies have 

only a small percent of Q values significant at the .05 level. Figure 9 shows a pattern 

similar to that in Figure 3 of the ‘same data’ study. The 2% study-size ratio effect in 

Figure 3 is similar to the zero correlations case in Figure 9, and the 50% study-size ratio 

effect is similar to the results for the .5 correlation in Figure 9. 

 

3) Average Q values 
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Figure 10 shows that Q increases as the number of studies increases, according to 

statistical theory. However, Figure 10 also shows that Q decreases as the correlation 

increases.  

The real issue here is whether the mean Q is lower than expected. Under H0, 

means in Figure 10 should be equal to the df. So for k = 10, df = 9,  for k = 5, df = 4 etc. 

The only case where the means are really where they should be seems to be when ρ = 0 

in Figure 10. In all other cases they are lower than suggested by the null hypothesis 

distribution for independent effects. 

 

Width of confidence interval 

 Figure 11 shows the effect of number of studies and correlation ( ρ  value) on 

fixed-effects and random-effects confidence interval widths. Widths of both the fixed-

effects and random-effects confidence intervals decreases as the correlation and number 

of studies increase. When the correlation is .8, both confidence intervals are exactly the 

same in Figure 11.  

 

Between studies variance in effect sizes 

Figure 12 shows that the between studies variance was almost consistent across 

the different numbers of studies, but the between studies variance decreases when 

correlation increases. This is similar to Figure 6 in the ‘same data’ situation. 
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Figure 7: H for same author, n = 100. 



 

 

66

 

Figure 8:  Birge ratio for same author, n = 100. 
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Figure 9:  Percent of significant Q values for same author, n = 100. 
* In the Y-axis, 0.01 to 0.07 represent 1% to 7%. 
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Figure 10: Average Q for same author, n = 100. 
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Figure 11: The width of the CI for same author, n = 100. 
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Figure 12: Between studies variance for same author, n = 100. 
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Summary  

 

All indices (H, Birge ratio, percent of significant Q values, the width of the CI, 

and between studies variance) show the similarities of ‘same author’ studies. Highly 

correlated studies show more similarity. The average Q is dependent on the number of 

studies, but its mean is considerably lower than its theoretical expected value when ρ > 0.  

 H and the percent of significant Q values show no dependence for the small 

study-size ratio (2%) and for uncorrelated ‘same author’ studies because no similarities 

exist among ‘same data’ studies and ‘same author’ studies in these conditions. 

 The other results for sample sizes 1,000 and 10,000 for the ‘same author’ 

simulation are attached in Appendix K. The results show the same pattern as found for 

studies with sample size of 100. 

Uncorrelated studies show a pattern similar to that found for a study-size ratio of 

2%, and medium and highly correlated studies (with .5 and .8 correlations) show patterns 

similar to those for large study-size ratios (such as 0.4 and 0.5). This makes sense 

because the correlation and study-size ratio both represent similarities among ‘same 

author’ and ‘same data’ studies. 

 

Limitation 

 

This simulation investigated the effect of degree of overlap or magnitude of inter-

correlation, number of studies by one author, and study-size. The magnitude of 

correlation does not directly represent the ‘same author’ condition, but it is used to 

approximate the effect of ‘same author’ similarities. 
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CHAPTER V 

EMPIRICAL ANALYSIS  

USING TWO EXAMPLE META-ANALYSES 

 

I have proposed several approaches to exploring dependence in meta-analysis: 

homogeneity tests, fixed-effects categorical analysis, intraclass correlations, sensitivity 

analysis and HLM analysis. In chapter IV, I generated data and investigated various 

conditions to check whether the proposed methods worked or not. 

In this section, I report on two empirical analyses with real meta-analysis data to 

examine the proposed approaches. The first one is a class-size and student achievement 

meta-analysis (Shin, 2008), and the second uses ESL (English as a Second Language) 

meta-analysis data (Ingrisone & Ingrisone, 2007). The first example examines the “same 

data” issue, and the second one explores the “same author” issue. 
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Class-size meta-analysis as an example of the ‘same data’ issue 

 The relationship between class-size and student achievement has been studied for 

a long time. However, the findings are still inconsistent among primary studies. In this 

analysis, I investigated studies from the 1990s to the present, because we have previous 

meta-analyses for this topic: Glass and Smith’s class-size and student achievement meta-

analysis (1979) covers very early studies, the McGiverin, Gilman, and Tillitsk (1989) 

review is not actually a meta-analysis study, and Goldstein, Yang, Omar, Turner, and 

Thompson’s (2000) meta-analysis focused on methodological issues. 

 In the class-size studies, there are several large scale experiments including STAR 

(Student/Teacher Achievement Ratio Study in Tennessee 1985 - 1989). When I gathered 

the literature for this meta-analysis of class-size and student achievement, I found many 

studies using STAR data. The data examined in this empirical analysis are from a meta-

analysis of class-size and student achievement by Shin (2008). The main goal of this 

analysis is to show the dependence of STAR data papers compared to other papers using 

different data sets. To show the dependence, I examined the homogeneity test, the fixed-

effects categorical analysis, intraclass correlation, sensitivity analysis and HLM analysis. 

I also investigated similarities between meta-analysis using HLM and the conventional 

meta-analysis approach. I begin by introducing the results of the fixed-effects model and 

the random-effects model. 

 



 

 74

1. Fixed-effects and random-effects models 

In the fixed-effects model, the effect size is 0.15, and standard error of effect size 

is 0.0036. The homogeneity test statistic Q is significant (p value < .05), so we can reject 

the null hypothesis, and it means the effect sizes are heterogeneous.  

Under the fixed-effects model, the homogeneity test is significant. The random 

model is appropriate for this analysis. Sometimes, even though the homogeneity test is 

not significant, researchers use the random-effects model because the homogeneity test 

has less power for small numbers of studies in meta-analysis (Higgins et al., 2003, p. 

557).  

 

 

Table 4: Comparison of fixed-effects model and random-effects model results 

 Mean Standard Error

Fixed-effects model 0.15 0.004

Random-effects model 0.18 0.017

* SE: Standard Error 

 

 

The random-effects mean is slightly larger (0.18 vs. 0.15) and the random-effects 

standard error (SE) is also larger (0.017 vs. 0.004). The random-effects confidence 

interval is much wider (a width of 0.066 vs. 0.014). This mean effect size from the 

random model (0.18) is similar to that in the HLM unconditional model output (0.18) . To 

examine the sources of variability, a fixed-effects categorical analysis is next conducted. 
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2. Fixed-effects categorical analysis 

 In this fixed-effects categorical analysis, the main interest is to investigate the 

difference between papers using STAR data and papers using different data. In the same-

author studies and same-data studies, I used dummy coding to distinguish same-data 

studies and different-data studies. For example, if the papers use the same data (here, the 

STAR data), the coding is 1, if not, it will be 0. For the same-data issue, the researcher 

needs to consider the difference of two Qwithin statistics: STAR vs. Others. STAR studies 

have a larger mean effect size (0.22) than the other studies (-0.07). This research focuses 

on the difference in the homogeneity in these two groups. When QBetween is significant as 

it is here (QBetween = 1118.2, df = 1, p < 0.001), it means the two groups are different on 

average, and if Qwithin is also significant as it is here (Qwithin =872.9, p < 0.001) it means 

that there is still variability within studies. Qwithin is significant if one group has 

variability within studies, such as the “other” group in this example.  I expected that the 

other studies would show more variability than STAR studies, and I show the results 

using quantification of the homogeneity by H and I
2
 in Tables 6-8. 

 

 

Table 5: Fixed-effects categorical model for class STAR 

STAR       k     Q         p-value    LL        Effect size     UL        Variance   Birge Ratio 

STAR     78   300.82     <.0001   0.208     0.217         0.225       0.000018         3.9 

Others     31   572.07    <.0001  -0.079     -0.065       -0.051      0.000053         18.5 

*LL: lower bound of confidence interval for effect size, UL: upper bound of confidence 

interval for effect size 
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3. Comparison of homogeneity by STAR variable 

The goal of this research is to show the dependence in the studies using the same 

data, so I examined the homogeneity of the two groups of studies using the H and I
2
 

indices proposed by Higgins and Thompson (2002). H can be defined as follows: 

H = (CI width for the fixed-effects model)/(CI width for the random-effects model) * 100.  

 

 

Table 6: H of all class-size studies 

Confidence Interval LL UL Width Ratio (H)

Fixed model 0.139 0.153 0.014  

Random model 0.142 0.208 0.066 22%

*LL: lower bound of confidence interval, UL: upper bound of confidence interval 

 

 

In Table 6, the confidence interval of the fixed model is 22% of the size of the 

confidence interval from the random model. This indicates much variability exists 

between studies. I next compared the H index in the two groups separately: STAR studies 

vs. Others in Table 7. 

 

 

Table 7: H of STAR studies vs. other studies 

STAR LL UL Width Percentage

Fixed model 0.208 0.225 0.017

Random model 0.210 0.245 0.034 48%

Other Studies LL UL Width Percentage

Fixed model -0.079 -0.051 0.029  

Random model -0.107 0.036 0.143 20%

*LL: lower bound of confidence interval, UL: upper bound of confidence interval 

 

 

The H index represents a 20% confidence interval width overlap between the 

fixed-effects model and the random-effects model in the other group. The H index shows 

48% confidence interval overlap between the fixed-effects model and the random-effects 
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model in the STAR group. The STAR group’s confidence intervals overlap more than 

those of the Other group. The STAR group is more homogenous than the Other group. 

Next, I investigated the I
2
. I

2
 is calculated based on the following formula, I

2
 = 

100 %*( Q – df)/Q. 

 

 

Table 8: I
2
 for STAR effect 

Class k Q I
2

STAR 78 300.82 74.0%

Others 31 572.07 94.6%

 
 

To quantify the homogeneity for these two groups: STAR vs. Other, I calculated 

I
2
. The Other group I

2 
is 94.6 %, while the STAR group I

2
 is 74%. This means STAR 

studies are more homogeneous than Other studies, while the STAR group also has much 

variability. 
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4. Graphical approach 
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Figure 13: Fixed-effects categorical analysis box plot comparison between STAR 

studies and other studies. 

 

 Figure 13 indicates that variation in the effects from STAR studies is lower as 

shown by narrower box and whiskers compared to the other group. The ends of box 

represent the first and third quartiles of the distribution, and the horizontal line within the 

box represents the median point. The whiskers show the smallest and largest values of the 

distribution, however, if there are outliers, SPSS does not always use the maximum and 

minimum value. The graphical approach shows the same result as the homogeneity test, 

H, and I
2
.  

