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ABSTRACT

Emergent phenomena are one of the most profound topics in modern science, address-

ing the ways that collectivities and complex patterns appear due to multiplicity of

components and simple interactions. Ensembles of random Hamiltonians allow one to

explore emergent phenomena in a statistical way. In this work we adopt a shell model

approach with a two-body interaction Hamiltonian. The sets of the two-body inter-

action strengths are selected at random, resulting in the two-body random ensemble

(TBRE). Symmetries such as angular momentum, isospin, and parity entangled with

complex many-body dynamics result in surprising order discovered in the spectrum of

low-lying excitations. The statistical patterns exhibited in the TBRE are remarkably

similar to those observed in real nuclei. Signs of almost every collective feature seen

in nuclei, namely, pairing superconductivity, deformation, and vibration, have been

observed in random ensembles [3, 4, 5, 6]. In what follows a systematic investigation

of nuclear shape collectivities in random ensembles is conducted. The development of

the mean field, its geometry, multipole collectivities and their dependence on the un-

derlying two-body interaction are explored. Apart from the role of static symmetries

such as SU(2) angular momentum and isospin groups, the emergence of dynamical

symmetries including the seniority SU(2), rotational symmetry, as well as the Elliot

SU(3) is shown to be an important precursor for the existence of geometric collectiv-

ities.

xiv



CHAPTER 1

INTRODUCTION

Models are at the core of our understanding of nuclear structure. One of the first

proposed models of a nucleus, the liquid drop model, is built on the assumption

of strong interactions among nucleons; a low compressibility and a sharply defined

surface in nuclei resemble properties of liquids. With some work done previously by

Gamow, Heisenberg, and Weizsacker, the main contribution to the development of

the model was made by Niels Bohr in 1936. The model predicts the main features of

the nuclear binding energy systematics, and it has also been successful at describing

nuclear fission.

What the liquid drop model cannot explain is the shell structure observed in nuclei:

some “magic“ nuclei are noticeably more stable than their neighbors. The existence of

the magic numbers, numbers of neutrons and protons comprising these specially stable

nuclei, gave rise to the idea of the nuclear shell model. It appears that the nuclear

shell model and the liquid drop model are based on mutually exclusive assumptions.

In the non-interacting shell model the nucleons are moving independently in the

common mean field. The nuclear magic numbers were not explained until the spin-

orbit splitting was added to the mean field potential. Development of the nuclear

shell model earned Maria Goeppert-Mayer and J. Hans D. Jensen the Nobel Prize in

Physics 1963.

The success of the shell model was overshadowed by the discoveries of collective,
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which seems to be incompatible with an independent particle picture, behavior in

nuclei, such as large electromagnetic moments and transition rates and the discovery

of the rotational bands. Deformations and rotational motion were explained by the

collective model of A. Bohr and B. Mottelson [2] which is based on the liquid drop

model. Later the single-particle and collective approaches have been unified and

three physicists, A. Bohr, B. Mottelson, and J. Rainwater, were awarded with the

1975 Nobel Prize ”for the discovery of the connection between collective motion and

particle motion in atomic nuclei“.

With computational advances it became possible to perform shell-model calcula-

tions with many valence nucleons, and the link between microscopic (single-particle)

and macroscopic (collective) descriptions has been clarified further. An important

milestone was set by the Elliot SU(3) model [7]. The model provides a classifica-

tion of the shell model many-body configurations according to the SU(3) symmetry

group and gives an insight into into how mixing of the spherical configurations can

lead to deformed nuclear shapes. The SU(3) symmetry is violated by such important

components of nuclear interaction as spin-orbit interaction and pairing. One of the

objectives of the present work is a study of deformations and rotations in the shell

model in cases when the SU(3) symmetry is broken. Another, more general objective

is an investigation of the formation of collective modes in the shell model. This can

be done by means of the two-body random ensemble (TBRE).

The idea of employing systems described by an ensemble of Hamiltonians with

random matrix elements is the foundation of random matrix theory (RMT). Random

matrix theory offers a statistical approach to strongly interacting quantum systems.

Motivated by Bohr’s idea of a compound nucleus, Wigner introduced random matrix

theory [8]. A model of a compound nucleus [9] was proposed in order to explain nu-

merous narrow resonances in slow neutron scattering, which cannot be described in

the independent particle picture. The idea is that the target nucleus absorbs the pro-
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jectile particle, forming a new excited long-lived compound nucleus with the energy

of the projectile distributed among all nucleons. Such scattering can be visualized as

a billiard table densely filled with balls (protons and neutrons) that undergo multiple

collisions. The RMT approach allows one to look for the manifestation of generic

spectral features emerging in complex systems, without a reference to specifics of

the Hamiltonian. RMT is employed in many branches of physics, including nuclear

structure and reactions, condensed matter, and quantum chaos.

The canonical RMT ensemble, a Gaussian orthogonal ensemble (GOE), is ap-

plicable to systems invariant under time reversal. GOE matrices defined in a finite

Hilbert space are characterized by the following four properties: (i) hermiticity, (ii)

time-reversal invariance, (iii) invariance of the probability distribution of the matrices

under an arbitrary orthogonal transformation of basis, and (iv) independence of the

matrix elements. As a result of these requirements, the matrix elements should be

chosen from a Gaussian distribution centered around zero with the variance of the

off-diagonal elements doubled compared to the diagonal ones. One can refer to Bohr

and Mottelson [2] for an illustrative example with derivations for a two-level system

and to Mehta [10] for a detailed description of random-matrix approach and methods.

The GOE predicts fluctuation properties of eigenstates and eigenvalues for the

many-body chaos appearing due to the complexity of many-body dynamics, and one-

body chaos which is due to the boundary conditions. The advantage of GOE is its

analytical tractability. In the GOE each state is connected with the rest of the states

with matrix elements of the same order of magnitude. The shortcoming of the en-

semble is its lack of a connection with the actual many-body dynamics. There is no

preferred basis in the GOE, as it is the case in the mean-field models. This also im-

plies a high rank of forces, which is unrealistic in nuclear physics: in the shell model

it is sufficient to consider two-body forces. These drawbacks result in unrealistic

predictions for average spectral properties such as the energy-level density, which is
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semicircular in the GOE and Gaussian in the shell model. The first step in reconciling

the underlying many-body physics and random ensembles was an implementation of

embedded ensembles with a lower (down to the second) rank of forces [11]. With

the transition from many-body to two-body forces, the energy density distribution

undergoes the semicircle-to-Gaussian transition. The incorporation of the angular

momentum conservation led to the two-body random ensemble (TBRE), which mim-

ics the nuclear shell model [12, 13].

In full analogy to the shell model, the TBRE model space is defined by a set of

spherical single-particle levels labeled by the angular momentum j; the corresponding

creation and annihilation operators are denoted as a†jm and ajm. We assume the one-

body Hamiltonian

H(1) =
∑

j

ǫj
∑

m

a†jmajm (1.1)

to be fixed with a given set of single-particle energies ǫj. A generic two-body Hamil-

tonian is built upon normalized pair creation and pair annihilation operators, P
(α)†
LΛ

and P
(α)
LΛ ,

H(2) =
∑

Lαβ

V
(α,β)
L

∑

Λ

P
(α)†
LΛ P

(β)
LΛ , (1.2)

where α = {j1, j2} is a pair index and labels L and Λ stand for the angular mo-

mentum and magnetic projection of the pair. To simplify the notation we do not

include isospin labels explicitly. In the TBRE the matrix elements V
(α,β)
L = V

(β,α)
L are

real and selected at random from a Gaussian distribution centered at zero, with the

variance of the off-diagonal elements doubled as compared to the diagonal elements

〈V (α,β)
L V

(α′,β′)
L 〉 = (δαα′δββ′ + δαβ′δβα′)/2.

It has been shown that the TBRE reproduces signatures of chaotic dynamics,

which are given by the GOE, such as the Porter-Thomas distribution for the weights

of the wave functions and the nearest level spacing distribution given by the Wigner

distribution for chaotic systems [14]. Later, the application of the TBRE has been
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extended to the low-energy spectra, this energy region in nuclei is dominated by

regular dynamics. In order to explore the low-lying region, a many-body Hilbert space

spanning all symmetry classes of states was considered [15]. The low-lying spectra in

such ensembles exhibit regularities similar to those observed in real nuclei; the high

probability for the zero ground-state spin is most astounding. This discovery gave

a new direction in the field of random ensembles and partially motivated the main

goal of this work, namely to study properties of the mean field formed in ensembles of

randomly interacting nucleons. RMT can also be a tool for identifying the violation of

symmetries such as time-reversal symmetry, parity, and isospin (see [16] and references

therein). Another aspect of this work is the investigation of the effect of time-reversal

violation in the TBRE.

This thesis is organized as follows: Chapter 2 addresses the role of time-reversal

invariance in the TBRE systematics. Collective models and their signatures are intro-

duced in Chapter 3. In Chapter 4 we present results for collective motion in systems

governed by random Hamiltonians, and discuss interaction components responsible

for the observed patterns. Chapter 5 is dedicated to the discussion of the SU(3) sym-

metry and its role in the formation of rotational modes in real as well as randomly

interacting systems.
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CHAPTER 2

TIME-REVERSAL INVARIANCE AND
GROUND-STATE SPIN STATISTICS IN

THE TBRE

2.1 Ground-state regularities in the TBRE

It has been observed in various TBRE models for both fermionic and bosonic

systems that the probability for the ground state to have spin zero is enhanced [17,

6, 18]. In the TBRE the probability to observe J = 0 in the ground state is higher

than any other spin, and is enhanced as compared with the number of states with

J = 0 out of all possible J-configurations. In real nuclei, spin zero ground states

occur in all even-even nuclei (nuclei with even number of protons and neutrons), and

this is attributed to a specific component of the nucleon-nucleon interaction, namely

pairing. There have been various proposals explaining the predominance of spin-zero

ground states in random ensembles, [3, 16, 6] and references therein, but the full

understanding of this phenomenon is still missing. It is feasible to explore the role of

time-reversal invariance (T -invariance), since this symmetry is one of the ingredients

needed for the formation of nucleonic Cooper pairs with zero spin.

In the spirit of the traditional shell model approach, we define a model configura-

tion as (j1, j2 . . . )
N , where N nucleons occupy a set of single-particle levels labeled

by their angular momentum j. In this thesis, unless explicitly stated otherwise, the

single-particle energies are degenerate; when it is needed we also label the parity of
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the single-particle levels. All calculations are done with the shell model code [19]. The

size of matrices varies from ∼2,500 to 250,000 and they are diagonalized using the

Lanczos algorithm. Depending on the size of the many-body space of a given system,

each ensemble in this work contains from 10,000 to 500,000 random realizations.

Before turning to this issue, we would like to discuss statistics of the ground-

state spin in the TBRE. We take as an example a system with N nucleons of the

same kind placed in two spherical orbitals with the total angular momentum j1 = j2

and opposite parity, l1 − l2 = 1. The choice of this valence space is such that it

allows us to investigate parity, as well as spin, systematics. Shown in Fig. 2.1 is the

probability distribution of the ground-state spin Jgs and parity π for three systems

(13/2+, 13/2−)6, (13/2+, 13/2−)8, and (13/2+, 13/2−)10. In an overwhelming number

of cases the ground state has positive parity, while the probability of the ground state

to be of negative parity is suppressed. Spin zero is most statistically pronounced

among states with positive parity. Similarly to the ground-state spin distribution,

the parity distribution does not correlate with the statistical weight of states of a

given parity π in the many-body space. For all considered models, the number of

states with positive and negative parities is either exactly the same or of the same

order. For the systems shown in Fig. 2.1, the dimensions are the following: 8,212 for

both parities (N = 6 particles); 61,883 for negative and 61,828 for positive parities

(N = 8 particles); 246,942 (N = 10 particles) for both parities. It has been shown that

for systems comprised of both protons and neutrons, the parity distribution follows

the trend observed in real nuclei, namely even-even random systems favor positive

parity, while for odd-odd and odd-A systems the probabilities are comparable for

both parities [20]. Another observed trait in this model is the appearance of the

correlated spin sequences 0+, 3− and 0+, 2+ with the empirical probability of finding

a given sequence larger than the probability of independent events. This suggests a

possible presence of octupole and quadrupole collectivity in the TBRE.
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Figure 2.1: (13/2+, 13/2−)N . The distribution of the ground state spin Jgs
for three systems with (a) N = 6, (b) N = 8, and (c) N = 10 nucleons
in two j1 = j2 = 13/2 orbitals. The distributions for different parity are
stacked in the histogram, with non-shaded histogram showing statistics for
positive parity ground state and shaded histogram showing statistics for the
negative parity ground state.
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2.2 External T -violation: magnetic field

Applying a magnetic field B is a straight forward method of breaking time-reversal

invariance (T -invariance). The magnetic field also violates rotational invariance so

that we can only consider the statistics of the magnetic quantum number M which

is still a good quantum number. This additional part of the Hamiltonian can be

expressed as

HB =
N
∑

a=1

gB · ja = gB · J, (2.1)

where J is the total angular momentum of the system, and g is the gyromagnetic

ratio. The gyromagnetic ratio can be taken constant for fermions occupying a single

j-shell. Without loss of generality we assume g = −1 and consider only M ≥ 0. By

choosing the momentum quantization axis along the B field we find a typical Zeeman

splitting, where each eigenstate |JM〉 of the original Hamiltonian (1.2) with energy

E0 acquires an additional M -dependent contribution E = E0 + gBM . Since the

energy of a substate with M = J is lowered the most by the Zeeman splitting, M

of the ground-state coincides with J , from which this magnetic projection originates.

