Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
Reaction physics involving composite objects with internal degrees of freedom is an important subject since it is encountered in the context of nuclear processes like fusion, fission, particle decay, as well as many other branches of science. Quantum tunneling and scattering of a composite object are explored in this work. A few model Hamiltonians are chosen as examples where a two-particle system interacts, in one dimension, with a target that poses a delta-potential or an infinite wall potential. It is assumed that only one of the two components interacts with the target. The study includes the harmonic oscillator and the infinite square well as examples of intrinsic Hamiltonians that do not allow the projectile to break up, and a finite square well and a delta-well as examples of Hamiltonians that do. The Projection Method and the Variable Phase Method are applied with the aim of an exact solution to the relevant scattering problems. These methods are discussed in the context of the pertinent convergence issues related thereto, and of their applicability. Virtual excitations of the projectile into the classically forbidden energy-domain are found to play a dominant and non-perturbative role in shaping reaction observables, giving rise to enhanced or reduced tunneling in various situations. Cusps and discontinuities are found to appear in observables as manifestations of unitarity and redistribution of flux at the thresholds. The intrinsic structure gives rise to resonance-like behavior in tunneling probabilities. It is also shown that there is charge asymmetry in the scattering of a composite object, unlike in the case of a structureless particle.