In this graphical approach, meta-analysts can indirectly assess and show the 

similarities or relatedness of same-data studies. In the fixed-effects categorical analysis, 

meta-analysts can examine whether same-data studies are less variable than different data 

studies.  
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5. ICC 

In the class-size example (Shin, 2008), the total variance is 0.0479, and the 

sampling variance is 0.00997. The variance component in the unconditional model is 

0.038. The total variance (0.0479) is made of the sum of sampling variance (0.00997) and 

systematic variance (0.038). To calculate the ICC for the class-size example, I divide 

systematic variance by the sum of sampling variance and systematic variance as shown in 

the formula below: 

)ˆˆ/(ˆˆ
00

2

00 τστρ +=  

= 0.038/0.0479 = 0.793. 

The parameter variance ( 00τ ) is estimated as 0.038, and the proportion of 

systematic variance is 0.793. This means that 79.3% of the variance in the effect sizes is 

from differences between studies. The ICC is next examined for the two groups: STAR 

studies and Other studies. First, Other studies were examined. The total variance is 0.103, 

and sampling variance is 0.022. Thus, the systematic variance is 0.081. The ICC is 78.6% 

(0.081/0.103). Second, STAR studies were examined. The total variance is 0.0149, and 

sampling variance is 0.0052. The systematic variance is 0.0097, and the ICC is 65% 

(0.0097/0.0149). In Other studies, 79% of the variance in effect sizes is from variance 

between studies, however, in the STAR studies, only 65% of the variance in effect sizes 

is between studies. In conclusion, the between studies variance of the STAR studies is 

smaller than that of Other studies. This is similar to the findings of the homogeneity test 

and graphical approach. 
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6. HLM 

Using the HLM analysis for meta-analysis, we can get the intraclass correlation 

and ‘variance explained’ information. Intraclass correlations in the unconditional model 

indicate how much variance in effect sizes lies between studies, and the ‘variance 

explained’ indicates the percentage of variance accounted for by study characteristics like 

“same author” and “same data” factors. 

The unconditional model produces estimates of the grand mean, 0γ , and Level-2 

variance,τ . The estimated grand-mean effect size is small, 0γ̂ = 0.18. It means that, on 

average, small-class students score about 0.18 standard deviation units above the large-

class students. However, the estimated variance of the effect parameters is τ̂  = .038. This 

corresponds to a standard deviation of .62, which implies that there is important 

variability in the true effect sizes. This also is the same value obtained as part of the 

computation of the ICC. 

 

Table 9: Conditional model for the meta-analysis of class-size on student achievement 

Fixed-effects Coefficient Standard Error t Ratio 

Intercept, 0γ  -0.037 0.03 -1.1 

STAR, 1γ  0.276 0.04 7.3 

Random-effects 
Variance 

Component
df

2χ  p-value

True effect size, jδ  0.023 107 913.42 <0.000

 

The Table 9 results show that the class-size effects of STAR studies are larger. In 

comparison with other studies class-size effect on student achievement, STAR studies 

students achievement is larger by 0.276 effect size (i.e., 1γ̂  = 0.276, t = 7.3). The HLM 

analysis has two goals: the first one is to assess the variability in the true effect 

parameters, and a second is to account for that variation. In the class-size example, the 

unconditional model assesses the variability in the true effect parameters, and the 

conditional model accounts for that variation. As we can see in Table 10, the STAR 

variable explained variability in this example using HLM analysis. 
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Table 10: Proportion of variance explained by the STAR dummy variable 

Class HLM 
Unconditional model 

variance 

Conditional model 

variance 
Explained variance 

    0.038 0.023 39%

 

Proportion of variance explained  = 
)(ˆ

)(ˆ)(ˆ

00

0000

nalunconditio

lconditionanalunconditio

τ
ττ −

 = 

038.0

023.0038.0 −
 = 39% 

 

When we compare the two models: the unconditional model and the conditional 

model, 39% of the total variance is explained by the STAR variable. HLM analysis 

efficiently performs two goals simultaneously, and gives an estimate of variability 

explained in the conditional model.  

 



 

 82

7. Sensitivity analysis 

This sensitivity analysis focuses on the effect size of all studies vs. the effect size 

of all studies except the same-data studies, while the categorical analysis pays attention to 

the effect size of same-data studies vs. that of different data studies. However, there are 

many similarities in these analyses. 

Based on the sensitivity analysis results, reviewers need to investigate in depth 

why the results differ between the effect sizes of all studies vs. the effect size of all 

studies except the same-data papers because the result of sensitivity analysis depend on 

the topic, research area, and the relationship between ‘same data’ studies and studies 

using different data sets. This needs especially when estimating overall effect size in 

meta-analysis. 

 

Table 11: Sensitivity analysis for class-size studies 

 Mean Standard Error

Random-effects model of all studies 0.18 0.017

Random-effects model without STAR studies -0.04 0.036

 

STAR is the most well controlled experiment among the class-size studies, and many 

researchers have studied the STAR data to investigate the relationship between class-size 

and student achievement. The effect size without STAR studies is -0.08, suggesting that 

smaller class student achievement is lower by -0.08 standard deviations compared to 

large-class student achievement. This suggests that there is no reason to reduce class size 

as a way to increase student achievement. However, the overall class size studies’ effect 

size is 0.15, indicating that the effect of small class-size is positive, and represents a 0.15 

standard-deviation effect for student achievement, compared to large class-size.  

In this sensitivity analysis approach, the reviewer should be very cautious to 

generalize meta-analysis findings. Without STAR studies, a reviewer can say that the 

effect size of small class size on student achievement is negative. With STAR studies, 

meta-analysts will say the overall effect size of small class size on student achievement 

have a small but positive and 0.15 standard deviation unit effect on student achievement. 
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A reviewer should report these two results together without losing information. How 

can we estimate the overall effect of class-size on student achievement considering 

several STAR studies simultaneously? We cannot say something without considering the 

characteristics of data sets, the quality of papers, the in-depth study of same-data studies, 

and the experimental conditions of same-data studies. For this STAR example, I will 

include all of the studies for overall estimation of class-size effect on student 

achievement because STAR is the most well controlled state-wide experiment in the 

history of class-size studies. Many well-known authors studied this issue, the quality of 

papers is better than that of other studies, and every STAR study’s focus is a little bit 

different as I indicated in the case study report in chapter 2.  

In conclusion, whenever reviewers determine an overall effect that includes the 

same-data studies, reviewers should report all possible results using categorical analysis 

and sensitivity analysis, and meta-analysts  should estimate overall effect size considering 

the characteristics of ‘same data’ sets and the quality of papers using ‘same data’. 
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ESL as an example of the “same author” issue 

 

This example examined the effectiveness of ESL instructional methods. I used 

this study as a “same author” case because one author, Kubota, has several studies in this 

meta-analysis. This example data is from Ingrisone and Ingrisone (2007). Ingrisone and 

Ingrisone (2007) examined 17 studies including 23 effect sizes. One author, Kubota, 

contributed 4 studies and 6 effect sizes among the 17 studies and 23 effect sizes. The goal 

of this analysis is to show the similarities of papers by Kubota compared to other papers 

by different authors. I also examined the homogeneity test, the fixed-effects categorical 

analysis, ICC, sensitivity analysis, and HLM analysis. I show the relationship between 

meta-analysis using HLM and conventional meta-analysis. 

 

1. Fixed-effects and random-effects model 

In the fixed-effects model, the effect size is 0.67, and the standard error of effect 

size is 0.07. The homogeneity test statistic, Q is not significant (p = .167), so we can not 

reject the null hypothesis. It means the ESL studies are homogeneous. We can use the 

fixed-effects model for these data. However, I investigated the random-effects model, too.  

 

Table 12: Comparison of fixed-effects model and random-effects model results 

 Mean Standard Error (SE)

Fixed-effects model 0.67 0.07

Random-effects model 0.66 0.08

 

The random-effects mean is slightly smaller (0.66 vs. 0.67) and the random-

effects SE is slightly larger (0.08 vs. 0.07). The random-effects confidence interval is 

much wider (a width of 0.30 vs. 0.26). As expected, the mean effect size from the random 

model (0.66) is exactly the same to that from the HLM unconditional analysis (0.66).  

 



 

 85

2. Fixed-effects categorical analysis 

For the same-author studies example, I used dummy coding to distinguish same-

author studies from different author-studies. Specifically, if the papers are from author 

Kubota, the coding is 1, if not, it will be 0.  Kubota’s papers look more homogeneous 

than the other papers based on the Qwithin statistic. Other studies show a large mean effect 

size (0.80) compared to that of Kubota studies (0.47). The focus of this study is the 

homogeneity test of difference between these two groups. QBetween is significant (QBetween 

= 5,8, df = 1, p = 0.015), and means that the two groups are different on average. If Qwithin 

is not significant as it is here (Qwithin = 22.4, p = 0.376), it means that there is no 

variability within the sets of studies. I expected that the other studies would show more 

variability, and I show the results using quantification of the homogeneity by H and I
2
 in 

Tables 14-16. 

 

Table 13: Fixed-effects categorical model for ESL Kubota 

Kubota     k            Q           p-value            LL             Effect Size    UL       Birge Ratio 

 0            17         21.28       0.17               0.63              0.80          0.97          1.33 

 1             6           1.12        0.95               0.27              0.47          0.68          0.22 

*LL: lower bound of confidence interval for effect size, UL: upper bound of confidence 

interval for effect size 
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3. Comparison of homogeneity by Kubota variable 

The goal of this research is to explore the dependence in the studies by Kubota 

versus others, so I examined the homogeneity of those two groups using the H and I
2
 

statistics that are defined above (Higgins & Thompson, 2002). 

 

Table 14: H of all ESL studies 

Confidence Interval LL UL Width Ratio (H)

Fixed model 0.536 0.798 0.262  

Random model 0.515 0.813 0.298 88%

*LL: lower bound of confidence interval, UL: upper bound of confidence interval 

 

In Table 14, the confidence interval width in the fixed-effects model is 88% of the 

size of the confidence interval width of the random-effects model. This indicates little 

variability between studies in this meta-analysis. However, I will still compare the H 

index in the two groups (Kubota vs. others) in the ESL meta-analysis. 