Presented in Fig. 2.2 are statistics for the ground-state magnetic numberM for N = 6

particles in the j = 15/2 orbital. As can be seen in Fig. 2.2(a), in the case with B = 0

the ground state has most likely the M = 0 (J = 0) projection. The probability for

the ground state to have M = 0 drops as the magnetic field increases (Figs. 2.2(a)

and (b)). The states with M = 0 are not affected by the field and thus their energies

remain unchanged, while other states with large magnetic quantum numbers are

pushed down in energy. Eventually the largest M value dominates the lower part of

the spectrum.
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Figure 2.2: (15/2)6. The effect of the external magnetic field B on the
statistics of the ground state spin. (a) Distribution of the magnetic number
Mgs for the unperturbed system (M = J), B = 0, and for two values of
the magnetic field, B = 0.2 and B = 0.4. (b) Probability of Mgs = 0,
corresponding to the realizations with Jgs = 0 for the unperturbed system,
as a function of the magnetic field B.

2.3 Internal T -violation: one-body scalar

operator

T -invariance can also be violated intrinsically. Given the three vector operators

associated with a particle, r, p, and σ, the simplest one-body T -odd scalar operators

are

HTP = σ · r, (2.2)

HT = p · r. (2.3)

The first operator also violates parity invariance; the subscripts T and P denote

symmetries broken by these operators. In the spherically symmetric potential, the

single-particle wave function φ(~r) is characterized by the set of quantum numbers

(n, l, s, j) and takes the form

φ(~r) = Rnl(r)
[

ilYl ⊗ χs
]

jm
, (2.4)

where a phase il is added to insure a conventional phase change under T -reversal.

In the spherical representation the scalar product (2.2) can be written as σ · r =
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∑

m=0,±1 σmr−m, with rm ∝ rY1m(θ, φ); here the subindex m indicates a change in the

projection of the single-particle angular momentum (spin). It is clear from rotational

symmetry that, for a single-level valence space, the effect of the operators HTP and

HT could only result in a trivial shift of the whole spectrum by a constant value.

Thus in order to study the T -invariance by means of the operators (2.2) or (2.3),

the minimal model space should include two single-particle levels with same angular

momenta j and different parity. We consider two-level models with the total momenta

j1 = l1⊗ s1 and j2 = l2⊗ s2, where l1 and l2 are different by one and j1 = j2 since the

operator HTP is a scalar. In the second quantization formalism, a one-body operator

Ô can be written as Ô = Σkk′〈k|Ô|k′〉a†kak′ , giving the following expressions for the

operators (2.2) and (2.3) acting in the two-level valence space

HTP = iq
∑

m

(a†j1maj2m − a†j2maj1m), (2.5)

HT = p
∑

m

(a†j1maj2m + a†j2maj1m), (2.6)

with real parameters q = Re|〈j1m|σ · r|j2m〉| and p = Re|〈j1m|σ · p|j2m〉|. Interest-

ingly, the expressions (2.5) and (2.6) can be “reversed“ with a different choice of the

phase of the single-particle wave function

HTP = q
∑

m

(ã†j1mãj2m + ã†j2mãj1m), (2.7)

HT = ip
∑

m

(ã†j1mãj2m − ã†j2mãj1m), (2.8)

where ajm = ilãjm. This implies that with the addition of the operator (2.2) the

Hamiltonian matrices can be chosen to be real. The effect of both operators is a

transfer of a particle between two levels which have different parity. In the many-

body space, the contribution of the operator (2.2) appears as a coupling of the states
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Figure 2.3: The distribution of the ground state spin Jgs for the T -reversal
invariant TBRE, q = 0, and for the TBRE in the presence of the one-
body T -non-invariant term (2.8), q = 1. Three degenerate systems were
considered: (a) (9/2+, 9/2−)6, (b) (11/2+, 11/2−)6, and (c) (13/2+, 13/2−)6.
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with different parity and the same total angular momentum and thus the parity of

each state does not have a definite value with this Hamiltonian.

Fig. 2.3 illustrates the ground-state spin statistics for the TBRE, q = 0, and for

the TBRE with the addition of T -violation of the form of (2.8) with q = 1. Three

degenerate two-level systems are considered with N = 6 nucleons placed into the

orbitals j1 = j2 = 9/2, 11/2, and13/2. As one can see from the figure, the introduction

of the symmetry-breaking term does not change the g. s. spin distribution drastically.

Although the two distributions are different within the statistical error for all three

systems (not shown), they follow each other quite closely. As compared with the

regular, T -even, TBRE, the probability of the occurrence of the Jgs = 0 state in the

T -odd ensemble slightly increases for (9/2+, 9/2−)6, while it decreases for the other

two systems (11/2+, 11/2−)6 and (13/2+, 13/2−)6.
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CHAPTER 3

COLLECTIVE MOTION IN NUCLEI

3.1 Signatures of collective motion in nuclei

In order to examine collective features in low-lying spectra which correspond to

rotations, surface vibrations, and superconducting phenomena, we evaluate the ex-

pectation values of the electric multipole operators:

Mλµ =

∫

ρ(r)rλYλµ(r̂)d
3r, (3.1)

where ρ(r) is the nuclear charge density and Yλµ(r̂) are spherical harmonics. The

operators Mλµ can be seen as collective variables describing the mean field. This

implies that the expectation values of the multipole operators between collective

many-body states are enhanced. We will use the multipole operators Mλµ in the

Cartesian form, Mλµ, for example, for the quadrupole operator, λ = 2, M2µ =
√

16π
5
M2µ.

The reduced transition probability from a state |JiMi〉 to a state |JfMf〉 is defined

by the off-diagonal matrix elements of the multipole operator

B(Eλ, Ji → Jf ) =
∑

µ,Mf

|〈JfMf |Mλµ|JiMi〉|2, (3.2)

where |JM〉 denotes a many-body state with a magnetic projection M , and all re-

maining quantum numbers including angular momentum are denoted by J.We should
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note that the standard definition of the reduced transition probability involves mul-

tipole operators in the spherical form (3.1). The overall normalization of the reduced

transition rates is given by the transition strength

Sλ(Ji) =
∑

Jf

B(Eλ, Ji → Jf ) = 〈JiMi|
∑

µ

M†
λµMλµ|JiMi〉. (3.3)

The shape of a state is described by the diagonal elements of the multipole operator

(or multipole moments)

Qλ(J) = 〈JM = J |Mλ0|JM = J〉. (3.4)

In this work we only briefly touch on the subject of collectivities other than quadrupole,

thus for convenience the subscript λ in Eqs. (3.3) and (3.4) is omitted for λ = 2.

3.2 Models of nuclear rotations

A static deformation of the nuclear surface opens a possibility for rotations in

nuclei. In this chapter we describe both geometric and algebraic approaches to ro-

tational motion. The geometric, or rigid rotor model is built up by quantization of

the liquid drop model. We briefly summarize some of the well-known properties of

the rotor model with an emphasis on the axially symmetric rotor. Formation of a

deformed mean field in the basis of the spherical shell model is illuminated in the

algebraic Elliot SU(3) model. In the second part of this chapter we present the SU(3)

model and its comparison with the rigid rotor.

3.2.1 Rigid rotor model

Parametrization of the surface of the nucleus is a starting point in describing nu-

clear shapes. The conventional surface parametrization is given in terms of spherical

harmonics and expansion coefficients αλµ

R(θ, φ) = R0

(

1 +
∞
∑

λ=0

λ
∑

µ=−λ

α∗
λµYλµ(θ, φ)

)

, (3.5)
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where R0 is the radius of a spherical nucleus of the same volume. The λ = 0 term

corresponds to a change of volume; taking into account the incompressibility of the

nucleus, this term can be chosen to compensate for a change of volume in other

multipole modes. The λ = 1 term corresponds to a translation of the center of mass.

Thus, the first relevant term is the quadruple term; λ = 2, it is the dominant mode

in nuclei and we will discuss it in more details.

For the quadruple deformation, three parameters out of five (λ = 2, µ = ±2,±1, 0)

determine the orientation of the nucleus in the laboratory frame and can be related

to three Euler angles. Hill-Wheeler coordinates α and β can be conveniently taken

as α20 = βcosγ and α22 = α2−2 = βsinγ/
√
2. These two parameters define the

quadrupole operator, which is a multipole operator (3.1) of order λ = 2. The variable

β (β > 0) describes the overall level of deformation, and the mean field is spherical

if β = 0. The variable γ indicates the deviation from axial symmetry, see Fig. 3.1.

The Hill-Wheeler parameters define the quadrupole operator Limits γ = 0◦, 120◦, 240◦

correspond to prolate (cigar-like) shapes. The deformation is oblate (pancake-like)

for γ = 60◦, 180◦, 300◦. (There is an alternative convention with β > 0 for prolate

nuclei and β < 0 for oblate nuclei.) An interesting phenomenon is observed in stably

deformed nuclei: the overwhelming majority of such nuclei have a prolate shape in

the ground state.

In the rigid rotor model one assumes an adiabatic approximation, namely, that

the internal structure of the nucleus does not change leaving only the extrinsic, or

rotational, degrees of freedom [2]. The rotational Hamiltonian

Hrot =
3
∑

k=1

J2
k

2Lk

(3.6)

is then characterized by three moments of inertia along the principal body-fixed axes

L1, L2, and L3.

The triaxial rotor (a rotor with all three moments of inertia Li different) possesses

a symmetry of the discrete D2 group [2, 21], which restricts the possible values of the
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Figure 3.1: Quadruple deformations in the βγ plane. From [1]

angular momentum J . The allowed values can be found from the irreducible repre-

sentations. The group consists of four elements: the unit transformation and three

rotations by π, Ri(π) with i = 1, 2, 3, around three principal body-fixed axes 1, 2, 3.

These operators commute, and thus can be diagonalized simultaneously. Taking into

account that eigenvalues of these operators can be either +1 or -1 and that ri = rjrk

for i 6= j 6= k (or Ri(π) = Rj(π)Rk(π) for i 6= j 6= k), there are four possible one-

dimensional irreducible representations (r1 r2 r3) : (+++), (+−−), (−+−), (−−+).

The irreducible representation of interest in this thesis is (+ + +). In this represen-

tation there are J/2+1 states for even J and (J − 1)/2 states for odd J , e.g. 0, 2(2),

3, 4(3), 5(2)... [21].

The two tensors, the moment of inertia and the quadrupole moment, describe

triaxial nuclei; these quantities are correlated. The quadrupole moment is defined by

the Hill-Wheeler parameters γ and β and is independent of the Hamiltonian. The

correlation between these two tensors is model-dependent. The standard model of

a triaxial nucleus, the Davydov-Filippov model [22], assumes the irrotational-flow

values:

Lk =
4h̄2

3ER

sin2

(

γ − 2π

3
k

)

, k = 1, 2, 3, (3.7)

where ER defines the energy scale and is inversely proportional to β2. For realistic
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Figure 3.2: Low-lying spectrum of a triaxial rotor with the irrotational-flow
moments of inertia. The energy scale is given by the parameter ER defined
in Eq. (3.7).

nuclei ER is given by the total mass and the nuclear density, so we treat it as a

parameter which substitutes for β. Moments of inertia in the limit of irrotational

flow are higher than the observed moments. An alternative rigid-body limit results in

lower predictions; the actual measured moments of inertia lies in between these two

limits Lirr < Lexp < Lrid.

In the axially symmetric case (γ = 0◦), the projection of the angular momentum

onto the symmetry axis 3, K, (Fig. 3.3) is an additional conserved quantum number.

The energy levels characterized by the same K form a rotational band. For the

ground state band, K = 0, the total angular momentum J can take only even values

and the excitation energies become E(J) = J(J + 1)ER/2. The onset of triaxiality

only slightly changes the positions of levels of a symmetric top, 21, 41, 61, however the

new levels 22, 31, 41, 51 appear low in the spectrum, see Fig. 3.2. In this notation

for states, the subscript refers to the order of a state among other states of the same

spin. The energy is the same for prolate (γ = 0◦ . . . 30◦) and oblate (γ = 30◦ . . . 60◦)

deformations with the same β.
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Figure 3.3: Projections of the total momentum J onto the symmetry axis
(body-fixed frame), K, and z axis (laboratory frame), M . From [2]

Most features of the irrotational flow model has been discussed in Ref. [22]; here

we review some specifics which are relevant to this work. For an arbitrary γ the

energies are determined by eigenvalues of matrices with dimensionality J/2 + 1 for

even J and of order (J − 1)/2 for odd J . For two states of interest in our work 21

and 22, the result is analytic

E(21,2) =
3ER

4

9∓ 3
√

9− 8 sin2(3γ)

sin2(3γ)
. (3.8)

The E2 gamma transitions provide a strong evidence of rotational collective dynamics.

For our schematic studies we assume that the scale of the quadrupole transitions is

given by the intrinsic quadrupole moment Q, which depends on the deformation

parameter β. Spherically symmetric nuclei with β = 0 have zero quadrupole moment

Q = 0, while Q > 0 for prolate nuclei, and Q < 0 for oblate nuclei. Measured in the

laboratory frame, the quadrupole moment Q(21) has a sign opposite to that in the
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body-fixed frame Q:

Q(21) = − 6Q cos(3γ)

7
√

9− 8 sin2(3γ)
. (3.9)

Notice that both J = 2 states of the triaxial rotor have equal in magnitude and

opposite in sign values of the quadrupole moment, Q(21) = −Q(22), which occurs

because the quadrupole operator is traceless. The transition strength (3.3) for the

E2 transitions from the J = 0 ground state is saturated by the two J = 2 states:

B(E2, 0gs → 21) + B(E2, 0gs → 22) = Q2. The explicit values for rates are

B(E2, 0 → 21,2) =
Q2

2

[

1± 3− 2 sin2(3γ)
√

9− 8 sin2(3γ)

]

. (3.10)

The near saturated transition strength and non-zero quadrupole moment are good

evidences for rotational collectivity. Triaxiality, however is hard to detect since the

0gs → 21 transition dominates over the 0gs → 22 transition, comprising between 93%

and 100% of the sum. The rate between the 21 and 22 states is only strong for large

triaxiality

B(E2, 22 → 21) =
2Q2

7

sin2(3γ)

9− 8 sin2(3γ)
. (3.11)

In the Davydov-Filippov model discussed above the asymmetry (triaxiality) is in-

corporated in the rotational Hamiltonian, for which an assumption concerning the

moments of inertia has to be made. An alternative, “two-band“, approach to the

description of triaxiality for nuclei with a small ∆K = 2 mixing has been offered

recently [23, 24]. This approach allows one to find the deformation parameter γ

without an adherence to any form of the moments of inertia. Motivated by this

two-band prescription, we propose a method for identifying triaxiality based on the

characteristics of the 21 and 22 states. Our method is described in Ch. 4, the ap-

plication of this method to the detection of triaxiality in random ensembles and the

quadrupole-quadrupole interaction are presented in Chs. 4 and 5, correspondingly.
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3.2.2 Elliot SU(3) model

Eight generators, three angular momentum operators Lµ with µ = 0,±1 (tensors

of rank one) and five quadrupole operators M′
2µ with µ = 0,±1,±2 (tensors of rank

two), form the Lie algebra of the SU(3) group [25]. The SU(3) quadrupole-quadrupole

(QQ) Hamiltonian

HSU(3) = −
∑

µ

M′†
2µM′

2µ (3.12)

is an invariant of the SU(3) group since it commutes with the group generators.

The group irreducible representations (or multiplets) are labeled with a set of

two integers (λ, µ). The representations are finite dimensional and the group is com-

pact [26], with dimensionality

dim(λ, µ) = 1/2(λ+ 1)(µ+ 1)(λ+ µ+ 2). (3.13)

The states in each multiplet can be characterized by a quantum number K ′:

K ′ ≥ 0, K ′ = µ, µ− 2 . . . , (3.14)

where µ = min(λ, µ). The quantum number K ′ is not an eigenvalue of any operator,

it provides a connection with the angular-momentum subgroup. For each multiplet

(λ, µ) the angular momentum L takes values:

L =

{

K ′, K ′ + 1 . . . K ′ + λ for K ′ > 0

λ, λ− 2 . . . for K ′ = 0,
(3.15)

with λ = max(λ, µ).

Within a given multiplet, the structure of the spectrum and transition rates are

similar to those of a rigid rotor. For each multiplet (λ, µ) a finite-size rotational band

emerges with energies:

ESU(3) = −S(λ, µ) + 3L(L+ 1), (3.16)
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Table 3.1: Values of the SU(3) quantum number K ′, angular momentum L,
total momentum J , and Casimir operator S(λ, µ) for each SU(3) multiplet
for two particles in the sd-shell.

(4,0) (2,1) (0,2)
K ′ 0 1 0
L 0,2,4 1,2,3 0,2

J = L⊕ S 0,2,4 0,1(2),2(3),3(2),4 0,2
ESU(3) 112,94,52 58,46,28 40, 22

where

S(λ, µ) = 4[λ2 + µ2 + λµ+ 3(λ+ µ)] (3.17)

is the expectation value of the SU(3) Casimir operator.

The number K ′ indicates how to construct SU(3) states with a definite angular

momentum L. K ′ is close in its meaning to the quantum number K discussed in

the rotor model, and these numbers are identical in the asymptotic limit of large λ

or µ. The formal equivalence between the rigid-rotor and SU(3) models occurs for

representations with 2λ+ µ ≫ 1 and L ≪ 2λ+ µ, see [27].

Systems in the SU(3) model are triaxial if both λ and µ have non-zero values.

The axial symmetry appears in so-called stretched cases, when one of the quantum

numbers is zero; in this case the matrix elements of the quadrupole operator can be

expressed analytically [26]. Slightly away from stretched cases for λ ≫ µ (for large

number of particles and away from half-occupied cases), the structure is analogous

to that of a triaxial rotor with the triaxiality Hill-Wheeler parameter γ2 ≃ µ/(2λ +

µ) [27].

The Elliot SU(3) model [7] provides a link between the collective rigid-rotor model

and the spherical shell model. A good approximation to the shell-model mean field

is the harmonic oscillator potential. The three-dimensional isotropic harmonic os-

cillator is invariant under the SU(3) symmetry. In this case the SU(3) numbers λ
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and µ represent a difference in the number of oscillatory quanta between z-x and x-y

directions respectively.

The ground state multiplet (λ, µ) for any given shell-model configuration is easy

to determine by examining particle distributions and the resulting distribution of os-

cillator quanta between three cartesian directions (see Appx. B). All possible SU(3)

representations can be obtained in a similar manner. The list of the SU(3) represen-

tations for N particles can be also generated as a tensor product of a single-nucleon

SU(3) representation (n, 0), where n is the order of an oscillatory shell. The Pauli

exclusion principal should be additionally enforced, which excludes some of the rep-

resentations. Nevertheless the tensor-product method can be illustrative as we show

for the (1s, 0d)2 configuration (two particles in the sd shell). The coupling of two

stretched representations (λ1, 0) and (λ2, 0) is trivial [28]:

(λ1, 0)⊗ (λ2, 0) = (λ1 + λ2, 0)⊕ (λ1 + λ2 − 2, 1)⊕ (λ1 + λ2 − 4, 2) . . . . (3.18)

For N = 2 nucleons in the n = 2 shell, the product decomposition is (2, 0)⊗ (2, 0) =

(4, 0)⊕ (2, 1)⊕ (0, 2). The quantum numbers for each SU(3) band are summarized in

Tab. 3.1. Possible values of K ′ and L are generated according the the rule (3.14).

There is a symmetry between quantum numbers λ and µ; for a less than half-

occupied oscillator shell, the ground state band (λ, µ) has λ > µ and thus the prolate

intrinsic shape. Due to the exact particle-hole symmetry in the SU(3) model, a system

with the same number of holes has a ground state multiplet (µ, λ), and its intrinsic

shape is oblate [27].

The SU(3) QQ Hamiltonian (3.12) is a special case of the QQ Hamiltonian:

HQQ = −
∑

µ

M†
2µM2µ, (3.19)

which is defined in terms of the quadrupole operator M2µ from Eq. 3.1 with λ = 2,

rather than the SU(3) quadrupole operator M′
2µ; these operators coincide within one
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oscillatory shell. The QQ Hamiltonian is central in our study of collective motion in

the two-body random ensemble in Ch. 4. We also closely investigate the QQ spectrum

in Ch. 5.

3.3 Vibrations and boson model

Nuclei exhibit various vibrational modes in different mass and energy regions. We

concentrate on surface vibrations around a spherical shape, which are relevant to our

discussion of the structure of the low-energy levels in the shell model. In the simple

model of surface vibrations, the Hamiltonian is taken to be that of the harmonic

oscillator, where the parameters αλµ(t) (Eq. 3.5) serve as collective coordinates. In

quantized form the Hamiltonian can be written in terms of bosonic creation and anni-

hilation operators [2]. The equidistant excitation spectrum is built up by vibrational

quanta, or phonons. For quadrupole oscillations the first excited one-phonon state is

non-degenerate, with spin J = 2 (Fig. 3.4).

Because of their bosonic nature, two quadrupole phonons can couple only into

even total spin 0, 2, and 4. Thus, the second excited state is 3-fold degenerate. Multi-

phonon states have been observed in spherical nuclei, although the degeneracy of the

multiplets is lifted due to residual interactions. The yrast states (states of the lowest

energy for a given spin) are formed by n phonons uniquely coupled to the maximum

possible spin J = 2n. Any n-phonon state can decay via an E2 transition only into

a (n − 1)-phonon state. These two conditions define a ratio of the transition rates

between the yrast states Ji = 2n and Jf = 2(n− 1) in a simple way [2]:

∑

Jf

B(E2, Ji → Jf ) = nB(E2, 21 → 0gs). (3.20)
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Figure 3.4: Low-lying levels of the quadrupole harmonic vibrator.

Figure 3.5: Low-lying spectrum of the pairing Hamiltonian on a single j
orbital in the limit N ≪ Ω.
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3.4 Pairing and seniority model

Pairing is an important part of the nucleon-nucleon interaction. Short-range pair-

ing and long-range quadrupole-quadrupole interactions lead to two competing collec-

tive modes. Their interplay affects many aspects of nuclear structure, from binding

energies to collective motion.

In the case of pure pairing on a single j-level, V
(α,β)
L=0 = −1 and V

(α,β)
L 6=0 = 0 in

the Hamiltonian (1.2), and the seniority model introduced by Racah [29, 30] is a

useful tool. The seniority scheme allows one to classify states according to the SU(2)

symmetry group. The group is formed by the so-called quasispin operators S+, S−, Sz

related to the particle number operator and pair creation and annihilation operators:

S+ =
√

Ω/2P
(α)†
00 , S− =

√

(Ω/2P
(α)
00 and Sz = N/2 − (2j + 1)/4, where Ω = 2j +

1 [31, 1]. The number of unpaired particles ν, or seniority, is a conserved quantity

in the pure paring model. The importance of the seniority scheme in realistic nuclei

comes with the realization that in many cases the interactions conserve seniority. For

example, any one- and two-body interactions preserve seniority on a singe level with

j ≤ 7/2 [32].

For the pairing Hamiltonian, the ground state has zero seniority; the first excited

state is obtained by breaking one pair. The eigenvalues of the pure pairing Hamilto-

nian are E(N, ν) = −(N − ν)(Ω− ν−N +2)/4. In the limit of N ≪ Ω the spectrum

becomes equidistant, see Fig. 3.5. The yrast states 21 and 41 are degenerate, and

thus R42 = 1.

The seniority scheme simplifies calculations of matrix elements by allowing one to

use the Wigner-Eckart theorem in the quasi-spin space, see Appx. A. The application

practical for our study concerns quadrupole transition rates between 0gs (ν = 0) and

21 (ν = 2) states,

B(E2, 21 → 0) = B0
1

5

2N(Ω−N)

Ω(Ω− 2)
, (3.21)
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and between two ν = 2 states, 41 and 21,

B(E2, 41 → 2f ) = 5B0

(

2(2N − Ω)

(4− Ω)

)2{
2 4 2
j j j

}2

, (3.22)

where the latter transition is defined in terms of the Wigner 6-j symbol; the derivation

of this transition is given in Appx. A. The proportionality coefficient B0 includes the

radial and spin parts of the expectation value of the quadrupole operator.

Recently an exact numerical treatment of pairing has been proposed for realistic

model spaces with many valence levels [33]. The method consists of introducing a

quasispin formalism for each level; the seniority number for each level, as well as the

total seniority, is conserved by the pairing interaction. This approach greatly reduces

the space for the shell-model diagonalization, with other residual interactions being

treated perturbatively.

3.5 Collective observables

In the search for collective realizations we select a set of quantities that convey

most of the information about collective structures: the reduced transition rate (3.2),

the multipole moments (3.4), and the transition strength (3.3). In order for these

parameters to be scale independent, we normalize them assuming minimal model

dependence. This is described in what follows.

The total transition strength (3.3) from a given state J provides a convenient

normalization to assess the fractional collectivity of the transition

b(Eλ, Ji → Jf ) = B(Eλ, Ji → Jf )/Sλ(Ji). (3.23)

The shape of a state is described by its multipole moment (3.4). The mean field with

a stable deformation opens a possibility for nuclear rotations. A rotational spectrum

(band) emerges for every fixed intrinsic shape. The intrinsic shape is characterized

by the body-fixed (intrinsic) multipole moments Qλ. In a perfect rotor these intrinsic
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moments are the same for all states in the band. For the ground state band of interest,

these moments define the transition strength Sλ(0gs) = Q2
λ. Within a given band

the intrinsic moments determine the lab-frame observables in Eqs. (3.2) and (3.4).

In the axially symmetric case the quantum number K (a projection of the angular

momentum onto the body-fixed symmetry axis) is conserved. Then for each rotational

K-band the relations between the observables in the lab frame and in the intrinsic

frame are expressed via Clebsch-Gordan coefficients,

Qλ(J) = QλC
JJ
λ0,JJC

JK
λ0,JK (3.24)

and

B(Eλ, Ji → Jf ) = Q2
λ

∣

∣

∣
C

JfK

λ0,JiK

∣

∣

∣

2

. (3.25)

The limit of an axially symmetric rotor provides a convenient normalization of the

multipole moments. In this work, instead of Qλ(J) we quote a normalized intrinsic

moment

qλ(J) =
Qλ(J)
√

Sλ(0gs)
, (3.26)

where

Qλ(J) =
Qλ(J)

CJJ
λ0,JJC

J0
λ0,J0

, (3.27)

which is computed as if the state is a member of the K = 0 rotational ground state

band.

The relation between the quadrupole moment of the 21 state in the lab frame

and in the intrinsic frame is Q(21) = −2/7Q(21). For an axially symmetric rotor

the transition strength is saturated by a single transition b(E2, 0gs → 21) = 1 with

q(21) = 1 for prolate or q(21) = −1 for oblate shapes.