 

Table 15: H of studies by Kubota vs. other studies 

Kubota LL UL Width Percentage

Fixed model 0.267 0.677 0.410 100%

Random model 0.267 0.677 0.410 

Other LL UL Width Percentage

Fixed model 0.631 0.972 0.341  

Random model 0.575 0.966 0.391 87%

*LL: lower bound of confidence interval, UL: upper bound of confidence interval 

 

The H index shows 87% confidence interval width overlap between the fixed-

effects model and the random-effects model in the other group. The H index shows 100% 

of confidence interval width overlap between the fixed-effects model and the random-

effects model in the Kubota group. The Kubota studies’ confidence intervals overlap 

more than those of other studies. It means Kubota studies are more homogenous than the 

other studies. 
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Next, I investigated the I
2
, calculated as above, with I

2
 = 100 %*( Q – df)/Q. 

 

Table 16: I
2
 for Kubota effect 

ELL k Q I
2

Kubota 6 1.12 0%

Other 17 21.28 20.1%

 

 

The I
2
 for other studies is 20.1% which means small variability, while the I

2
 for 

the Kubota studies I
2
 is -435.7% which is truncated to 0. It means Kubota studies are 

much more homogeneous than the other studies. 
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4. Graphical approach 
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Figure 14: Fixed-effects categorical analysis box plot comparison between Kubota and 

other studies 

 

Figure 14 indicates that variation in Kubota studies is lower as shown by the 

narrower box and whisker plot compared to the other studies. The width of the box 

represents the first and third quartiles in distribution, and the horizontal line within the 

box represents the median point. The whiskers show the smallest and largest values of 

distribution, however, if there are outliers, SPSS does not always use the maximum and 

minimum value. The graphical approach shows the same result as the homogeneity test, 

H, and I
2
. 
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5. ICC 

In the ESL instruction method example (Ingrisone & Ingrisone, 2007), the total 

variance is 0.183, and the sampling variance is 0.14. The variance component in the 

unconditional model is 0.043. The total variance (0.183) is from the sum of the sampling 

variance (0.14) and systematic variance (0.043). To calculate the ICC for the ESL 

example, I used the formula below: 

)ˆˆ/(ˆˆ
00

2

00 τστρ +=  

= 0.043/0.183 = 0.24. 

The parameter variance ( 00τ ) is estimated as 0.043, and the proportion of systematic 

variance is 0.24. This means that 24% of the variance in effect sizes is between studies 

variance. 

The ICC also is examined for each of the two groups: Kubota studies vs. other 

studies. First, other studies are examined. The total variance is 0.16, and sampling 

variance is 0.16. This means that the systematic variance is 0.00, and the ICC is also 0.00 

(0.00/0.16). Second, the Kubota studies are examined. The total variance is 0.016, and 

sampling variance is 0.074, thus the systematic variance is estimated as -0.058. It will be 

truncated to 0.00. ICC is again 0.00 (0.00/0.016). In this ELL example, the total variance 

is very small; the systematic variance is also very small and essentially can not be 

examined. In conclusion, the between studies variance in ELL studies is almost zero. 

These results are similar to those of the homogeneity test and graphical approach. 
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6. HLM  

Using the HLM analysis for meta-analysis, we can get the intraclass correlation 

and ‘variance explained’ information. Intraclass correlations in the unconditional model 

indicate how much variance in effect size lies between studies, and the ‘variance 

explained’ indicates the percentage of variance accounted for by study characteristics 

such as “same author” and “same data” factors. 

 

The unconditional model produces the estimates of the grand mean, 0γ , and 

Level-2 variance,τ . The estimated grand-mean effect size is medium, 0γ̂ = 0.66. On 

average, ESL program students score about 0.66 standard deviation units above the 

control group students. However, the estimated variance of the effect parameters is τ̂  

= .043. This corresponds to a standard deviation of .21, which implies that some 

variability exists in the true effect sizes. This also is the same value obtained as part of 

the computation of the ICC. 

Based on the results of the unconditional model, we do not need to consider the 

conditional model because studies do not significantly vary in their effects. However, the 

conditional model will be investigated to examine the Kubota effect. 

 

 

Table 17: Conditional model for the meta-analysis of ESL 

Fixed-effects Coefficient Standard Error t Ratio 

Intercept, 0γ  0.78 0.09 8.4 

Kubota, 1γ  -0.31 0.15 -2.0 

Random-effects Variance Component df
2χ  p-value

True effect size, jδ  0.015 21 22.45 0.374

 

 

Table 17 shows that Kubota’s studies have a negative effect on the ESL effect 

size for student achievement. In comparison with other author’s studies, Kubota studies 

effect sizes were smaller by 0.31 standard deviations (i.e., 1γ̂  = -0.31, t = -2.0).  
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As we can see in the output in Table 18, the Kubota variable explains a lot 

variability in this example using HLM analysis. 

 

 

Table 18: Proportion of variance explained by the Kubota dummy variable 

Class HLM 
Unconditional model 

variance 

Conditional model 

variance 
explained variance 

    0.043 0.015 69% 

 

 

Proportion of variance explained  = 
)(ˆ

)(ˆ)(ˆ

00

0000

nalunconditio

lconditionanalunconditio

τ
ττ −

 = 

043.0

013.0043.0 −
 = 69% 

 

When we compare the two models (the unconditional model and conditional 

model), 69% of variance is explained by the Kubota variable. Also, even though the 

variability is not significant in unconditional model, the variance component is much 

lower in the conditional model. 

 



 

 92

7. Sensitivity analysis 

This sensitivity analysis focuses on the effect size of all studies vs. the effect size 

of all studies except the same-author studies, while the categorical analysis pays attention 

to the effect size of same-author studies vs. different author studies. However, there are 

many similarities in these analyses. Based on the sensitivity analysis results, reviewers 

need to investigate why the results differ between the effect sizes of all studies vs. the 

effect size of all studies except same-author papers, considering the characteristics of 

sample, measurement instrument, and experimental conditions using by the same author 

such as Kubota, compared to different papers written by others. 

 

Table 19: Sensitivity analysis for ESL studies 

 

 

 

In ESL studies, the effect size of all studies is 0.66, suggesting that students received 

ESL instruction score higher by 0.66 standard deviations, compared to control group 

students. However, the effect size mean without Kubota studies is 0.80, which means the 

effect of Kubota studies is lower than that of other studies. 

Compared to the class-size example, this ESL case show results that are very 

homogenous and similar to each other between ‘same author’ papers and papers written 

by other authors. Even though these papers are similar to each other, reviewers need to 

examine the effect of ‘same author’ papers when estimating overall effect sizes. Without 

Kubota’s studies, a reviewer can say that the effect of ESL program on student 

achievement is positive and roughly 0.80 standard deviation units, compared to control 

group students. Including Kubota studies, meta-analysts will say the overall effect of ESL 

on student achievement is 0.67 standard deviation units. 

 Mean Standard Error

Random-effects model of all studies 0.66 0.08

All studies with one average effect size of 

Kubota studies. 
0.75

0.09

Random-effects model without Kubota studies 0.77 0.10
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For this ESL case, Kubota studies are very similar and homogeneous each other, and 

the shifting unit of analysis can be used for Kubota studies. Just one study can be used for 

overall effect size estimation because the same author studies are very similar to each 

other. The results can be compared with the above result and reported all together. This 

recommendation can be applied for the same author papers even though the samples are 

technically independent. 

 For generalizable findings in meta-analysis, a reviewer should report these two 

results together using sensitivity analysis and categorical analysis, and will not lose 

information. When reviewers determine the overall effect including same-author papers, 

reviewers should consider differences in the quality of papers, the characteristics of 

samples and characteristics of experiments by the same author, compared to papers 

written by other authors. 

 

Table 20: Shifting unit of analysis: Author as an analysis unit 

 

 

Unit of analysis Mean Standard Error (SE)

Effect-size 0.66 0.08

Author 0.79 0.11

 

 

In the fixed-effects model, homogeneity test is not significant (Q = 18.5, df = 12, p = 

0.101). The ESL example has 13 authors, 17 studies, and 23 effect sizes. ELL example 

has 13 author, and Table 20 estimates overall effect size using author as an unit. The 

difference between author and effect size unit analysis shows the impact of author effect 

for ELL example. The shifting unit of analysis is also applicable to the same data issue, 

too. If a meta-analysis consists of several large data sets, the data set can be a unit of 

analysis. It will show the effect of same data. 
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CHAPTER VI 

CONCLUSION AND DISCUSSION 
 

What I have learned 

Whenever a reviewer conducts a meta-analysis, he or she is likely to encounter 

several papers by the ‘same authors’ and papers using the ‘same data’ sets. Large data 

sets frequently used for research can be the source of papers using the same data sets in 

meta-analysis. The pressure for new faculty to earn tenure encourages the writing of 

many papers on the same topic, and using the same data set(s) may facilitate that task. 

The desire for researchers to establish themselves as experts on a particular topic 

provides another reason for why there are so many same-author papers in meta-analysis. 

Reviewers will typically encounter these kinds of dependence when conducting meta-

analysis, and this dilemma indicates the necessity and importance of this research. 

Since Glass (1976) coined the word ‘meta-analysis’, many research syntheses 

have been conducted and the quantity of papers using meta-analysis has increased as 

research and knowledge have exploded in all academic areas. Reviewers have paid some 

attention to within-study dependence due to the repeated use of single samples, but they 

have not paid enough attention to “between studies” dependence due to ‘same author’ 

and ‘same data’ papers. I have learned several important lessons about these topics while 

conducting this research. 

First, I found that the prevalence of same-author papers is high, and almost every 

meta-analysis has same-author papers. There are more same-author papers than I 

expected. I even learned that a journal editor may accept duplicate studies if they think 

the studies are beneficial to the public. This study found many possible explanations of 

the existence of same-author and same-data studies in journal editors’ criteria, but the 

appropriate methods have not been applied to deal with these issues in meta-analysis. 

Second, based on two case studies, I found that samples of same-data studies are 

not exactly the same, such as within study dependence, due to the repeated use of a single 

sample. The grade of students and number of samples were different in the same-data 

case study. I also found that same-author studies used more similar samples and 
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measurement instruments than I initially expected. I found that the main characteristics of 

‘same author’ and ‘same data’ studies reflect ‘nested’ and ‘unbalanced’ situations; 

therefore, HLM is a possible way for dealing with this dependence when conducting 

meta-analysis. 