We normalize the multipole transition strength Sλ(J) in (3.3) to the maximum

possible value that it can have in a given valence space. For λ = 2 the QQ Hamilto-

nian (3.19) establishes the maximum value of S(J). The eigenstate energy of the QQ
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Hamiltonian coincides with the transition strength for that state: EQQ(J) = −S(J).

Thus, the absolute value of the QQ Hamiltonian ground state energy EQQ(0gs) is the

maximum possible value of the transition strength S(J) in a given model space with

a given structure of the quadrupole operator. We thus define a relative transition

strength as

s(J) =
S(J)

|EQQ(0gs)|
. (3.28)

The collective structure can further analyzed for a sequence of states with spins 0,

2 and 4. The types of collective modes can be classified by the ratio of the excitation

energies measured relative to the energy of the 0gs state

R42 =
E(41)

E(21)
, (3.29)

where the states are additionally denoted by a subscript indicating an order of the

excited state. This ratio is 1 for pairing, 2 for vibration, and 10/3 for rotation. The

deexcitation probability ratio

B42 =
B(E2, 41 → 21)

B(E2, 21 → 0gs)
(3.30)

gives another measure which is nearly 0 for pairing, 2 for vibrational mode, and ≈1.43

for rotational motion. In the QQ Hamiltonian, R42 and B42 have values close to those

of an axially symmetric rotor; their values for systems considered in this work are

listed in Tab. 5.1.

To summarize, for all models we use the dimensionless variables defined in Eqs.

(3.23), (3.26), and (3.28); to shorten notation we define b ≡ b(E2, 0gs → 21), q ≡

q(21), and s ≡ s(0gs). For collective models of pairing, rotations, and vibrations

b ≈ 1. We refer to a realization with b > 0.7 as collective and with b < 0.3 as non-

collective. The quadrupole moment q allows us to separate different collective modes:

q ≈ ±1 for rotations, and it is nearly zero for vibrations or superconducting paired

states. In what follows we identify collective realizations with q > 0.7 as prolate
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and those with q < −0.7 as oblate. For rotations, the relative transition strength s

is related to the square of the intrinsic moment, and thus it is associated with the

Hill-Wheeler deformation parameter β2 measured relative to the maximum possible

value in a given model space. In analogy with the SU(3) group, the relative transition

strength s can be thought to represent the expectation value of the Casimir operator

which identifies the irreducible representation of the ground state band. In cases

where s ≈ 1 the ground state band structure is close to that of the QQ Hamiltonian.
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CHAPTER 4

MEAN FIELD IN THE TBRE AND ITS
PROPERTIES

4.1 The single j level model

4.1.1 Quadrupole collectivity

We begin our discussion of collectivity in the TBRE with single j level models.

Starting from the original paper [15] the single j level with identical nucleons has

been at the center of numerous investigations; a good summary may be found in the

following reviews [3, 5, 6, 34]. With many issues understood and with still unanswered

questions, the single j model remains an important exploratory benchmark. The

model, while simple, has a number of particularly attractive features which can be of

both advantage and disadvantage: the Hamiltonian is defined with a small number

of parameters; apart from an overall normalization constant, the multipole operators

are uniquely defined; a special role is played by the quasispin SU(2) group; and the

particle-hole symmetry is exact [35].

In the TBRE the number of realizations with the ground-state spin Jgs = 0 is

disproportionally large, so in search of collectivities we always select realizations with

Jgs = 0. With the exception of the ground state labeled as 0gs, we denote the low-lying

states by the value of their spin with an identifying subscript. The subscript is given

in bold if it refers to the absolute order of a given state among all states with different

spins. Throughout this thesis we give probabilities of finding realizations with certain
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Figure 4.1: (19/2)6. (a) The distribution of the fractional collectivity b. (b)
The distribution of the intrinsic quadrupole moment q. Only realizations
with the 0gs, 21 spin sequence are included in both panels. There are 10.4%
of such realizations. The 7.8% of collective realizations (b > 0.7) are shaded.

features; these probabilities are always quoted as a percentage of the total ensemble,

however, all probability distribution plots are normalized to unit area.

We address the quadrupole collectivity in Fig. 4.1. Here the results for a system

with 6 nucleons in a single j = 19/2 level are presented; we refer to this system as

(19/2)6. We select the 10.4% of random realizations where the 0gs state is followed

by the 21 state. The distribution of the fractional collectivity b ≡ b(E2, 0gs → 21) in

Fig. 4.1(a) points to a highly collective nature of the quadrupole transition 0gs → 21.

Most of realizations with 0gs and 21 are collective (b > 0.7), their fraction is 7.8% from

the total number of samples (shaded). This collectivity is not a statistical coincidence.

The system (19/2)6 has 1242 J-states, among them there are 10 states with J = 0

and 23 with J = 2, thus statistically the chance to see the 0gs, 21 spin sequence among

all other possible outcomes is only 0.015%. The large collectivity for the transition

between these two states is even more unlikely statistically. Given that the transition

strength is shared among 23 J = 2 states, and the chance of b(E2, 0gs → 21) > 0.7 is

of the order of 1 in 107.

There are two peaks of prolate and oblate deformations in the distribution of

the quadrupole moment for collective realizations in this system, see Fig. 4.1(b).
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Figure 4.2: (19/2)6. The distribution of the relative transition strength s
for the collective realizations (shaded area in Fig. 4.1). The quadrupole
moments shown in the inset are separated according to the shapes into
prolate q > 0.7 and oblate q < −0.7 deformations, shaded with pattern
and uniform color, respectively. The fraction of oblate cases is 5.2% and of
prolate cases is 1.3% from the total number of random realizations.

For most of the collective realizations the magnitude of the quadrupole moments is

consistent with the value for the axially deformed rigid rotor (q ≈ 1). The collective

realizations are further explored in Fig. 4.2, where the distribution of the relative

transition strength s is shown, with the oblate (q < −0.7) and prolate (q > 0.7) cases

shaded with different patterns. As one can see from Fig. 4.1(b), the shape of the

ground state is most likely to be oblate. The relative transition strength s for the

oblate samples is close to the maximum possible value in this model space s ≈ 1,

thus for these realizations the ground state band structure is similar to that of the

QQ Hamiltonian. The same sign of deformation is predicted for this system by the

QQ Hamiltonian (Tab. 5.1).The summary of the data on the QQ Hamiltonian for all

models discussed in this thesis is presented in Chapter 5. In about one out of four

collective cases the prolate mean field emerges. These systems are less deformed, with

s ≈ 0.37.
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Figure 4.3: (19/2)6. (a) The distribution of the deexcitation ratio B42 de-
fined in Eq. (3.30). (b) The distribution of the excitation energy ratio R42

defined in Eq. (3.29). The distributions are comprised of 13.6% of realiza-
tions that have the 0gs, 21, 41 sequence with b > 0.7, where the 21 state is
not higher than the fourth excited state, and E(41) > E(21). The prolate
and oblate cases, which appear in the ensemble with probabilities 3.3% and
7.1%, respectively, are shaded with the same patterns as in Fig. 4.2. The
values of B42 and R42 for the QQ Hamiltonian listed in Tab. 5.1 are marked
with the vertical grid lines.

We slightly modify our selection of samples in Fig. 4.3 choosing collective ones

that have states 21 and 41, with the 21 state not higher than the forth excited state

and the 41 state above it. The behavior of the deexcitation ratio B42 in 3.30 is

shown in Fig. 4.3(a). We use the same shading for prolate and oblate realizations

as in Fig. 4.2. For this system values of the deexcitation ratio can be obtained

analytically for the rotational, vibrational, and pairing limits as discussed in Sec. 3.

For all collective models with rotations B42 is close to the rotor value of 1.4; the

vibrational model gives B42 = 2; for the pairing Hamiltonian in the (19/2)6 model

B42 = 0.15. The collective oblate realizations comprise a peak around the rotational

value of B42 = 1.43. There is an extended shoulder in the distribution for prolate

realizations with a peak near B42 ≈ 0.8. It is likely that in weakly deformed prolate

instances (with the lower value of s) the rotational structure is more fragmented, and

therefore the 41 state is not purely rotational. The distribution of the ratio of the

excitation energies R42, see Fig. 4.3(b), seems to contradict the rotational limit. For
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most of the collective realizations the values of this ratio fall between the pairing

limit of 1 and the vibrational limit of 2, while in the rotational limit this ratio is

3.3. This discrepancy has been reconciled in Ref. [15] with the observation that the

rotational behavior emerges in the ensemble-averaged excitation energies; this is also

expected from the geometrical chaoticity arguments [17]. Excitation energies are

too sensitive to non-collective features, and this leads to large fluctuations of R42.

The experimental observations of realistic nuclei also show that when the quadrupole

transition rates follow rotational systematics, the excitation energy spectrum can still

be close to the vibrational limit, Ref. [36]. The coexistence of both prolate and oblate

configurations in this example could be another reason for the distortion in the energy

spectrum. Within the Elliot SU(3) model this possibility was investigated in Ref. [28].

A possible interpretation has been offered in this reference as a result of coupling of

two SU(3) irreducible representations.

4.1.2 Triaxiality

The onset of triaxiality is best noticed by the presence of new low-lying levels

22, 31, 42, and 51 (see Subsec. 3.2.1). The excitation energies are subject to the

relations E(21) + E(22) = E(31) and 4E(21) + E(22) = E(51). It is remarkable

that for the QQ Hamiltonian there is a good agreement; R2131 + R2231 = 1.005, and

4R2151 + R2251 = 1.026 for the (19/2)6 model. Here RJJ ′ as in Eq. (3.29) denotes

the ratio of excitation energies. The K quantum numbers are mixed in triaxial

systems. In our work we examine the two low-lying J = 2 states that are mixed

configurations of the K = 0 and K = 2 states. We use the angle Γ to express the

level of the K-mixing. This angle is determined by the three reciprocal moments of

inertia Ai = 1/(2Li), i = 1, 2, 3 of the rotor Hamiltonian 3.7

tan 2Γ =

√
3(A1 − A2)

A1 + A2 − 2A3

.
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The relation between the quadrupole moment and the moments of inertia (or between

the parameters Γ and γ) is model dependent. In the irrotational flow model Γ is

defined as Γ = {arccot [3 cot(3γ)]− γ} /2, which gives Γ ≪ γ for small triaxiality;

a rather different result emerges in the rigid rotor model. We treat Γ and γ as

being independent. Following Ref. [37] one can view the relative transition strength

b(E2, 0gs → 21)+b(E2, 0gs → 22) = 1 and 7
2
b(21 → 22)+q2(21) = 1 for the J = 2 two-

state model as the Pythagorean theorem for amplitudes. The corresponding angles

are related to the triaxiality and K-mixing angles as

tan2(γ − Γ) =
B(E2, 0 → 22)

B(E2, 0 → 21)
, (4.1)

tan2(γ + 2Γ) =
2B(21 → 22)

7Q2(21)
. (4.2)

The triaxiality and K-mixing are small in the QQ Hamiltonian, see the discussion

in Chapter 5. Correspondingly, these effects have a weak but detectable presence in

the TBRE. For our studies of triaxiality in Fig. 4.4, we consider the (19/2)6 model

and select collective realizations with 0gs and 21. In addition to that, we require that

in the entire spectrum there is a 22 state with the quadrupole moment almost the

same in magnitude but opposite in sign to that of the 21 state. We recall that for

the triaxial rotor model Q(21) = −Q(22) because the quadrupole tensor is traceless

and in the space spanned by all possible J-states the sum of its diagonal elements is

zero. We find that practically for all collective realizations, realizations with a strong

transition between the 0gs and 21 states (b > 0.7), which can be thought of as a K = 0

band, there is a second 22 state which is predominantly a K = 2 state. From the

total number of random realizations, 18.3% are collective, and they have the second

22 state with the quadrupole moment opposite in sign and approximately, within

20%, equal to the quadrupole moment of the 21 state. We use the same shading
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Figure 4.4: (19/2)6. (a) The distribution of the triaxiality angle γ. (b) The
distribution of the K-mixing angle Γ. (c) The distribution of the triaxial-
ity angle γDF from the Davydov-Filippov model. The angles are obtained
from Eqs. (4.1), (4.2) and (4.3). We select realizations with two states of
spin 2 in the spectrum and require b > 0.7 and q(21) ≈ −q(22); 18.3% of
realizations satisfy this set of restrictions. The realizations with prolate and
oblate shapes are shaded with the same patterns as in Figs. 4.2 and 4.3.
Vertical grid lines indicate the triaxiality parameters calculated from the
QQ Hamiltonian, which are: γ = 9.79◦, Γ = 0.73◦, and γDF = 7.52◦.
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as in Fig. 4.3 to separate prolate and oblate shapes. In Figs. 4.4(a) and 4.4(b) we

show the distributions of the triaxiality angle γ and K-mixing angle Γ, respectively

(these angles are determined from Eqs. (4.1) and (4.2). The ratio of the excitation

energies of the 21 and 22 states provides an additional independent way to evaluate

the triaxiality. Shown in Fig. 4.4(c) is the distribution of the triaxiality angle γDF

calculated using this ratio and assuming the Davydov-Filippov model of irrotational

flow, as

sin2(3γDF ) =
9

2

R2122

(1 +R2122)
2 . (4.3)

For small triaxiality γ2
DF ≈ 0.5R2122 .

In the (19/2)6 model one most commonly finds collective realizations with oblate

intrinsic deformation and s ≈ 1, and these realizations are triaxial with γ ≈ 9◦,

Fig. 4.4(a). This result is consistent with what is expected from the QQ Hamiltonian,

see the summary in Tab. 5.2. The deformation parameters for the ground state band

of the QQ Hamiltonian are indicated with vertical grid lines. The less frequent prolate

cases are nearly axially symmetric. The ratio of the excitation energies R2221 used to

obtain γDF in Fig. 4.4(c), appears to be lower in the TBRE than predictions of the

Davydov-Filippov model for the peak value of γ (Fig. 4.4(a)). This finding is similar

to the result shown in Fig. 4.3(b), where R42 is lower than expected for the rotor. As

discussed above, we believe that the excitation energies are influenced significantly

by non-collective features.

4.1.3 Higher multipole moments

It is known that in the TBRE the probability to find a 0gs state followed by either

one of the states 21, 41, 61, or 81 is disproportionally large as compared to what

is statistically expected. For the (19/2)6 model, the corresponding probabilities are

10.4%, 17.3%, 11.9% and 1.8% and, for the (19/2)8 model, they are 7.47%, 7.99%,

16.87%, and 2.36%. In an attempt to detect collectivities of higher order, we repeat
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Figure 4.5: (a)-(c) The distributions of the fractional collectivity b(λ) for
three multipoles with λ = 4, 6 and 8 correspondingly; (d)-(f) the distribu-
tion of the intrinsic multipole moments qλ for λ = 4, 6 and 8. Two single-
level systems are considered: (1) (19/2)6 and (2) (19/2)8. Here we include
realizations where in addition to 0gs the first excited state is either 41, or 61,
or 81. The shaded areas correspond to collective and non-collective modes
with b(λ) > 0.7 and b(λ) < 0.3, respectively.
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the previous study of collectivity, but target the collective realizations of multipolarity

λ = 4, 6, and 8; we explore the fractional collectivity b(λ) ≡ b(Eλ, 0gs → λ1) and the

multipole moment qλ ≡ qλ(λ1), for realizations where spin of the first excited state

is λ. As evident from Fig. 4.5, formation of the intrinsic shapes with deformations

of multipolarities λ = 4, 6 and 8 is present in the TBRE. There is a sizable number

of collective realizations, b(λ) > 0.7, with λ = 4 and 8 for N = 6 particles in the

j = 19/2 orbital, and λ = 4 and 6 for N = 8 particles (shaded in red). The multipole

moments have a specific sign for these samples. In contrast, the deformation with

λ = 6 (8) does not develop in the system with N = 6 (8) : the realizations are

mostly non-collective, b(λ) < 0.7 (shaded in blue), and the corresponding moment

has a peak near zero. The observed multipole collectivities may be related to the

symmetries discussed in Ref. [34].

4.1.4 Multipole structure of the Hamiltonian

In this subsection we discuss the multipole structure of a generic two-body Hamil-

tonian in the single j level model and its reflection in the TBRE regularities. For this

purpose we use a larger system of 8 nucleons in the same model space with j = 19/2.

The quadrupole collectivity summarized for this model in Figs. 4.6, 4.7 and 4.8 is

similar to what was observed in the case of the (19/2)6 model (Figs. 4.1, 4.2 and

4.3). The main difference is that only oblate ground state configurations are seen.

The collectivities observed in the single j studies are deeply rooted in the under-

lying geometric structure of the Hamiltonian. To pinpoint the multipole collectivities

we write the two-body Hamiltonian (1.2) in the particle-hole channel

H(2) =
∑

K

ṼK

∑

k

(

ajm1a
†
jm2

)

K−k

(

a†jm1
ajm2

)

Kk
, (4.4)

where a particle-hole operator
(

a†jm1
ajm2

)

Kk
represents the multipole operator (3.1)

in the second-quantized form.
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Figure 4.6: (19/2)8. The same figure as Fig. 4.1 but for the 8-particle system.
(a) The distribution of the fractional collectivity b. (b) The distribution of
the intrinsic quadrupole moment q. The histogram is comprised of 7.5% of
random spectra with 0gs and 21 states. Shaded areas correspond to 4.6%
of collective realizations (b > 0.7) and 1.9% of non-collective realizations
(b < 0.7). This figure is analogous to Figs. 4.1 and 4.5, and the same
shading is used in these figures.
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Figure 4.7: (19/2)8. The same figure as Fig. 4.2 but for the 8-particle system.
The distribution of the relative transition strength rule s for the collective
realizations. This figure is analogous to Fig. 4.2, and the same shading is
used as in Figs. 4.2 and 4.3, however only oblate shapes (q < −0.7) are seen.
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Figure 4.8: (19/2)8. Same as Fig. 4.3 but for the 8-particle system. (a)
The distribution of the deexcitation ratio B42. (b) The distribution of the
excitation energy ratio R42.

The interaction parameters ṼK in the particle-hole channel are determined from

those in the particle-particle channel VL via the Pandya transformation

ṼK =
∑

L

(2L+ 1)χK
L VL. (4.5)

The transformation coefficients

χK
L =

{

j j K
j j L

}

,

are six-j recoupling coefficients. On a single level only even values of the two-particle

angular momenta L are allowed by the Fermi statistics, giving j + 1/2 interaction

parameters VL. In studies of the TBRE a set of these parameters can be viewed as a

random vector in the j + 1/2 dimensional space.

There is no such restriction on the particle-hole angular momentum, thus the

inverse transformation

VL =
∑

K

(2K + 1)χL
K ṼK (4.6)

may produce some unphysical VL with odd values of L. Such Pauli-forbidden terms in

the Hamiltonian do not generate any dynamics. Therefore, the 2j +1 parameters ṼK

contain passive components, which can be removed making ṼK linearly dependent [35].
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The interaction terms that correspond to the multipoles with momentum K = 0 and

K = 1 are constants of motion [38].

The K = 0 term in (4.4) describes the nucleon-nucleon interaction, which is the

same for all angular momentum channels, VL = χ0
L = const, as follows from Eq. (4.6).

The monopole Hamiltonian is proportional to the number of particle pairs in a system.

It has no dynamical effect, nor any effect on the probability to observe a certain

ground-state spin. Thus, one can constrain the TBRE by projecting out the monopole

component χ0
L as follows,

VL → VL − χ0
L

∑

L′(2L′ + 1)χ0
L′ VL′

∑

L′(2L′ + 1) (χ0
L′)

2 . (4.7)

This effectively reduces the number of independent parameters VL.

For a single j model space, the K = 1 multipole is proportional to the angular

momentum operatorsM1κ ∼ Jκ. Therefore theK = 1 interaction leads to a rotational

E(J) ∼ J(J +1) spectrum with ṼK=1 defining the moment of inertia. In the particle-

particle channel the J2 operator is obtained with VL = χ1
L ∼ const + L(L + 1).

Inversely, those interactions that lead to positive K = 1 in Eq. (4.5) are likely to

result in the ground-state spin being zero [3]. The exact J2 operator component in

the interaction can be removed by orthogonalization to χ1
L following Eq. (4.7).

We emphasize that the K = 0 projection in Eq. (4.7) amounts to an energy shift

for all states, which is irrelevant and so we do not discuss it. For K = 1 the projected

Hamiltonian is still dynamically identical to the original one; all eigenvectors remain

unchanged, but the energies of states are modified in accordance with their spin. The

changes are no longer trivial for the quadrupole term K = 2, which corresponds to

the QQ interaction discussed in Sec. 3.

The role of different multipoles in the TBRE is studied in Fig. 4.9 and 4.10, where

we remove interaction components using the Graham-Schmidt projection procedure.

The projection of the pairing interaction VL = δL,0 has been extensively discussed in
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Figure 4.9: (19/2)8. Ground-state spin statistics for three random ensem-
bles: (a) the TBRE, (b) the TBRE without a J2 term, and (c) the TBRE
without both, J2 and QQ terms.

Ref. [3]. Since the removal of pairing does not lead to any qualitative change we forgo

this topic in what follows.

The probability to observe a certain ground-state spin for the (19/2)8 system is

shown in Fig. 4.9. Three cases of random ensembles are reviewed: (a) the traditional

TBRE case where all j+1/2 interaction parameters VL are random Gaussian variables;

(b) the case where K = 1 term is removed; and (c) the case where K = 1 and 2

multipole components are removed from the Hamiltonian. While the wave functions

in ensembles (a) and (b) are identical, the ground-state spin distributions are different.

The determining role of the J2 moment-of-inertia-like term has been discussed before;

it appears to be fully responsible for the cases with the maximum possible spin [17].

As shown in Fig. 4.9, the states with the maximum spin almost never occur as ground

states in ensembles (b) and (c), where the J2 term is removed.

The ensembles (b) and (c) shown in Fig. 4.9 appears to have similar ground-

state spin distributions but the behavior of the fractional collectivity is different. In

Fig. 4.10 for all three ensembles we show the distribution of the fractional collectivity
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Figure 4.10: (19/2)8. The distribution of the fractional collectivity b for the
same three random ensembles as in Fig. 4.9. We select realizations with the
ground state 0gs followed by the first excited state 21. The fraction of such
cases for ensembles (a), (b), and (c) is 7.6%, 8.2% and 4.7%, respectively.

in transition between the 0gs and 21 states. The fraction of such cases for ensembles

(a), (b), and (c) is 7.6%, 8.2%, and 4.7%, respectively. It is evident that this collectiv-

ity disappears once the quadrupole component in the interaction is removed. Thus,

we conclude that the quadrupole-quadrupole component in the interaction generates

deformations and is responsible for the rotational behavior observed.

4.2 Models beyond single j

In this section we expand the scope of our models and consider systems with

two single-particle levels. The richer geometry allows one to study the effects of the

particle-hole conjugation, different structures of the multipole operators, and the role

of parity of single particle levels.

The first two-level model space we discuss has two degenerate levels j1 = j2

of the same parity. Because the levels have the same parity, the effective spher-

ical Hartree-Fock mean-field Hamiltonian can contain terms of a mixed structure
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such as a†j1aj2 , and these terms are scalars for j1 = j2. There is also some flexibility

in the choice of the single-particle matrix elements of the multipole operator Mλµ,

which depend on the radial overlap of the operator rλ. We choose the radial overlap

to be diagonal 〈j1|rλ|j1〉 = 〈j2|rλ|j2〉 and 〈j1|rλ|j2〉 = 0; another possibility, with

〈j1|rλ|j1〉 = 〈j2|rλ|j2〉 = 〈j1|rλ|j2〉, has been explored and led to no substantial dif-

ference. Shown in Figs. 4.11 are the distributions of the fractional collectivity and

quadrupole moment for multipole operators with λ = 2, 4, 6, 8 in the (13/2+, 13/2+)6

system, namely with 6 nucleons placed in two j1 = j2 = 13/2 orbitals. In the case of

the E2 and E4 multipole operators, the corresponding moments have a definite type

of deformation. The quadrupole moment has two peaks on the oblate side which are

made up by collective realizations with b > 0.7 and a peak at zero attributed to non-

collective realizations with b < 0.3. A similar picture is observed for the hexadecapole

moment (λ = 4), with one collective peak on the positive side and non-collective peak

around zero. For higher multipoles with λ = 6 and 8, the number of collective spectra

falls drastically, resulting in a single peak around zero for the corresponding multipole

moments.

A structurally different model is examined in Fig. 4.12, here two levels of equal

spin and different parity are considered. The matrix elements of the Hamiltonian

are now restricted by parity, which reduces the number of the two-body parameters

(from 49 to 35 parameters for N = 6 particles in the j1 = j2 = 13/2 space). The

same diagonal structure of the multipole operators with λ = 2 and 4 is used as in the

(13/2+, 13/2+)6 system. A model space of this kind has been explored in Ref. [39]

because it is the simplest valence space that allows for collective quadrupole and

octupole modes. (The prevalence of positive parity ground states is remarkable in

this model [see Fig. 2.1(a)].) As compared with the (13/2+, 13/2+)6 model, in the

(13/2+, 13/2−)6 model the fraction of collective realization is approximately the same.

(For different-parity levels, the fraction of collective samples with b(λ) > 0.7 is 6.9%
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Figure 4.11: (13/2+, 13/2+)6. (a)-(d) The distributions of the fractional
collectivity b(λ) for λ = 2, 4, 6, 8; (e)-(h) the distributions of the intrinsic
multipole moments qλ for multipoles with λ = 2, 4, 6, 8. The single-particle
levels are degenerate. Shaded areas correspond to collective b(λ) > 0.7 and
non-collective b(λ) < 0.3 modes. This figure is analogous to Figs. 4.1, 4.5,
and 4.6, and the same shading is used in these figures.
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Figure 4.12: (13/2+, 13/2−)6. (a) The distributions of the fractional collec-
tivity for the quadrupole transition; (b) the distributions of the fractional
collectivity for the hexadecapole (λ = 4) transition; (c) the distribution of
the quadrupole moment; (d) the distribution of the hexadecapole moment.
The shading is the same as in Figs. 4.1, 4.5, 4.6, and 4.11.

(13.7%) for λ = 2 (λ = 4) from the total number of realizations against 4.1% (13.6%)

for the same-parity levels.) The distribution of the multipole moments is also not

affected by the parity of the single-particle levels.

In general, results for the quadrupole and hexadecapole collectivities, see Figs. 4.11

and 4.12, are very similar to those observed in the single j level models (Figs. 4.1, 4.5,

and 4.6). The major features in the distributions of b and q persist despite a larger

number of random parameters, the more complex geometry of the model, and, as

a result, more chaotic dynamics on two levels. In all instances there is a peak in

the distribution of the fractional collectivity b near 1, indicating a sizable number

of collective cases. The quadrupole moment for collective states has a well-defined
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peak on the oblate side. The non-collective realizations, b < 0.3, appear to have

quadrupole moment distribution centered at zero (shaded in blue).