Third, my research focused on the variability of primary studies and compared the 

variability among same-author and same-data studies with variation for other studies. My 

research adopted the methods of quantifying heterogeneity proposed by Higgins and 

Thompson (2002). While this use is technically sound, simulation studies showed that I
2
 

is mostly negative for same-author and same-data studies. However, the Birge ratio and 

between studies variance do not show problematic behavior, and they are conceptually 

similar to the other measures.  

Fourth, in the same-data simulation study, I found that the study-size ratio is the 

most important factor, in addition to the overlap ratio. I learned that the confidence 

interval can show the degree of heterogeneity, in addition to representing the precision of 

the effect-size estimate. In the same-author simulation studies, the value of the correlation 

showed a pattern similar to that for the study-size ratio in the same-data simulation study.  

Fifth, the results of empirical studies are parallel to those of simulation studies. I 

adopted the idea of ‘shifting unit of analysis’ (Cooper, 1988), and I showed that the 

‘author’ and ‘data’ set can be a unit of analysis when conducting meta-analysis. I 

proposed getting one effect size for each author or each data set in Chapter V. 

 

Practical implications 

 Based on the literature review, simulation study, and empirical analysis, I 

recommend several things for reviewers. This practical implication can be a guideline for 

how to deal with same-author and same-data dependence when conducting meta-analysis. 

First, reviewers should distinguish same-author and same-data dependence from 

the dependence due to multiple outcomes within a study. When reviewers find same-

author and same-data papers, they need to keep all papers and designate a categorical 

variable that represents the ‘author’ and ‘source of data’ for coding. Reviewers should not 

discard or simply average all findings by the same author or from the same data set. If 
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reviewers discard all papers and choose just one paper per author and data set, this will 

cause loss of information, which will sometimes be very severe. 

Second, for the same-data studies, reviewers should check the study-size ratio and 

overlapping ratio for papers using the same data. If the study-size ratio is larger than 20%, 

the reviewers should investigate the dependence of same-data papers and show the 

impact of same-data papers using sensitivity analysis and shifting unit of analysis. 

Third, for the same-author studies, synthesists should investigate the 

characteristics of the samples, such as age, location, incentive for participation, and 

gender, in addition to similarities of the measurement instruments and research methods. 

If reviewers find the relatedness in the samples and/or measurement instruments, then 

they should investigate the dependence of same-author studies.  

Fourth, if reviewers suspect between studies dependence, then they should 

investigate between studies dependence using the proposed indices (such as H, the Birge 

ratio, width of confidence interval, and intraclass correlation) when comparing different-

author and different-data studies. Computing H and the Birge ratio or graphing 

distributions of effect size will show whether between studies dependence exists or not. 

Fifth, if reviewers find between studies dependence by using the proposed indices, 

they can conduct categorical analysis, sensitivity analysis, and use shifting unit of 

analysis by using author and data source as main factors for checking the impact of same-

author and same-data studies. The ‘author’ and ‘data source’ can be a possible unit of 

analysis for these issues, as described in Chapter V (p. 111). Initially, the effect size is the 

basic unit of analysis in meta-analysis; however, the study can be a unit of analysis if 

multiple outcomes exist, as Cooper (1998) proposed. By the same rationale, if several 

authors wrote many papers, such as in the ESL example, an author can be a unit of 

analysis, such as in Table 20 in Chapter V. After reviewers show the different results 

based on different units of analysis (effect size, study, and author/data set), then they will 

find more generalizable findings without losing information. These methods are easy to 

use for reviewers who do not have a high level of statistical knowledge. 

Sixth, let’s consider the practical use of the study-size ratio when study-size ratios 

differ from each other. If study sizes are different from each other in a real meta-analysis, 

reviewers need to check the overlap ratio first, and then check the average study-size 
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ratio to determine whether average study-size ratio is big enough to suspect between 

studies dependence. In such cases, reviewers can adopt the shifting unit of analysis idea 

to estimate overall effect size and estimate effect size for sub-categories. 

 

Limitation  

This study has several limitations. It proposed several ways for dealing with 

between studies dependence. Each method can be a separate research topic in meta-

analysis. This study focused on showing the overall methods for dealing with these issues, 

but each method cannot be researched in detail. For example, I argue for the 

quantification of heterogeneity, but the H and I
2
 indices are not applicable in every 

situation, as Rucker et al. (2008) have reported. Computing the I
2
 led to predominantly 

negative values in my simulation; thus, the Birge ratio should be reported instead of I
2
.  

Second, this study did not directly show the amount of dependence of ‘same 

author’ and ‘same data’ studies. If reviewers can show the amount and direction of 

dependence, this would be great. Stevens and Taylor (2009) showed a way to quantify 

hierarchical dependence, but their study needs a covariance matrix. 

Third, in the simulation, the data generation is slightly different from the real 

situations. In particular, for the same-author dependence, this study used correlated effect 

sizes to represent studies by the same author, but this will be slightly different from real 

‘same author’ dependence. I acknowledge the difficulty and limitation of generating data 

to represent the ‘same author’ situation. 

Fourth, this research investigated the pattern of homogeneity using the mean 

difference effect size for the ‘same data’ problem and the correlation effect size for the 

‘same author’ issue, however, the patterns of homogeneity found here would be expected 

to be similar for other type of effect sizes including odds ratio effect sizes. 

 

Future research 

This study proposed that ‘author’ and ‘data’ can be an analysis unit in Chapter V; 

however, the use of a different unit of analysis may lead to different results in meta-

analysis. For example, in meta-analysis, reviewers can use ‘effect size’, ‘study’, and 

‘author’ or ’data’ as the unit of analysis, and the analysis results could be different using 
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these three units. Further research is needed to determine how much difference is 

negligible and how much difference needs to be reported in detail. 

Stevens and Taylor (2009) compared fixed-effects models, random-effects models, 

and a hierarchical Bayes approach for hierarchically dependent sub-studies. Their studies 

actually have multiple variables or groups of participants, but their hierarchical 

dependence is conceptually similar to the dependence of same-author and same-data 

studies. Their approach requires a covariance matrix; thus, further research is needed to 

assess whether and how their method can be applied to the dependence of same-author 

and same-data studies. 

More empirical meta-analyses having same-author studies and same-data studies 

need to investigate the methods proposed in this research. I conducted case studies 

(Chapter 2) and empirical analyses (Chapter 5); however, re-analyses of empirical meta-

analyses having same-author and same-data studies will provide more information about 

these issues. For example, Wang, Jiao, Young, Brooks, and Olson’s (2007, 2008) meta-

analyses have many same-author studies, but they do not investigate dependence. I need 

to search for more empirical meta-analyses having these issues and re-analyze these 

meta-analyses using the proposed methods. 

The phenomena of ‘same author’ and ‘same data’ issues will increase as time 

goes on because knowledge is rapidly increasing. More research and systematic 

guidelines about how to deal with these issues are needed for reviewers. 



 

 99

APPENDIX A 

PREVALENCE OF META-ANALYSIS USING SAME AUTHOR 

STUDIES 
 

   Psychological Bulletin Review of Education Research 

 Year 
Issue 

No 
Total MA Review Total MA Review 

2008 1 6 2 0 3 0 1 

  2 7 1 1       

2007 1 7 2 0 4 1 1 

  2 9 0 2 5 0 1 

  3 9 0 3 5 0 0 

  4 7 1 0 5 1 1 

  5 8 1 0       

  6 10 2 0       

2006 1 7 3 2 4 1 1 

  2 6 2 0 4 2 2 

  3 6 1 0 4 1 1 

  4 9 3 0 8 0 0 

  5 9 3 1       

  6 7 4 0       

2005 1 8 0 0 4 2 0 

  2 10 1 0 4 1 1 

  3 11 1 1 4 1 2 

  4 7 1 1 3 0 0 

  5 12 1 1       

  6 4 1 0       

2004 1 7 2 0 3 1 0 

  2 9 2 0 4 1 0 

  3 14 1 1 3 0 1 

  4 9 2 0 4 1 0 

  5 7 1 0       

  6 7 1 0       

  Total 212 39 13 71 13 12 

  Percent   18% 6%   18% 17% 
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APPENDIX B 

FREQUENCIES OF SAM AUTHORS IN META-ANALYSIS 

 

Number of papers by same author 

ID Author Year 

Number 

of 

primary 

studies 2 3 4 5 6 7 8 9
10 and 

more 

Total 

number 

of same 

author 

paper 

% of 

same 

author 

paper 

% of 

largest 

one 

1 
Bar-Haim et 

al. 
2007 172 8 5  2 2  1  

16 

paper(1) 
77 45% 9% 

2 Steel 2007 216 17 4 3   1  1

26 paper 

(1) 12 

paper (1) 

112 52% 12% 

3 Tolin et al. 2006 290 16 2 1 2       52 18% 2% 

4 Malle 2006 173 13           26 15% 1% 

5 Puetz et al. 2006 66 5 1         13 20% 5% 

6 Frattaroli 2006 250 13   2        28 11% 2% 

7 Glasman 2006 70 4 3 1        21 30% 6% 

8 
Bettencourt 

et al. 
2006 63   3   1      15 24% 10% 

9 Grabe 2006 98 3 4         18 18% 4% 

10 Bosch 2006 380 6 3 3 2   1 1 12(1) 72 19% 3% 

11 Cepeda 2006 184 13 5 4  1 1   11(1) 81 44% 6% 

12 Web et al. 2006 47 2           4 9% 4% 

13 Durantini 2006 98 9 2   1      30 31% 6% 

14 Weis 2006 35 4   1        12 34% 11% 

15 Else-Quest 2006 189 16 1 2 1       44 23% 3% 

16 Roberts 2006 92 7 1 2        25 27% 5% 

17 Swanson 2006 28 4           8 29% 7% 

18 Cooper 2006 32 3   1        10 31% 13% 

19 Kuncel 2005 37 5 1         13 35% 8% 

20 Gijbels 2005 40 3           6 15% 5% 

21 Nesbit 2006 122 2 4         16 13% 2% 
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APPENDIX C 

THE LIST OF CLASS SIZE PAPERS IN THE DATA GATHERING 

STAGES 

  Aauthor Year Source Title 

1 
Achilles , C. M., 

et al. 
1996 

Educational 

Leadership 
Students Achieve More in Smaller Classes 

2 
Achilles , C. M., 

et al. 
1997 

Educational 

Leadership 
using Class size to reduce the equity gap 

3 
Achilles, C, M., 

et al. 
2001 

AERA 

conference paper 

Reasonable-Size Classes for the Important Work of Education in Early 

Elementary Years: A Manual for Class-Size Reductions So All Children 

Have Small Classes and Quality Teachers in Elementary Grades. Revised 

4 Achilles, C. M. 2003 Conference paper
How Small Classes Help Teachers Do Their Best: Recommendations from a 

National Invitational Conference 

5 Achilles, C. M. 1998 
AERA 

conference paper 
If not Before, At least now 

6 
Achilles, C. M., 

et al. 
2002 Conference paper Making sense of Continuing and Renewed Class-Size Findings and Interest 

7 
Achilles, C. M., 

et al. 
2003 Conference paper

School Improvement Should Rely on Reliable, Scientific Evidence. Why Did 

"No Child Left Behind" Leave Class Size Behind? 

8 Achilles, C. M. 1998 Conference paper
Small-Class Research Supports What We All Know (So, Why Aren't We 

Doing It?) 

9 
Achilles, C. M., 

et al. 
1995 Conference paper

Success Starts Small (SSS): A Study of Reduced Class Size in Primary 

Grades of a Fully Chapter-1 Eligible School 

10 
Achilles, C. M., 

et al. 
1993 Conference paper

The Lasting Benefits Study (LBS) in Grades 4 and 5 (1990 - 1991): A 

Legacy from Tennessee's Four-Year (K-3) Class -Size Study ( 1985-1989), 

Project STAR Paper #7 

11 
Achilles, C. M., 

et al 
1994 Conference paper

The Multiple Benefits of Class-Size Research: A Review of STAR's Legacy, 

Subsidiary and Ancillary Studies 

12 
Achilles, C. M., 

et al. 
1995 Conference paper Analysis of Policy Application of Experimental Results: Project Challenge 

13 
Achilles, C. M., 

et al. 
1998 Conference paper

Attempting to understand the class size and pupil-teacher ratio (PTR) 

confusion: A pilot study 

14 
Achilles, C. M., 

et al. 
1999 Conference paper Some Connections between Class Size and Student Successes 

15 Ahmed, A. U. 2006 
Journal: Wrold 

Development 

Do Crowded Classrooms Crowd Out Learning? Evidence from the Food for 

Education Program in Bangladesh 

16 Akerhielm, K. 1995 

Ecomomics of 

Education 

Review 

Does Class matter? 

17 
Angrist, J, D., et 

al 
1999 

The Quartery 

Journal of 

Economics 

Using Maimonides' Rule to Estimate the Effect of Class Size on Scholastic 

Achievement 
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18 Asadullah, M. N. 2005 
Applied 

Economics letter 
The effects of class size on student achievement: evidence from Bangladesh 

19 Averett, S. L. 2002  

International 

Handbook on the 

Economics of 

Education 

Exploring the effect of class size on student achievement: What have we 

learned over the past two decades? 

20 
Becker, W. E., et 

al. 
2001 

Economics of 

Education 

Review 

Student performance, attrition, and class size given missing student data 

21 Bell, J. D. 1998 State Legislatures Smaller = Better? 

22 Besser, A. D. 2000 Dissertation 

The impact of class size reduction on factors of the classroom that affect 

student achievement within second grade classrooms of the 

Venice/Westchester cluster of the Los Angeles unified school district 

23 Bingham, C. S. 1994 Conference paper
Class Size as an Early Intervention Strategy in white-Minority Achievement 

Gap Reduction 

24 Blatchford, P. 2003 
Learning and 

Instruction 

A systematic observational study of teachers' and pupil's behavior in large 

and small classes 

25 
Blatchford, P., et 

al. 
1994 

Oxford Review of 

Education 

The Issue of Class Size for Young Children in Schools: What Can We Learn 

from Research? 

26 
Blatchford, P., et 

al. 
1998 

British Journal of 

Educational 

Studies 

Research Review: The effects of Class size on classroom processes: 'It's a Bit 

like a Treadmill - Working hard and getting nowhere fast!' 

27 
Bonersronning, 

H. 
2003 

Southern 

Economics 

Journal 

Class-size effects on Student Achievement in Norway: Patterns and 

Explanation 

28 
Boozer, M. A., et 

al. 
2001 

Economic growth 

center YALE 

University 

(Center 

disscussion 

paper) 

The effects of class size on the long run growth in reading abilities and early 

adult outcomes in the Christchurch health and development study 

29 Bourke, S. 1986 

American 

Educational 

Research Journal 

How Smaller Is Better: Some Relationships between Class Size, Teaching 

Practices, and Student Achievement 

30 
Brewer, D. J., et 

al. 
1999 EEPA 

Estimating the Cost of National Class Size Reductions under Different 

Policy Alternatives 

31 Card, D., et al. 1998 

Annals of the 

American 

Academy of 

Political and 

Social Science 

School Resources and Student Outcomes 

32 Chatman, S. 1996 Conference paper
Lower Division Class Size at U.S. Postsecondary Institutions. AIR 1996 

Annual Forum Paper 

33 Cooper, H. M. 1989 
Educational 

psychology 
Does Reducing Student to Instructor Ratios Affect Achievement? 

34 Davis, F. E. 2000 Dissertation 
The effects of Class size reduction on student achievement and teacher 

attitude in first grade 

35 Deutsch, F. M. 2003 NASSP How Small Classes Benefit High School Students 
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36 Dharmadasa, I. 1995 Conference paper Class Size and Student Achievement in Sri Lanka 

37 
Driscoll, D., et 

al. 
2000 

Economics of 

Education 

Review 

School district size and student performance 

38 Eash, M. J. 1964 

American 

Educational 

Research Journal 

The Effects of Class size on Achievement and Attitudes 

39 Ecalle, J., et al. 2006 
Journal of School 

Psychology 

Class-size effects on literacy skills and literary interest in first grade: A 

large-scale investigation 

40 Finn, J. D., et al 1990 

American 

Educational 

Research Journal 

Answers and Questions about Class Size: A Statewide Experiment 

41 Finn, J. D., et al. 1989 
Peabody Journal 

of Education 
Carry-Over Effects of Small Classes 

42 Finn, J. D., et al. 1999 EEPA Tennessee's Class Size Study: Findings, Implications, Misconceptions 

43 Floger, J. 1989 
Peabody Journal 

of Education 
Evidence from Project STAR about Class Size and Student Achievement 

44 Floger, J. 1989 
Peabody Journal 

of Education 
Lessons for Class Size Policy and Research 

45 
Friedkin, N. E., 

et al. 
1988 EEPA School systems and performance: A contingency perspective 

46 
Gilman, D. A., et 

al. 
2003 

educational 

Leadership 
Should we try to keep class sizes small? 

47 Glass, G. V et al. 1980 

American 

Educational 

Research Journal 

Meta-Analysis of Research on Class Size and Its Relationship to Attitudes 

and Instruction 

48 
Glass, G. V., et 

al. 
1979 EEPA Meta-Analysis of Research on Class Size and Achievement 

49 
Glass, G. V., et 

al 
1982 Book School Class Size research and policy 

50 
Goldstein, H., et 

al. 
1998 

British 

Educational 

Research Journal 

Class size and Educational Achievement: A Review of Methodology with 

Particular Reference to Study Design 

51 
Goldstein, H,. et 

al. 
2000* Applied Statistics

Meta-Analysis Using Multilevel Models with an Application to the Study of 

Class-size effects 

52 Grissmer, D. 1999 EEPA 
Conclusion: Class-size effects: Assessing the Evidence, Its Policy 

Implications, and Future Research Agenda 

53 Haenn, J. F. 2002 
AERA 

conference paper 

Class size and Student Success: Comparing the Results of Five Elementary 

Schools Using Small Class Sizes 

54 
Halbach, A., et 

al. 
2001 

Educational 

Leadership 
Class Size Reduction: From Promise to Practice 

55 
Hallinan, M. T., 

et al. 
1985 

American Journal 

of Education 
Class Size, Ability Group Size, and Student Achievement 

56 Hanushek, E. A. 1999 EEPA 
Some Findings from an Independent Investigation of the Tennessee STAR 

Experiment and from Other Investigation of Class-size effects 
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57 Hanushek, E. A. 1999 
High School 

Magazine 
Good Politics, Bad educational Policy 
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APPENDIX D 

LIST OF 16 STUDIES IN ANALYSIS STAGE FOR META-

ANALYSIS OF CLASS SIZE STUDIES 

 

ID Author YEAR Source sampling DATA Subject STAR
*4 

STATE 
PUBLISH Grade

2 
Molnar, A., 

et al. 
1999 EEPA 

quasi-

experimental 

SAGE 

(Wisconsin)

math, 

reading, 

language

0 1 1 1,2 

5 
Mosteller, 

F. 
1995 

The Future 

of Children 

Random 

assign  
STAR 

math, 

reading 
1 1 1 3 

7 
Lapsley, D. 

K., et a.l 
2002 

conference 

paper 

 cluster 

sampling 

PRIME 

TIME 

(INDIANA)

language, 

math, 

reading, 

total 

0 1 0 4 

9 
Achilles, C. 

M., et al. 
1994 

conference 

paper 

Random 

assign  
STAR 

math, 

reading 
1 1 0 K,1,2,3

11 
Finn, J. D., 

et al. 
1898 

Peabody 

Journal of 

Education 

Random 

assign  
STAR 

math, 

reading, 

language, 

science, 

social ss, 

sskill 

1 1 1 1 

12 
Dharmadas, 

Indranie 
1995 

conference 

paper 

Not random: 

pretest, 

posttest 

method 

Sri Lanka 

math, 

mother 

tongue 

0 0 0 4 

13 
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F. 
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AERA 
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paper 

Matched 
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pretest, 
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math, 
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score 
0 0 1 1 
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study 
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0 0 1 3,4 
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H., et al. 
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K, 1, 2, 

3 
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Random 
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R/M/S, 
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Study 
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1 1 0 5 
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Educational 

Research 
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Study 
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1 1 1 1 
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and Policy 
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1 1 1 

K, 1, 2, 

3 

 

 

* Four states include Tennessee, California, Wisconsin, and Indiana. These states had 

state-wide class size reduction policy.
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APPENDIX E 

CHARACTERISTICS OF 8 STAR CLASS SIZE STUDIES 

Author/Year Mosteller 1995 Achilles 1994 Finn 1989 Goldstein1998 Johnston 1990 Nye, 1992 
Finn/Achilles 