For systems with exact particle-hole symmetry the quadrupole moment for parti-

cles is equal in magnitude and opposite in sign to that of holes. Moreover, properties

such as excitation energies, the spins of states, and transition rates, are exactly equal

for particle-hole conjugated systems. The particle-to-hole transformation for any two-

body Hamiltonian amounts to the same Hamiltonian for holes but with an additional

one-body term (the single-particle energies) [35], thus the symmetry is not exact for

the (13/2, 13/2) model space. Nevertheless for holes in the TBRE, a random ensemble

with two-body matrix elements selected symmetrically about zero, the one-body term

averages to zero leading to nearly symmetric results. This is confirmed in Figs. 4.13

and 4.11; the distribution of the quadrupole moment for a system with 6 holes looks

the same as that of 6 particles, reflected around zero. The only difference is that

the Hamiltonian for holes contains random single-particle energies, which leads to a

different number of collective realizations. For a system with 6 holes, or N = 22

particles, the fractions of realizations with the spin 0, 2 and 0, 4 lowest sequences

are larger than for its particle-hole conjugated system, and there are more collective

realizations for the (19/2, 19/2)22 system than for (19/2, 19/2)6 (see Tab. 4.1).

4.3 Realistic model space

The schematic models discussed in the previous sections appear to have collective

deformation and possess a rotational low-lying spectrum. However, to what extent

they reflect the dynamics of realistic nuclei remains a question. The sign of the defor-

mation seems to be inconsistent with the prolate dominance (a detailed discussion of

the prolate dominance is given in Ch. 5), moreover semi-magic nuclei (nuclei with only

one type of valence nucleons) are generally not deformed. To address these issues we

examine a more realistic model space consisting of the 0f7/2 and 1p3/2 single-particle
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Figure 4.13: (13/2+, 13/2+)22. (a) The distributions of the fractional collec-
tivity for the quadrupole transition; (b) the distributions of the fractional
collectivity for the hexadecapole (λ = 4) transition; (c) the distribution of
the quadrupole moment; (d) the distribution of the hexadecapole moment.
This system is particle-hole conjugated relative to that in Fig. 4.11. The
shading is the same as in Figs. 4.1, 4.5, 4.6, 4.11 and 4.12.

Table 4.1: Comparison of the fraction of the E2 and E4 collective spec-
tra for the (13/2+, 13/2+)6 system and its particle-hole conjugated system
(13/2+, 13/2+)22. Given are the percentage of the realizations with the 0,2
and 0,4 sequence n(0, 2) and n(0, 4) and the percentage of the collective re-
alizations n(b > 0.7) and n(b(4) > 0.7). The total number of realizations is
500,000 for both systems.

N = 6 N = 22
n(0, 2) 4.1 8.1

n(b > 0.7) 1.2 4.8
n(0, 4) 13.6 20.5

n(b(4) > 0.7) 4.5 10.2
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Figure 4.14: (0f7/2, 1p3/2)
8. (a) The distribution of the fractional collectivity

b. (b) The distribution of the intrinsic quadrupole moment q. The solid black
line outlines the probability distribution for the 31% of realizations with the
0gs state followed by the 21 first excited state, both states with isospin T = 0.
Here 8.8% of realizations are collective and 12.8% are non-collective.

levels, allowing both protons and neutrons. For this model we consider harmonic

oscillator wave functions for the calculations of the matrix element of the quadrupole

operator; we use the same effective charge for both types of nucleons. The multipole

operator in this form facilitates the comparison with the SU(3) group.

In Fig. 4.14 we present our results for a system with 8 nucleons, 4 protons and

4 neutrons. This corresponds to the configuration space of the 48Cr nucleus. In

Fig. 4.14(a), where the fractional collectivity b is shown, the peak that corresponds

to collective realizations is observed. The distribution of the quadrupole moment

shows prolate and oblate peaks, see Fig. 4.14(b); these peaks are especially clear for

collective realizations. Non-collective cases appear to center around q = 0 (shaded in

blue). In agreement with the results in Ref. [40], the prolate peak is larger, showing

the prolate dominance.

In Fig. 4.15 we focus on the 8.8% of realizations that are collective. The quadrupole

moments in Fig. 4.14(b) are further separated into prolate q > 0.7 and oblate q < −0.7

cases as shown in the inset in Fig. 4.15. The same shading is used in the main fig-

ure, showing the distribution of the reduced quadrupole strength s. The maximum
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Figure 4.15: (0f7/2, 1p3/2)
8. The distribution of the relative transition

strength s for the collective realizations (shaded in Fig. 4.14). The 3.6%
of prolate cases and 1.0% of oblate are identified with shades of color and
pattern (see the inset).

possible value s = 1 is reached when the ground state wave function of the randomly

selected Hamiltonian coincides with that of the QQ Hamiltonian. The J = 0, T = 0

ground state of the QQ Hamiltonian with s = 1 posses a prolate deformation in this

valence space. The oblate shapes appear to peak around s = 0.6.

The distributions of the ratios B42 and R42 for collective realizations are shown in

Fig. 4.16. This figure can be compared to Fig. 4.3; we use the same shading in both

figures to separate the prolate and oblate collective cases. In contrast to Fig. 4.3(a),

both prolate and oblate realizations in Fig. 4.16(a) have band structure with deex-

citation ratio B42 that is consistent with the rotational value. This ensemble, based

on a more realistic model space, appears to have an energy spectrum that is closer to

rotational; the distribution of R42 in Fig. 4.16(b) is broad, but it has a peak around

the rotor value of 10/3. The collectivities observed in the two-body random ensem-

bles are influenced by the single-particle level structure which could be interpreted as

a representation of the mean-field structure of the core. In many cases the presence

of the shell structure inhibits the role of the two-body Hamiltonian resulting in re-
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Figure 4.16: (0f7/2, 1p3/2)
8. (a) The distribution of the deexcitation ratio

B42 defined in Eq. (3.30). (b) The distribution of the excitation energy ratio
R42 defined in Eq. (3.29). Collective realization discussed in Fig. 4.14 are
selected and, in addition, we require that the second excited state has spin 4.
The fraction of such cases is 4.2%, with 2.4% being prolate and 0.6% being
oblate, they are shaded separately with the same patterns as in Fig. 4.15.
The values for B42 and R42 from the QQ Hamiltonian listed in Tab. 5.1 are
shown with the vertical grid lines. This figure is analogous to Fig. 4.3, and
the same shading is used as in Figs. 4.2-4.4 and 4.15.

duced collectivity. This effect is known in realistic nuclei and is seen in model studies

including SU(3) and seniority models for deformation and pairing. In Fig. 4.17 we

demonstrate the effect of the core’s mean-filed by considering a situation with the

following splitting of the single-particle energies δǫ = ǫp3/2 − ǫf7/2 = 7. The unit of

energy is determined by the variance of the two-body matrix elements, which can also

be expressed in terms of the variance of the level spectrum for the two-particle sys-

tem. The chance to observe the 0gs,21 sequence in this case is 15.7%, which is half of

that in the degenerate model. Among these realizations there is a noticeable number

of collective (2.9% of the total number) and non-collective (8.1% of the total num-

ber) realizations. The distributions of the fractional collectivity and the quadrupole

moment for theses realizations are shown in Fig. 4.17. Another difference between

degenerate and non-degenerate systems is a presence of only prolate deformation in

the non-degenerate system, see Fig. 4.18. However, the overall manifestations of

collectivity are similar to those of the degenerate model.
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Figure 4.17: (0f7/2, 1p3/2)
8, δǫ = 7. (a) The distribution of the fractional

collectivity b; (b) the distribution of the intrinsic quadrupole moment q.
The system is non-degenerate with single-particle energies ǫ(f7/2) = 0 and
ǫ(p3/2) = 7 and δǫ = ǫ(p3/2)− ǫ(f7/2). The solid black line outlines the prob-
ability distribution for the 15.7% of realizations with the 0gs state followed
by the 21 first excited state, both states with isospin T = 0. Here 2.9% of
realizations are collective and 8.1% are non-collective.
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Figure 4.18: (0f7/2, 1p3/2)
8, δǫ = 7. The distribution of the relative transi-

tion strength s for the collective realizations (shaded in red in Fig. 4.17).
The system is non-degenerate with single-particle energies ǫ(f7/2) = 0 and
ǫ(p3/2) = 7 and δǫ = ǫ(p3/2)−ǫ(f7/2). The 1.9% of prolate cases are identified
with a pattern shade (see the inset).
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As concluded in Ref. [40], collective realizations appear to correspond to correlated

interaction matrix elements. Similarly to the single j level model (Fig. 4.10), it is

natural to attribute this to the QQ component in the Hamiltonian. We examine

the distribution of overlaps x between the ground state wave functions of the two-

body random ensemble |0gs(TBRE)〉 and a ground state wave function of the QQ

Hamiltonian

x = |〈0gs(TBRE)|0gs(QQ)〉|2.

We select the 56.3% of realizations where the ground state quantum numbers are

J = 0 and T = 0 (the ground state of the QQ Hamiltonian has the same spin and

isospin, T = 0 and J = 0). A similar approach has been used in investigations of

pairing coherence in random ensembles [3]. The distribution for x shown in Fig. 4.19

is compared with the Porter-Thomas χ2 distribution and with the overlap for pair-

ing. The latter emerges for uncorrelated wave functions in the 126-dimensional space

spanned by the J = 0, T = 0 wave functions. As shown in Fig. 4.19 the Porter-Thomas

distribution drops abruptly, thus predicting that cases with large x are extremely un-

likely. According to the Porter-Thomas distribution the probability to find x > 0.1

is only 0.03%, whereas in the TBRE, x > 0.1 in 18.8% of random realizations. As

compared with the Porter-Thomas distribution, the pairing component of the inter-

action is also enhanced, although the overlap between wave-functions in the pairing

and QQ Hamiltonians is not significant (11%). To emphasize the relation between

the fractional collectivity b and the large QQ component in the wave function, we

show in Fig. 4.19 the histogram for collective realizations with 0gs, 21, and b > 0.7.

It is clear that the collective transitions and rotational structure emerge when the

component that corresponds to the eigenstate of the QQ Hamiltonian is large.
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Figure 4.19: (0f7/2, 1p3/2)
8. The distribution of the overlaps between the

TBRE and QQ ground state wave functions. The results for all Jgs =
0, Tgs = 0 states are unshaded; the fraction of such realizations is 56.3%.
Collective realizations that have J = 2, T = 0 as a first excited state and
b > 0.7 are shaded (their fraction is 8.8%). The solid line shows the Porter-
Thomas distribution, which is expected for the overlap between uncorrelated
states.
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CHAPTER 5

QQ HAMILTONIAN

5.1 Rotational bands

As we showed in the previous chapter, the QQ component in the random two-body

Hamiltonians is a necessary ingredient for the emergence of quadrupole collectivity

in the TBRE. It is also an important part of realistic shell-model potentials. In

many respects, the QQ interaction and the geometry of the valence space determine

formation of the rotational modes and their characteristics. Thus, in this chapter we

address questions of the rotational systematics in the QQ Hamiltonian. We explore

the impact of the model-space structure on rotational modes and, particularly, on

shapes of deformation. Particle-hole symmetry is another factor that affects shapes

of deformation, and its role is also investigated in this chapter. The QQ interaction

is related to the Casimir operator of the Elliot SU(3) group (see Ch. 3). The SU(3)

group is not exact in general. Where applicable, we compare our results for the QQ

interaction with those of the exact SU(3) symmetry.

Table 5.1 includes spectral characteristics of the QQ Hamiltonian for a single

orbital with j = 19/2, two-level models with j1 = j2 = 13/2 of the same and of

opposite parity, and the realistic model spaces 0f7/2, 1p3/2 and 0f5/2, 0g9/2. Isospin is

included in the latter two spaces, and the number of particles N refers to the sum of

the number of protons and neutrons. Most of these model spaces are used in our study

of collectivity in the TBRE in Ch. 4. The choice of systems is such that it allows one
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to investigate various aspects that affect the spectrum of the QQ Hamiltonian, such

as the geometry of the space, particle-hole symmetry, and the effects of isospin. The

spectra for all systems have a ground state with spin zero and the first excited state

with spin 2. The 21 state is connected with the 0gs state by a strong E2 transition,

this follows from the fact that values of the fractional collectivity b (Eq. 3.3) are close

to 1. The values of the intrinsic quadrupole moment q(21) are close to the axial-rotor

value of 1 for all systems, except for those with half-filled shells (N = 12 in the

0f7/2, 1p3/2 space). The deexcitation ratio B42 is consistent with the axial rotor value

of B42 ≈ 1.43 (from Eq. 3.25) with the exception of the (0f7/2, 1p3/2)
10 systems with

δǫ ≡ ǫp3/2 − ǫf7/2 = 0,±0.6. The evidence of rotational structure in the QQ spectrum

is further supported by the behaviour of the excitation energies. In the rigid-top limit

E(J) ∝ J(J +1), and the excitation energy ratio is R42 ≈ 3.33; for all systems R42 is

close to this rigid-rotor value. Systems with an odd number of protons and neutrons

(N = 10 in the 0f7/2, 1p3/2 space) have isospin T = 1 in the ground state, and the

states 21 and 22 are chosen of the same isospin as in the ground state.