1990 

Finn/Achilles 

1999 

ID 2 5 9 11 19 20 21 22 
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The Future of 

Children 
Conference paper

Peabody 

Journal of 

Education 

British 

Educational 

research journal 

Report Report 

American 

Educational 

Research Journal

Educational 
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Policy 

Sample First grade K, 1, 2, 3 4th grade K, 1 K, 1, 2, 3 5 First grade K, 1, 2, 3 

Research 

method 

Summary of 

STAR project 
      

Quasi-

experimental 
Follow up study Experiment Experiment 

Sample size 3892 110-136 2662 4197-6871 
4200 (1900, 

2300) 
3045 804-5192 4744-6572 

Small class 

sample size 
1620 63-75 1412 1429-2762 1900 1578 346-2233 2040-2826 

Large class 

sample size 
2272 46-61 1250 2768-4109 2300 1407 458-2959 2704-3746 

Subject Reading, Math Reading, Math 

Reading, 

Language, 

Math, 

studyskill, 

Science 

Reading, Math Reading, Math 

Reading, Math, 

Lang, Science, 

Social Science, 

Study Skill 

R/M/Study Skill Reading, Math 
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Sample 

selection 

Using total 1 st 

grade student 
N/A 

Follow up 

study: 1 year 

after 4th grade 

N/S: reanalysis Four years Data 
5th Grade, LBS 

analysis 

1st grade for two 

years small class
1985-1989, K-3 

Reporting 

Effect size 

directly, with 

sample size 

MEAN, SD, 

Sample size, 

effect size 

Mean, SD, 

sample size 
Effect size, N Effect size, N Effect size, N Mean, SD, N Effect size, N 

Experiment 

Period 
1st year result N/A 

One year after 

first 4 year 

experiment 

First four year 

result summary 
1985-1989 1985-1989 

Two years Small 

class (K-1) 

After 4 years 

Experiment 

(1985-1989) 

DATA Source 

Finn, J.D., and 

Achilles, C. M. 

1990 “Answers 

and questions 

about class size” 

American 

Educational 

Research Journal 

Classes included 

all assigned 

students 

regardless of 

years of 

participation of 

STAR: not clear

Follow up stud 

data base for 4th 

grade students 

from 58 schools

Goldstein & 

Blatchford (1997) 

“Class size and 

student 

achievement: a 

methodological 

review” presented 

for UNESCO 

First year and 

subsequent 4 

years 

1985-1989 (K-3) 

small class, and 

follow up 1990-

1991  school 

year 5th grade 

data 

End of two Years 

(K-1) 

K-3 (1985-

1989) 
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Strong point 

First year has 

very good 

experiment 

condition. After 

first year, 

condition 

changed 

K-3 result, 

enough 

information: 

mean, SD, N 

Whole data, 

enough info for 

follow up study

Methodological 

issue in Class size 

like RCT 

Government 

Summary Report

LBS executive 

Summary 

First Two year 

experienced focus

Summary and 

New Analysis 

in 1999 

Weak point 
Cited effect size, 

sample size 

No mention on 

small N, source 

Follow-up vs 

original Diff 
Cited effect size 

SES, Minority 

Effect size 

without N 

Minority 

without N 

Region, Minority 

without N 
Overall 

Unit Aggregated data No mention 
Aggregated 

data 
Aggregated data Aggegated data Aggregated data Aggregated Aggregated 
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APPENDIX F 

REVIEW OF 26 ‘SAME AUTHOR’ PAPERS IN META-ANALYSIS 

Sample 

ID Paper Year 
N 

women/m

en 

Ag

e 

Class/Rac

e 

incentiv

e 
race grade Place 

Instrumen

t 
Result

1 

Ferrari 

et al 
1998 546  19     

Northeaste

rn 

PASS, 

QAE 

Mean, 

SD 

2 

Ferrari 

& 

Dovidi

o 

2001 58 40/18 21 
intro 

psych 
   Northeast DP 

Mean, 

percen

t 

2 

Ferrari 

& 

Dovidi

o (2) 

2001 100 74/26 21 
intro 

psych 
   

Midwester

n 
  

3 

Ferrari 

& Patel 
2004 160 103/57 20 

intro 

psych 
  

first 

/sopho. 

Midwester

n 
AIP Corr. 

4 

Ferrari 

et al 

1997 61  19 
intro 

psych 

extra 

credit 
  

Midwester

n 

DP, AIP, 

DNAQ 

Mean, 

SD, t 

test 

4 

Ferrari 

et al (2) 

1997 58 40/18 22 
social 

psych 

extra 

credit 

68 % 

Caucasian 

70% 

junior or 

senior 

Midwester

n 

DP, AIP, 

SDSCM 

Mean, 

SD, 

Corr, 

ANOV

A 

5 

Ferrari, 

J. R 

2000 142 80/62 21 
intro 

psych 

extra 

credit 

61 % 

Caucasian 
 

Midwester

n 

DP, AIP, 

GP, 

ADDHC, 

BPS 

t-test, 

Corr 

6 

Ferrari 

& 

Dovidi

o 

2000 130 105/25 20 
intro 

psych 

extra 

credit 
   DP Corr 

7 

Ferrari 

& 

Scher 

2000 37 30/7 20 
intro 

psych 

35/50 

dollar 
  

Midwester

n 

FIAR, 

PIAC 

ANOV

A 

8 

Ferrari, 

J. R 

2001 93 51/42 20 
intro 

psych 

extra 

credit 
  

Midwester

n 
AIP 

M, SD, 

ANOV

A 

8 

Ferrari, 

J. R (2) 

2001 226 178/48 20 
intro 

psych 

extra 

credit 
 

80% 

first/seco

nd 

Midwester

n 
AIP 

M, SD, 

ANOV

A 

9 

Ferrari 

& Tice 
2000 59 40/19  

intro 

psych 

extra 

credit 
  

Midwester

n 
GP Corr 

9 

Ferrari 

& Tice 

(2) 

2000 88 48/40  
intro 

psych 

extra 

credit 
  

Midwester

n 
GP 

Mean, 

SD 



 

 114

10 

Ferrari 

& 

Becke 

1998 103 88/35 19 psych 
extra 

credit 

80W 

Caucasian 

first/seco

nd 
Northeast 

PASS, 

QAE 

M, SD, 

MAN

OVA

11 

Ferrari, 

J. R 

1991 54 37/16 19 
intro 

psych 

extra 

credit 
  

Rural 

private 

college 

PS, DMQ, 

ISI, CAS

Corr, 

F, T 

12 

Harriot

, J & 

Ferrari, 

J. R. 

1996 211 122/89 48  
voluntee

rs 
adult sample   

APS, 

APS, IS 

M, SD, 

CORR

13 

Ferrari, 

J. R 
1989 116 80/36    

College 

student 
  PA, GP  

14 

Ferrari, 

J. R. 
1991 241     

46 pro/ 52 

non-pro 
  DP, BP  

14 

Ferrari, 

J. R. 

(2) 

1991 287     
48 pro/ 54 

non-pro 
  

Intelligen

ce, ISI 
M, SD

15 

Ferrari, 

& 

Emmo

ns 

1995 277 205/72 
18-

21 

intro 

psych 

extra 

credit 

75% first 

grade 
 

Northeast, 

small 

private 

DP, AIP 

CORR

, 

Regres

s 

16 

Ferrari, 

J. R 
1995 262 211/51 18 

intro 

psych 

extra 

credit 
   AIP, PCI

Corr, 

M, SD

16 

Ferrari, 

J. R. 
1995 136 114/22 18   

78% first 

grade 
  PCI, DP 

Corr, 

M, SD

16 

Ferrari, 

J. R. 

1995 65 39/25 44   
8 years of 

therapy 
  DP, PCI 

Corr, 

M, SD

17 

Ferrari, 

J. R. 

1992 
52, 

59 

30/22, 

44/15 

32, 

20 

intro 

psych 
   

Public 

univ. in 

New York 

AIP, GP Corr 

17 

Ferrari, 

J. R. 
1992 215 134/81 34      AIP, GP Corr 

18 

Ferrari, 

et al 

1995 

324, 

375, 

171 

238/86, 

270/105, 

137/34 

   

three 

undergradua

te institute 

 North east PASS, ISI
M, SD, 

CORR

19 

Ferrari, 

et al 
1994 84  

19, 

47 
   

Students, 

Parents 
 DP, AIP 

CORR

, T 

20 

Effect 

& 

Ferrari 

1989 111 84/27  
intro 

psych 

extra 

credit 
   DP CORR

21 

Ferrari, 

J. R 
1992 307 204/103 22  

voluntee

rs 
   PS 

M, SD, 

Corr 

22 

Ferrari, 

J. R. 

1991 120  18 
intro 

psych 
 

57 pro / 63 

non-pro 
  DP, BP M, SD
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23 

Ferrari 

& 

Emmo

ns 

1994 
202, 

161 

112/49, 

93/23 

18-

21 

intro 

psych 

extra 

credit 
   DP, AIP Corr 

24 

Ferrari, 

J. R 

1994 263 202/61 21 
intro 

psych 

extra 

credit 
   DP, AIP 

CORR

, 

Regres

s 

25 

Ferrari, 

J. R 
1992 319 241/78 18     North east 

MBTI, 

PASS 

t-test, 

Corr 
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APPENDIX G 

LIST OF 17 STUDIES IN ANALYSIS STAGE FOR META-

ANALYSIS OF ESL STUDIES 
ID Authors Year PUBLISH Kubota N NE NC T 

1 Bouton 1994 Published 1 46 14 32 1.09 

2 Davidson 1995 Unpublished 1 36 17 19 1.62 

3 Doughty 1991 Published 1 14 8 6 0.42 

4 El-Bana 1994 Unpublished 1 97 46 51 1.19 

5 Ellis 2003 Published 1 28 14 14 0.16 

5 Ellis 2003 Published 1 28 14 14 0.68 

5 Ellis 2003 Published 1 28 14 14 0.76 

6 Ellis 1999 Published 1 34 16 18 0.66 

7 Fukuya 1998 Unpublished 1 16 8 8 1 

7 Fukuya 1998 Unpublished 1 19 11 8 0.85 

8 Kim 1996 Published 1 26 13 13 0.42 

9 Kubota 1994 Published 2 40 20 20 0.51 

9 Kubota 1994 Published 2 40 20 20 0.59 

10 Kubota 1995 Published 2 84 42 42 0.37 

10 Kubota 1995 Published 2 84 42 42 0.38 

11 Kubota 1996 Published 2 80 40 40 0.47 

12 Kubota 1997 Published 2 48 24 24 0.7 

13 Mackey 1999 Published 1 13 7 6 0.37 

14 Master 2002 Published 1 46 34 12 0.26 

15 Polio 1998 Published 1 30 14 16 0.62 

16 Shiinichi 2002 Published 1 25 11 14 0.36 

16 Shinichi 2002 Published 1 26 12 14 0.34 

17 White 1991 Published 1 108 79 29 1.15 
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APPENDIX H 

R CODE FOR ‘SAME DATA’ ISSUE 

# Insoo2 study 1<- 

# function(nschool = 10, nsmallclas = 2, nbigclas = 2, sizsmall = 15, sizbig = 25, effsiz = 10, 

mubig = 300,  sigschool = 2, sigclas = 5, sigstud = 50, nsmpsmall = 10, nsmpbig = 10) 

 

# For later use. 

allquantfn<-function(effsiz,wt,Calpha){ 

numstud<-length(effsiz) 

seTdotFE<-sqrt(1/sum(wt)) 

Tdot<-sum(wt*effsiz)/sum(wt) 

# For random effect case. 

s2theta<-pmax(var(effsiz)-mean(1/wt),0) 

seTdotRE<-sqrt(1/sum(wt) + s2theta) 

Qval<-sum(terms<-(effsiz-Tdot)^2*wt) 

CIRE<-c(CIRE.low=Tdot-Calpha*seTdotRE,CIRE.hi=Tdot+Calpha*seTdotRE) 

CIFE<-c(CIFE.low=Tdot-Calpha*seTdotFE,CIFE.hi=Tdot+Calpha*seTdotFE) 

pval<-pchisq(Qval,df=numstud-1,lower.tail=FALSE) 

ves<-var(effsiz) 

c(Tdot,Qval,pval,CIFE,CIRE,ves) 

} 

 

effsizfn<-function(x,y){ 

nx<-length(x) 

ny<-length(y) 

mx<-mean(x) 

my<-mean(y) 

sdx<-sd(x) 

sdy<-sd(y) 

pooledsd<-sqrt(((nx-1)*sdx^2+(ny-1)*sdy^2)/(nx+ny-2)) 

effsiz<-(mean(x)-mean(y))/pooledsd 

condvar<-(nx+ny)/(nx*ny)+effsiz^2/(2*(nx+ny)) 

c(nx,ny,mx,my,sdx,sdy,pooledsd,effsiz,condvar) 

} 

 

nschool<-49                                # make total population 10,000 (205*49) 

nsmallclas<-6 

nbigclas<-5 

sizsmall<-15 

sizbig<-25 

 

nrep<-1000 #1000 

nsmpsmall<-7                               # make a sample size 200 7*15 = 105       

nsmpbig<-4                                 # make a sample size 200 4*25 = 100 

nstud<-2                                   # make a ratio equal to 0.04 

 

stuff<-matrix(0,nstud,9) 

dimnames(stuff)[[2]]<-c("nx","ny","mx","my","sdx","sdy","pooledsd", 
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                         "effsiz","condvar") 

 

simresults<-matrix(0,nrep,8) 

dimnames(simresults)[[2]]<-c("Tdot","Qval","pval","CIFE.L", 

                             "CIFE.U","CIRE.L","CIRE.H","Vefsiz") 

 

ntotal<-nschool*(nbigclas*sizbig+nsmallclas*sizsmall) 

 

score<-school<-clas<-small<-numeric(ntotal) 

 

meandiff<-10                          # to make effect size .2 

mubig<-300 

sigschool<-0 #2 

sigclas<-0 #5 

sigstud<-50 

totsigma<-sqrt(sigschool^2+sigclas^2+sigstud^2) 

trueeffsiz<-meandiff/totsigma 

 

alpha<-.05 

Calpha<-qnorm(alpha/2,lower.tail=FALSE) 

 

for(irep in 1:nrep){ 

 

# Simulating a new population from which to sample. 

 

j<-0  # student number 

k<-0  # school number 

h<-0  # class number 

 

for(ischool in 1:nschool){ 

   k<-k+1 

   schooleff<-rnorm(1,0,sigschool) 

   for(iclas in 1:nsmallclas){ 

      h<-h+1 

      claseff<-rnorm(1,0,sigclas) 

      for(istud in 1:sizsmall){ 

         j<-j+1 

         score[j]<-mubig+meandiff+schooleff+claseff+rnorm(1,0,sigstud) 

         school[j]<-k 

         clas[j]<-h 

         small[j]<-1 

      } 

   } 

 

   for(iclas in (nsmallclas+1):(nsmallclas+nbigclas)){ 

      h<-h+1 

      claseff<-rnorm(1,0,sigclas) 

     for(istud in 1:sizbig){ 

        j<-j+1 

        score[j]<-mubig+schooleff+claseff+rnorm(1,0,sigstud) 

        school[j]<-k 
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        clas[j]<-h 

        small[j]<-0 

     } 

   } 

} 

 

# New code 

avescoresmall<-mean(score[small==1]) 

avescorebig<-mean(score[small==0]) 

trueeff<-avescoresmall-avescorebig 

score[small==1]<-score[small==1]-trueeff+meandiff 

 

# End new code. 

 

# sampling from the data 

 

indsmall<-unique(clas[small==1]) 

indbig<-unique(clas[small==0]) 

 

 

for(istud in  1:nstud){ 

smpsmallclas<-sample(indsmall,nsmpsmall) 

smpbigclas<-sample(indbig,nsmpbig) 

smpclas<-sort(c(smpsmallclas,smpbigclas)) 

 

# Data consists score,school,clas,small. 

 

smp<-clas %in% smpclas 

 

scoresmp<-score[smp] 

schoolsmp<-school[smp] 

classmp<-clas[smp] 

smallsmp<-small[smp] 

 

 

# The generated population. 

# cbind(score,school,clas,small) 

# Sample of rows of data. 

# cbind(scoresmp,schoolsmp,classmp,smallsmp) 

# Effective size (ignoring class and school effects) 

 

smp1<-scoresmp[smallsmp==1] 

smp2<-scoresmp[smallsmp==0] 

stuff[istud,]<-effsizfn(smp1,smp2) 

} 

 

effsiz<-stuff[,8] 

wt<-1/stuff[,9] 

 

simresults[irep,]<-allquantfn(effsiz,wt,Calpha) 

} 
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options(width=130) 

 

simresults 

 

apply(simresults,2,mean) 

 

apply(simresults,2,var) 

 

# Coverage of fixed effect confidence intervals. 

 

L<-simresults[,4] 

U<-simresults[,5] 

cover.FE<-mean((L<trueeffsiz)&(trueeffsiz<U)) 

 

# Coverage of random effect confidence intervals. 

 

L<-simresults[,6] 

U<-simresults[,7] 

cover.RE<-mean((L<trueeffsiz)&(trueeffsiz<U)) 

 

trueeffsiz 

 

cover.FE 

 

cover.RE 

 

save.image(file="1samedata.Rdata") 
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APPENDIX I 

R CODE FOR ‘SAME AUTHOR’ ISSUE 

 

# Simulating hypothetical effect sizes for researchers conducting 

# multiple studies. 

# set.seed(333) 

 

equicorr<-function(sig,rho,k){ 

# Generate random vector of length k having an equicorrelation matrix. 

a<-sig*sqrt(rho) 

b<-sqrt(sig^2-a^2) 

a*rnorm(1)+b*rnorm(k) 

} 

 

# Generates equicorrelated sampling error with variance determined 

# by sample size. 

 

equicorrsamperr<-function(rho,k,n){ 

# rho is the correlation between the sampling error in each study. 

# k is the number of studies. 

# n is the vector of sample sizes (of length k). 

a<-sqrt(rho) 

b<-sqrt(1-a^2) 

sqrt(1/(n-3))*(a*rnorm(1)+b*rnorm(k)) 

} 

 

# For computing quantities using the simulated effect sizes. 

 

allquantfn<-function(effsiz,wt,res,Calpha){ 

if(length(effsiz)==1)return(effsiz) 

numstud<-length(effsiz) 

seTdotFE<-sqrt(1/sum(wt)) 

Tdot<-sum(wt*effsiz)/sum(wt) 

 

# Corrected formulas for RE case: 

s2theta<-pmax(var(effsiz)-mean(1/wt),0) 

seTdotRE<-sqrt(1/sum(wt) + s2theta) 

Qval<-sum(terms<-(effsiz-Tdot)^2*wt) 

CIRE<-c(CIRE.low=Tdot-Calpha*seTdotRE,CIRE.hi=Tdot+Calpha*seTdotRE) 

CIFE<-c(CIFE.low=Tdot-Calpha*seTdotFE,CIFE.hi=Tdot+Calpha*seTdotFE) 

pval<-pchisq(Qval,df=numstud-1,lower.tail=FALSE) 

ves<-var(effsiz) 

ans<-c(Tdot,Qval,pval,CIFE,CIRE,ves) 

if(!all(res[1]==res)){ 
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Qdecomp<-numeric(nres) 

for(i in 1:nres) Qdecomp[i]<-sum(terms[researcher==i]) 

ans<-c(ans,Qdecomp=Qdecomp) 

} 

ans 

} 

 

####################### 

 

nres<-6 

nstud<-c(30,10,5,4,3,2) 

 

nnn<-list( 

100, 

100, 

100, 

100, 

100, 

100 

) 

 

# Overall effect size: 

 

overall<-.2                     # Overall effect size: 

 

# sig1 and rho1 are for generating equicorrelated "true" effect sizes 

#    for the studies done by each researcher. 

 

sig1<-0.1 

rho1<-0.2 #0.2                       # Magnitude of correlation 

 

# rho2 is for generating equicorrelated "errors" in the study effects 

# with variance determined by the sample size of each study. 

 

rho2<-0 

 

# ssd[i,j] is the matrix of study effect standard deviations, 

#   as determined by the sample sizes. 

 

researcher<-rep(1:nres,nstud) 

totnumstud<-sum(nstud) 

effsiz<-numeric(totnumstud) 

study<-1:totnumstud 

sampsiz<-effsiz 

for(i in 1:nres)sampsiz[researcher==i]<-nnn[[i]] 

 



 

 123

wt<-sampsiz-3 

# For fixed effect case: 

alpha<-.05 

Calpha<-qnorm(alpha/2,lower.tail=FALSE) 

 