An interesting question for deformed systems is the sign of the quadrupole mo-

ment. On a single level with one kind of nucleons, the shape of deformation is oblate

(pancake-like) for shell occupancies less than a half. The particle-hole symmetry

appears to be exact in this case, leading to the quadrupole moment of the same mag-

nitude and opposite sign for particle-hole conjugated systems (not shown). An oblate

shape of deformation at the beginning of the shell is also predicted for two two-level

models with j1 = j2 = 13/2. In all instances of the realistic model space (0f7/2, 1p3/2),

the deformation is prolate (cigar-like) at the beginning of the shell. For these model

spaces, the same sign of deformation was observed in the TBRE for the majority of

collective samples. If single-particle levels have opposite parity as in the (0f5/2, 0g9/2)

model, the shape of deformation is oblate at the beginning of the shell. The statis-

tics of the quadrupole moment in random ensembles for this system in Ref. [40] is
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consistent with this observation for the QQ Hamiltonian.

The single-particle energies affects collective features. For example, in our study

of the TBRE the presence of the core’s structure reduces collectivity and affects

its characteristics. As one can see comparing the degenerate case of the (0f7/2, 1p3/2)

model, δǫ = ǫp3/2−ǫf7/2 = 0, and non-degenerate cases with δǫ = ±0.6, 4.2 in Tab. 5.1,

the collective observables are not sensitive to the structure of the single-particle levels.

Also the dependence of the QQ spectrum on the shape of the single-particle potential

is investigated for the 0f7/2, 1p3/2 model, with the normal ordering of levels, when

the 0f7/2 level lies lower than the 1p3/2 level, δǫ = 0.6, 4.2, and the inverse ordering,

δǫ = −0.6. The position of the single-particle levels does not seem to affect the

collective observables, except for the half-filled system, N = 12. A small deformation

arises in the middle of the shell for non-degenerate levels, and its sign depends on the

relative position of the single-particle levels.

Most of the systems discussed in Tab. 5.1 are triaxially deformed, which is pointed

by the presence of the second state with spin 2, a typical signature of triaxiality. In

the rigid-rotor triaxial model the dimension of the space with spin 2 is 2 × 2. Because

the quadrupole tensor is traceless, the sum of the moments of two J = 2 states is

equal to zero. Four cases studied in random ensembles and presented in Tab. 5.2 are

triaxial. The values of the triaxiality angles γ,Γ, and γDF described in the two-band

prescription in Ch. 3 are listed in Tab. 5.2, as well as the sums of excitation energy

ratios: R2131 +R2231 and 4R2151 +R2251 which are equal to 1 for a triaxial rotor [22].

The formation of triaxial mean field in the TBRE was investigated for the (19/2)6

model, see Fig. 4.4. Values of the triaxiality angle γ and K-mixing angle Γ in the

TBRE are in good agreement with the QQ values.
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Figure 5.1: Shapes of the single-particle potential. The harmonic oscillator
potential is shown with the black solid line. A steeper potential is shown
with the red dashed line. The blue dashed line represents a flatter potential.

5.2 Shapes of deformation

Practically all deformed nuclei in nature are known to have a prolate shape in the

ground state. This prolate dominance has been widely discussed in the literature [41,

42, 43, 44]. An effort to pinpoint the origin of the phenomenon using ensembles with

random two-body interactions is presented in Ref. [40]. The role of the single-particle

level structure in the prolate dominance is discussed by Hamamoto in Ref. [44]. In this

chapter we explore the sign of deformation in the QQ Hamiltonian for particle-hole

conjugated systems as the single-particle structure of the space varies.

The shape of the single-particle potential also affects the shape of deformation.

The effect of both particle-hole symmetry and of the shape of the single-particle

potential on the sign of deformation in the QQ Hamiltonian is studied for two model

spaces.

The first model contains N protons and neutrons (Tz = 0) in the (0f7/2, 1p3/2)
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Figure 5.2: (0f7/2, 1p3/2)
N . (a) The fractional collectivity and (b) the

quadrupole moment of the 21 state for the QQ Hamiltonian. Four cases
of the single-particle splitting δǫ = ǫ(1p3/2) − ǫ(0f7/2) are considered:
δǫ = 0,±0.6, 3.0. Predictions of the realistic FPD6 potential are shown
with a dotted line with squares.
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space. Some of the data for this space are listed in Tab. 5.1. Configurations of N

particles in this valence space correspond to the shell configurations of 46V, 48Cr, 50Mn,

52Fe, 54Co, 56Ni, and 58Cu for N = 6, 8, 10, 12, 14, 16, and 18, correspondingly. As

mentioned earlier and seen from Fig. 5.2, the QQ Hamiltonian predicts prolate shape

at the beginning of the shell for this system. As a further investigation of deformation

shapes, we lift the degeneracy of the single-particle levels by δǫ = ǫ(1p3/2)− ǫ(0f7/2).

Placing the 0f7/2 orbital lower than the 1p3/2 orbital corresponds to a flattening of the

harmonic oscillator potential as shown with the blue line in Fig. 5.1. In the Nilsson

potential this effect is simulated by introducing the l2 term. For the reverse order of

orbits, 1p3/2, 0f7/2, the potential is steeper than the harmonic oscillator potential, and

this is shown with the blue line in Fig. 5.1. Although the particle-hole symmetry is

violated by single-particle level splitting, this does not affect the shape of deformation

at the beginning and at the end of the shell. Less than half-filled and more than half-

filled systems preserve their sign of deformation as compared with the degenerate

case. A predominance of a certain deformation develops in the half-occupied shell,

N = 12. For the half-filled non-degenerate systems, the shape of the mean field is

defined by the relative capacity of the levels. Systems with the lower level of bigger

capacity, that is bigger l, have a prolate shape, and vice versa. This is in agreement

with the mean-field surface effect explored by Hamamoto and Mottelson [44]. It has

been shown in this reference that for two deformed potentials, a harmonic oscillator

potential and an infinite-well potential, a prolate shape is dominant for the one with

a sharper surface, namely for the infinite well potential.

Results for the realistic shell-model potential FPD6 [45] are also shown in Fig. 5.2.

According to these calculations, the deformation in the middle of the shell is indeed

prolate. However in the systems at the end of the shell (N=14,16, and 18) with

the realistic potential, the 0gs → 21 transition is not very strong; b is only of order

20-30%. The value of the quadrupole moment q ≡ q(21) for these systems points to
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the noticeable violation of the particle-hole symmetry.

We performed a similar study for the complete sd-shell containing N nucleons.

For this system we included the spin-orbit splitting which changes the energy of the

single particle levels according to ǫ(d5/2) = −kl/2 and ǫ(d3/2) = k(l + 1)/2, where

k is a variable parameter. The largest dimension of the many-body space is 142 for

the half-occupied system, N = 6, such a small dimensionality allowed us to perform

an exact diagonalization for all N . Shown in Fig. 5.3 is the fractional collectivity of

the ground state b and the quadrupole moment of the 21 state q for five strengths

of the spin-orbit splitting k. What unifies all of these systems is the presence of two

deformed states with spin 2 in the low-lying spectrum with the opposite sign of the

quadrupole moment, which is a signature of triaxiality. However the behavior of these

two states as a function of the spin-orbit splitting is quite different in systems with

different N . For the N = 4 system the states are degenerate in the absence of the

spin-orbit interaction. Once the degeneracy is removed, the states stay quite close

in energy and their quadrupole moments are of nearly the same magnitude. In the

half-filled shell, N = 6, the signature of the low-lying spectrum is a spin sequence

0,0,2,2. The two J = 0 states are almost degenerate, and so are the J = 2 states. The

single-particle splitting resolves into two bands with each of the J = 0 state being a

bandhead. The shape of the deformation of the lowest J = 2 state is oblate. A quite

interesting behaviour is observed in the N = 8 system; this is the only system with the

quadruple moment changing a sign as spin-orbit splitting increases. For comparison,

the results of the shell model calculations with the realistic USD potential [46] are

also shown in Fig. 5.3. According to the shell structure, these systems correspond to

neutron-rich oxygen isotopes with tn excess of neutrons equal to N . The values of b

and q for k = 2 follow the USD predictions most closely. On a side note, pairing and

the intruder states play an important role in nuclei with a large excess of neutrons,

and limitations to the QQ Hamiltonian in the sd-shell might not represent the realistic
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Figure 5.3: (a) The fractional collectivity and (b) the quadrupole moment of
the 21 state for the QQ Hamiltonian for N particles in the sd-shell. Data is
collected for five spin-orbit strengths k and the realistic shell model potential
(USD).
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picture.

To conclude this chapter we investigate the presence of the QQ component and

the survival of the SU(3) structure in the ground state band in the realistic USD

potential. For two configurations (1s1/2, 0d5/2, 0d3/2)
4 and (1s1/2, 0d5/2, 0d3/2)

8, which

correspond to the shell-model configurations of the 20O and 24O nuclei and discussed

in Fig. 5.3, we calculate overlaps between the ground state of the SU(3) group and

the ground states of the QQ and USD potentials:

x(QQ|SU(3)) = |〈0gs(QQ)|0gs(SU(3))〉|2,
x(QQ|USD) = |〈0gs(QQ)|0gs(USD)〉|2,

and
x(SU(3)|USD) = |〈0gs(SU(3))|0gs(USD)〉|2.

(5.1)

In the case of these configurations, the sole difference between the interaction in the

SU(3) model and in the QQ Hamiltonian is in the single-particle energies, which are

non-degenerate in the latter model. These overlaps are listed in Tab. 5.3. For the 20O

configuration the large value of the overlap x(QQ|USD) ∼ 0.9 points to close similarity

in the ground-state structure in the QQ Hamiltonian and in the USD potential. This

overlap is smaller for the 24O configuration, ∼ 0.4, but still there is a noticeable

QQ component in the USD potential. Values of the overlap x(QQ|SU(3)) are ∼ 0.4

for both configurations; this shows the persistence of the SU(3) algebraic structure

with the QQ Hamiltonian despite the symmetry breaking spin-orbit interaction. The

presence of the SU(3) component is still strong, in the USD potential for N = 4

nucleons with x(SU(3)|USD) ∼ 0.5. For N = 8 and the USD potential, the overlap

x(SU(3)|USD) is noticeably smaller than x(QQ|SU(3)), despite the similar values of

the fractional collectivity b and of the quadrupole moment q shown in Fig. 5.3. Let

us note parenthetically that there is a symmetry between indices λ and µ, which

corresponds to particle-hole symmetry. Two configurations in Tab. 5.3 are particle-

hole “mirrors“ of each other, and their SU(3) representations are symmetric under

exchange of λ and µ. The (1s1/2, 0d5/2, 0d3/2)
6 is not included in the table. It is a
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half-filled shell, so its ground state is a degenerate mixture of the (6,0) and (0,6)

representations.

Overall, the QQ Hamiltonian reproduces rotational modes for a range of models

from a single-j to realistic shell model spaces, and its component is strong in the

TBRE as well as in realistic potentials.
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Table 5.1: Collective characteristics in the QQ Hamiltonian. Listed in the
table are the values of the fractional collectivity b, quadrupole moments
q(21) and q(22), and ratios of the transition rates b42 and the excitation
energies R42. The models are: N nucleons in a single j = 19/2 orbital and
in two-level spaces (13/2+, 13/2+) and (13/2+, 13/2−) and N protons and
neutrons in the (0f7/2, 1p3/2) and (0f5/2, 0g9/2) spaces with a splitting of the
single-particle levels is δǫ = ǫp3/2 −ǫf7/2 or δǫ = ǫg9/2 −ǫf5/2 . The energy scale
in this case is given by the variance of the level spectrum for the two-particle
system.

δǫ N b q(21) q(22) B42 R42

(19/2) 4 0.99 -0.98 0.84 1.41 3.29
6 0.97 -0.98 0.87 1.42 3.31
8 0.95 -0.97 0.85 1.43 3.27

(13/2+, 13/2+) 6 0.98 -0.98 -0.98 1.41 3.29
(13/2+, 13/2−) 6 0.98 -0.98 -0.98 1.41 3.29
(0f7/2, 1p3/2) 0 8 0.97 0.99 -0.59 1.36 3.28

0 10 0.89 0.98 -0.96 0.96 3.18
0 12 0.99 0 0 1.32 3.07

(0f7/2, 1p3/2) 0.6 8 0.97 0.99 -0.57 1.34 3.28
0.6 10 0.90 0.97 -0.96 1.14 3.23
0.6 12 0.97 0.28 -0.28 1.33 3.08

(0f7/2, 1p3/2) 4.2 8 0.96 0.98 -0.39 1.36 3.30
4.2 10 0.91 0.96 -0.95 1.36 3.29
4.2 12 0.86 0.85 -0.85 1.44 3.24

(0f7/2, 1p3/2) -0.6 8 0.97 1.00 -0.60 1.35 3.26
-0.6 10 0.88 0.97 -0.96 0.77 3.12
-0.6 12 0.97 -0.28 0.28 1.33 3.08

(0f5/2, 0g9/2) 0.6 8 0.97 -0.97 0.88 1.40 3.26
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Table 5.2: Triaxiality characteristics in the QQ Hamiltonian. Listed in
the table are the sums of excitation energy ratios A ≡ R2131 + R2231 and
B ≡ 4R2151 + R2251 and three triaxiality parameters γ,Γ, and γDF (see
Eqs. 4.1, 4.2, and 4.3). The models are the same as in our study of collectivity
in random ensembles in Ch. 4 The two two-level models are degenerate, δǫ =
0, and non-degenerate with the single-particle energy splitting δǫ = 4.2, 7.