# nrep is the number of simulation repetitions 

nrep<-1000 

allquant<-matrix(0,nrep,8+nres) 

dimnames(allquant)[[2]]<-c("Tdot","Qval","pval","CIFE.L","CIFE.U", 

"CIRE.L","CIRE.H","Vefsiz",paste("Q",1:nres,sep="")) 

 

researcher.results<-list() 

for(i in 1:nres){ 

if(nstud[i]==1){ 

researcher.results[[i]]<-matrix(0,nrep,1) 

dimnames(researcher.results[[i]])[[2]]<-list("Tdot") 

} 

else{ 

researcher.results[[i]]<-matrix(0,nrep,8) 

dimnames(researcher.results[[i]])[[2]]<-c("Tdot","Qval","pval","CIFE.L", 

"CIFE.U","CIRE.L","CIRE.H","Vefsiz") 

} 

} 

 

for(irep in 1:nrep){ 

 

for(i in 1:nres) 

effsiz[researcher==i]<-overall+equicorr(sig1,rho1,nstud[i])+ 

                       equicorrsamperr(rho2,nstud[i],nnn[[i]]) 

 

allquant[irep,]<-allquantfn(effsiz,wt,researcher,Calpha) 

 

for(i in 1:nres){ 

s<-(researcher==i) 

researcher.results[[i]][irep,]<- 

allquantfn(effsiz[s],wt[s],researcher[s],Calpha) 

} 

} 

 

# allquant and researcher.results contain the accumulated results. 

 

save.image(file="researcher_1.Rdata") 

 

# If nrep is large, comment out the following lines to reduce output. 

 

#allquant 
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Options (width = 130) 

 

#researcher.results 

# Compute means and variances (over the nrep repetitions) of all quantities. 

# Only a few of these are of interest. 

 

apply(allquant,2,mean) 

 

apply(allquant,2,var) 

 

# Do the same for each researcher.  (Delete this if it is of no interest.) 

 

for(i in 1:nres){ 

 

cat(paste("\n\nFor Researcher",i,":\n")) 

 

cat(paste("\nMeans:\n")) 

print(apply(researcher.results[[i]],2,mean)) 

 

cat(paste("\nVariances:\n")) 

print(apply(researcher.results[[i]],2,var)) 

} 

 

# Confidence interval coverages. 

# Coverage of fixed effect confidence intervals. 

 

L<-allquant[,4] 

U<-allquant[,5] 

cover.FE<-mean((L<overall)&(overall<U)) 

 

# Coverage of random effect confidence intervals. 

 

L<-allquant[,6] 

U<-allquant[,7] 

cover.RE<-mean((L<overall)&(overall<U)) 

 

overall 

 

cover.FE 

 

cover.RE 

 

# You can also report the confidence interval coverages 

#      separately for each researcher, if that is of interest. 
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APPENDIX J 

SAME DATA SIMULATION RESULTS FOR 50,000 DATA SETS 

SAME 

DATA 
Initial data set 

Number of 

studies 
Sample size Ratio 

Effect 

size 
# of sample 

A4 50000 10 200 0.04 0.2 2000 

A10 50000 25 200 0.1 0.2 5000 

A20 50000 50 200 0.2 0.2 10000 

A50 50000 125 200 0.5 0.2 25000 

A100 50000 250 200 1 0.2 50000 

A300 50000 750 200 3 0.2 150000 

A500 50000 1250 200 5 0.2 250000 

B4 50000 4 500 0.04 0.2 2000 

B10 50000 10 500 0.1 0.2 5000 

B20 50000 20 500 0.2 0.2 10000 

B50 50000 50 500 0.5 0.2 25000 

B100 50000 100 500 1 0.2 50000 

B300 50000 300 500 3 0.2 150000 

B500 50000 500 500 5 0.2 250000 

C4 50000 2 1000 0.04 0.2 2000 

C10 50000 5 1000 0.1 0.2 5000 

C20 50000 10 1000 0.2 0.2 10000 

C50 50000 25 1000 0.5 0.2 25000 

C100 50000 50 1000 1 0.2 50000 

C300 50000 150 1000 3 0.2 150000 

C500 50000 250 1000 5 0.2 250000 

D20 50000 2 5000 0.2 0.2 10000 

D50 50000 5 5000 0.5 0.2 25000 

D100 50000 10 5000 1 0.2 50000 

D300 50000 30 5000 3 0.2 150000 

D500 50000 50 5000 5 0.2 250000 

E40 50000 2 10000 0.4 0.2 20000 

E60 50000 3 10000 0.6 0.2 30000 

E100 50000 5 10000 1 0.2 50000 

E300 50000 15 10000 3 0.2 150000 

E500 50000 25 10000 5 0.2 250000 

F60 50000 2 15000 0.6 0.2 30000 

F90 50000 3 15000 0.9 0.2 45000 

F300 50000 10 15000 3 0.2 150000 

F500 50000 17 15000 5 0.2 255000 

G80 50000 2 20000 0.8 0.2 40000 

G120 50000 3 20000 1.2 0.2 60000 

G320 50000 8 20000 3.2 0.2 160000 

G480 50000 12 20000 4.8 0.2 240000 

H100 50000 2 25000 1 0.2 50000 

H300 50000 6 25000 3 0.2 150000 

H500 50000 10 25000 5 0.2 250000 
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APPENDIX J-2 

SAME DATA SIMULATION RESULTS FOR 100,000 DATA SETS 
 

SAME 

DATA 
Initial data set 

Number of 

studies 
Sample size Ratio 

Effect 

size 
# of sample 

A4 100000 20 200 0.04 0.2 4000 

A10 100000 50 200 0.1 0.2 10000 

A20 100000 100 200 0.2 0.2 20000 

A50 100000 250 200 0.5 0.2 50000 

A100 100000 500 200 1 0.2 100000 

A300 100000 1500 200 3 0.2 300000 

A500 100000 2500 200 5 0.2 500000 

B4 100000 8 500 0.04 0.2 4000 

B10 100000 20 500 0.1 0.2 10000 

B20 100000 40 500 0.2 0.2 20000 

B50 100000 100 500 0.5 0.2 50000 

B100 100000 200 500 1 0.2 100000 

B300 100000 600 500 3 0.2 300000 

B500 100000 1000 500 5 0.2 500000 

C4 100000 4 1000 0.04 0.2 4000 

C10 100000 10 1000 0.1 0.2 10000 

C20 100000 20 1000 0.2 0.2 20000 

C50 100000 50 1000 0.5 0.2 50000 

C100 100000 100 1000 1 0.2 100000 

C300 100000 300 1000 3 0.2 300000 

C500 100000 500 1000 5 0.2 500000 

D20 100000 2 10000 0.2 0.2 20000 

D50 100000 5 10000 0.5 0.2 50000 

D100 100000 10 10000 1 0.2 100000 

D300 100000 30 10000 3 0.2 300000 

D500 100000 50 10000 5 0.2 500000 

E60 100000 3 20000 0.6 0.2 60000 

E100 100000 5 20000 1 0.2 100000 

E300 100000 15 20000 3 0.2 300000 

E500 100000 25 20000 5 0.2 500000 

F60 100000 2 30000 0.6 0.2 60000 

F90 100000 3 30000 0.9 0.2 90000 

F300 100000 10 30000 3 0.2 300000 

F500 100000 17 30000 5 0.2 510000 

G80 100000 2 40000 0.8 0.2 80000 

G120 100000 3 40000 1.2 0.2 120000 

G320 100000 8 40000 3.2 0.2 320000 

G480 100000 12 40000 4.8 0.2 480000 

H100 100000 2 50000 1 0.2 100000 

H300 100000 6 50000 3 0.2 300000 

H500 100000 10 50000 5 0.2 500000 
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* In the Y-axis, 0.01 to 0.1 represent 1% to 10%. 
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* In the Y-axis, 0.01 to 0.1 represent 1% to 10%. 
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APPENDIX K 

SAME AUTHOR SIMULATION RESULTS FOR 1,000 SAMPLE 

SIZE 

ID 
Number of 

studies per author 
Sample size ( ni) Magnitude of ζ  

Magnitude of 

correlation 

*2**0 2 1000 0.2 0.0 

30 3 1000 0.2 0.0 

40 4 1000 0.2 0.0 

50 5 1000 0.2 0.0 

100 10 1000 0.2 0.0 

300 30 1000 0.2 0.0 

22 2 1000 0.2 0.2 

32 3 1000 0.2 0.2 

42 4 1000 0.2 0.2 

52 5 1000 0.2 0.2 

102 10 1000 0.2 0.2 

302 30 1000 0.2 0.2 

25 2 1000 0.2 0.5 

35 3 1000 0.2 0.5 

45 4 1000 0.2 0.5 

55 5 1000 0.2 0.5 

105 10 1000 0.2 0.5 

305 30 1000 0.2 0.5 

28 2 1000 0.2 0.8 

38 3 1000 0.2 0.8 

48 4 1000 0.2 0.8 

58 5 1000 0.2 0.8 

108 10 1000 0.2 0.8 

308 30 1000 0.2 0.8 
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APPENDIX K-2 

SAME AUTHOR SIMULATION RESULTS FOR 10,000 SAMPLE 

SIZE 

 

 

ID 
Number of 

studies per author 
Sample size ( ni) Magnitude of ζ  

Magnitude of 

correlation 

*2**0 2 10000 0.2 0.0 

30 3 10000 0.2 0.0 

40 4 10000 0.2 0.0 

50 5 10000 0.2 0.0 

100 10 10000 0.2 0.0 

300 30 10000 0.2 0.0 

22 2 10000 0.2 0.2 

32 3 10000 0.2 0.2 

42 4 10000 0.2 0.2 

52 5 10000 0.2 0.2 

102 10 10000 0.2 0.2 

302 30 10000 0.2 0.2 

25 2 10000 0.2 0.5 

35 3 10000 0.2 0.5 

45 4 10000 0.2 0.5 

55 5 10000 0.2 0.5 

105 10 10000 0.2 0.5 

305 30 10000 0.2 0.5 

28 2 10000 0.2 0.8 

38 3 10000 0.2 0.8 

48 4 10000 0.2 0.8 

58 5 10000 0.2 0.8 

108 10 10000 0.2 0.8 

308 30 10000 0.2 0.8 
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* In the Y-axis, 0.01 to 0.1 represent 1% to 10%. 
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* In the Y-axis, 0.01 to 0.1 represent 1% to 10%. 
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