N δǫ A B γ Γ γDF

(19/2) 6 - 1.005 1.026 9.79 0.43 7.52
(19/2) 8 - 0.986 1.002 12.59 0.52 7.41
(0f7/2, 1p3/2) 8 0 1.051 1.227 4.68 -0.03 13.1
(0f7/2, 1p3/2) 8 4.2 1.031 1.460 3.34 1.83 11.77
(0f7/2, 1p3/2) 8 7 1.375 1.666 4.42 1.88 10.97

Table 5.3: Overlaps defined in (5.1) for N neutrons in the sd shell. Ad-
ditionally to the values of the overlaps, the corresponding nucleus and the
ground state SU(3) representation are listed for each valence configuration.
The values of the single-particle energies for the QQ model are chosen ac-
cording to the spin-orbit splitting: ǫ(d5/2) = −kl/2 and ǫ(d3/2) = k(l+ 1)/2
with k = 2.0 (light blue line in Fig. 5.3).

N Nucleus (λ, µ) x(QQ|USD) x(QQ|SU(3)) x(SU(3)|USD)
4 20O (4,2) 0.878 0.605 0.454
8 24O (2,4) 0.425 0.595 0.103
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CHAPTER 6

CONCLUSION

In this thesis the quadrupole collectivity that emerges in systems with random two-

body interactions is examined. A low-lying spectrum, characteristic of a rigid rotor,

is commonly observed. The transition B(E2, 0gs → 21), the quadrupole moment of

the 21 state, and the deexcitation ratio B(E2, 41 → 21)/B(E2, 21 → 0gs) are all

consistent with that of a deformed rotor.

A weak triaxiality is further determined. For this purpose the method of iden-

tifying triaxiality based on the signatures of the low-lying spectrum is proposed. It

allows one to deduce the degree of triaxiality γ and the degree of asymmetry of the

triaxial Hamiltonian Γ independently. This method also provides a comparison of

the quadrupole triaxiality with the triaxiality from the Hamiltonian, with a given

assumption for moments of inertia.

The quadrupole behavior in random ensembles appears to emerge due to the

quadrupole-quadrupole interaction component in the Hamiltonian. This component,

as well as some higher multipoles can establish a noticeable coherence despite the

overall many-body randomness and complexity. Similarly to the moment-of-inertia-

like J2 term (that is responsible for the ground state configurations with the maximum

possible spin) the QQ (quadrupole-quadrupole) component, while not a constant of

motion, is dynamically prevailing. This is supported by the following arguments:

(i) The fraction of random realizations that are quadrupole-collective is extremely
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large as compared to the statistically expected number. (ii) In the two-body random

ensemble, the quadrupole collectivity displayed by the transition rates disappears

when the QQ component in the interaction is removed. (iii) Collective states in the

TBRE have structure similar to that of the QQ Hamiltonian eigenstates. (iv) The

type of the quadrupole deformation and most of the quantitative measures in the

TBRE are consistent with those of the QQ Hamiltonian.

In light of this finding the characteristics of the QQ Hamiltonian, for which the

geometry of the configuration space is the only parameter, are investigated. Deformed

mean field and rotational behaviour are induced by the QQ Hamiltonian in all stud-

ied cases. It appears that the single-particle level structure, which represents the

mean-field structure of the core, affects the shape of deformation. Due to particle-

hole symmetry, which does not need to be exact, the number of prolate and oblate

configurations is approximately the same within a given valence space, although in

some cases the single-particle splitting leads to the asymmetry in the number of pro-

late and oblate shapes. The role of the single-particle level structure in the prolate

predominance discussed by Hamamoto in Ref. [44], our results for the QQ interaction

appear to be consistent with the effect discussed in this reference. The QQ interaction

is also an important component of realistic potential: we showed that its structure to

a great extent survives in the USD potential for rotational nuclei in the sd-shell.
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APPENDIX A

E2 TRANSITION RATES IN THE
SENIORITY SCHEME ON ONE LEVEL

In order to find matrix elements of the quadrupole operator 〈JfMf |M†
2k|JiMi〉, and

thus the B(E2, Ji → Jf ) transition in the N -particle configuration, we first find its

matrix elements 〈LfΛf |M2k|LiΛi〉 in the two-body configuration. The pair-creation

operator P
(α)†
LΛ in the Hamiltonian (1.2) can be written in terms of the Wigner 3-j

symbols

P
(α)†
LΛ =

(−)L−M

√
2

∑

m1m2

(2L+ 1)

(

j L j
m1 −Λ m2

)

a†m1
am2 . (A.1)

The quadrupole operator in the second quantization takes on a form

M2k =
∑

λµ

(−1)j−λ

(

j 2 j
−λ k µ

)

a†µaλ, (A.2)

with eeff〈j|r2|j〉 taken to be a unit. Then the quadrupole matrix elements become

〈LfΛf |M†
2k|LiΛi〉 = 2(−1)Λi

√

(2Li + 1)(2Lf + 1)

(

Lf Li 2
−Λf Λi k

){

Lf Li 2
j j j

}

,

(A.3)

here we used a property that of a product of three 3-j symbols can be written as a

product of 3-j and 6-j symbols.

The quadrupole moment is a vector in the quasi-spin space [1], and thus we can

use the Wigner-Eckart theorem. An N -body state |SS(N)
z 〉 is defined by the quasi

momentum S = (Ω/2 − ν)/2 and its projection S
(N)
z = (N − Ω/2)/2, and thus
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the reduced matrix element is the same between N -particle states with qausi-spin

projection S
(N)
z and between two-particle states with qausi-spin projection S

(2)
z . For

two particular states of interest 21 and 41, which are of the same seniority ν = 2,the

quasi-spin is the same, S, and the Wigner-Eckart theorem yields to

〈SS(N)
z |M†

2k|SS
(N)
z 〉 = (−1)S−S

(N)
z

(

S 1 S

−S
(N)
z 0 S

(N)
z

)

〈S||M†
2||S〉

= 2S
(N)
z /

√

(2S + 2)(2S + 1)(2S)〈S||M†
2||S〉

(A.4)

and

〈SS(2)
z |M†

2k|SS(2)
z 〉 = 2S(2)

z /
√

(2S + 2)(2S + 1)(2S)〈S||M†
2||S〉, (A.5)

thus

〈SS(N)
z |M†

2k|SS(N)
z 〉 = (2N − Ω)

(4− Ω)
〈SS(2)

z |M†
2k|SS(2)

z 〉. (A.6)

The matrix elements in the two-particle configurations were found in Eq. (A.3).

Thus, the the matrix elements in the N -body configuration are

〈JfMf |M†
2k|JiMi〉 = (−1)Mi

2(2N − Ω)

(4− Ω)

√

(2Mi + 1)(2Mf + 1)

×
(

Jf Ji 2
−Mf Mi k

){

Jf Ji 2
j j j

}

,
(A.7)

with the reduced matrix elements:

〈Jf ||M†
2||Ji〉 = (−1)Ji+Mi−Mf

2(2N − Ω)

(4− Ω)

√

(2Jf + 1)(2Ji + 1)

{

Jf Ji 2
j j j

}

. (A.8)

The definition of the reduced transition probability (3.2) can be rewritten as

B(Eλ, Ji → Jf ) =
|〈Jf ||Mλ||Ji〉|2

2Ji + 1
, (A.9)

and the reduced transition probability between any two states of the same seniority

is

B(Eλ, Ji → Jf ) = 4

(

(2N − Ω)

(4− Ω)

)2

(2Jf + 1)

{

Jf Ji 2
j j j

}2

. (A.10)
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APPENDIX B

SU(3) IRREDUCIBLE
REPRESENTATIONS FOR THE

GROUND STATE BAND

In this appendix we show how to determine a ground state SU(3) mulitplet on example

of the pf shell. The pf shell (n = 3) is ten-fold degenerate and thus there are ten

combinations (nxnynz), where ni is a number of quanta in the corresponding direction.

These combinations (nxnynz) are representations of the U(3) group and listed below

in the order proposed in Ref. [27]:

Holes →
Particles (0 0 3) → (1 0 2) → (2 0 1) → (3 0 0)

⇓ ⇓ ⇓ ⇓
(0 1 2) → (1 1 1) → (2 1 0)

⇓ ⇓
(0 2 1) → (1 2 0)

⇓
(0 3 0)

The two SU(3) quantum numbers are: λ = nz − nx and µ = nx − ny. In order for

the energy E = −4([λ2 + µ2 + λµ + 3(λ + µ)] to be the lowest, particles should be

distributed along the rows of the table for less than half filled shells, this is marked

with an arrow. For more than half filled shells (holes), particles should be distributed

along the columns of the table. This result is not trivial, one can see Ref. [27] for a

detailed proof.
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Table B.1: The ground state representations of the U(3) group (nxnynz) and
of the SU(3) group (λ, µ) for N particles in the pf shell.

N (nxnynz) (λ, µ)
1 (0 0 3) (3,0)
2 (0 0 3)+(1 0 2)=(1 0 5) (4,1)
3 (1 0 5)+(0 1 2)=(1 1 7) (6,0)
4 (1 1 7)+(2 0 1)=(3 1 8) (5,2)
5 (3 1 8)+(1 1 1)=(4 2 9) (5,2)
6 (0 0 3)+(1 0 2)+(2 0 1)+(3 0 0)+(0 1 2)+(1 1 1) =(7 2 9) (2,5)
7 (7 2 9)+(2 1 0)=(9 3 9) (0,6)
8 (9 3 9)+(0 2 1)=(9 5 10) (1,4)
9 (9 5 10)+(1 2 0)=(10 7 10) (0,3)

The summation of the (nxnynz) representations is illustrated in the table below

for N = 1..9 particles. Given there are also SU(3) irreps (λ, µ) for the ground state.

In order to generate all SU(3) multiplets in a given configurations, one has to

repeat the same procedure as for the ground state, but for all possible distributions

of particles. This can give redundant (equivalent) representations which should be

excluded.

74



BIBLIOGRAPHY

[1] P. Schuck P. Ring. The nuclear many-body problem. New York: Springer-Verlag,
1980.

[2] A. Bohr and B. R. Mottelson. Nuclear structure, volume 2. W. A. Benjamin,
New York, 1974.

[3] V. Zelevinsky and A. Volya. Nuclear structure, random interactions and meso-
scopic physics. Phys. Rep., 391(3-6):311, 2004.

[4] C. W. Johnson and H. A. Nam. New puzzle for many-body systems with random
two-body interactions. Phys. Rev. C, 75(4):047305, 2007.

[5] T. Papenbrock and H. A. Weidenmuller. Colloquium: Random matrices and
chaos in nuclear spectra. Rev. Mod. Phys., 79(3):997, 2007.

[6] Y. M. Zhao, A. Arima, and N. Yoshinaga. Regularities of many-body systems
interacting by a two-body random ensemble. Phys. Rep., 400(1):1, 2004.

[7] J. P. Elliott. Collective motion in the nuclear shell model. ii. the introduction of
intrinsic wave-functions. Proc. Roy. Soc., 245(1243):562, 1958.

[8] E.P. Wigner. On the distribution of the roots of certain symmetric matrices.
Ann. Math, 67:325, 1958.

[9] N. Bohr. Neutron capture and nuclear constitution. Nature, 137:344, 1936.

[10] M.L. Mehta. Random Matrices. Elsevier/Academic Press, San Diego, 2004.

[11] K. K. Mon and J. B. French. Statistical properties of many-particle spectra.
Ann. Phys. (N.Y.), 95(90):90, 1975.

[12] J.B. French and S.S.M. Wong. Validity of random matrix theories for many-
particle systems. Phys. Lett. B, 33(7):449, 1970.

[13] O. Bohigas and J. Flores. Two-body random hamiltonian and level density.
Physics Letters B, 34(4):261 – 263, 1971.

75



[14] V. Zelevinsky, B. A. Brown, N. Frazier, and M. Horoi. The nuclear shell model
as a testing ground for many-body quantum chaos. Physics Reports, 276(2-3):85
– 176, 1996.

[15] C. W. Johnson, G. F. Bertsch, and D. J. Dean. Orderly spectra from random
interactions. Phys. Rev. Lett., 80:2749, 1998.

[16] H. A. Weidenmüller and G. E. Mitchell. Random matrices and chaos in nuclear
physics: Nuclear structure. Reviews of Modern Physics, 81(2):539, 2009.

[17] D. Mulhall, A. Volya, and V. Zelevinsky. Geometric chaoticity leads to ordered
spectra for randomly interacting fermions. Phys. Rev. Lett., 85(19):4016–4019,
2000.

[18] R. Bijker, A. Frank, and S. Pittel. Dominance of Jp = 0+ ground states in even-
even nuclei from random two-body interactions. Phys. Rev. C, 60(2):021302,
1999.

[19] http://cosmo.volya.net.

[20] Y. M. Zhao, A. Arima, N. Shimizu, K. Ogawa, N. Yoshinaga, and O. Scholten.
Patterns of the ground states in the presence of random interactions: Nucleon
systems. Phys. Rev. C, 70(5):054322, 2004.

[21] L. D. Landau and L. M. Lifshitz. Quantum Mechanics Non-Relativistic Theory.
London, Pergamon Press; Reading, Mass., Addison-Wesley Pub. Co., 1958.

[22] A. S. Davydov and G. F. Filippov. Rotational states in even atomic nuclei. Nucl.
Phys., 8:237, 1958.

[23] J. L. Wood, A-M. Oros-Peusquens, R. Zaballa, J. M. Allmond, and W. D. Kulp.
Triaxial rotor model for nuclei with independent inertia and electric quadrupole
tensors. Phys. Rev. C, 70(2):024308, 2004.

[24] J. M. Allmond. Studies of triaxial rotors and band mixing in nuclei. PhD thesis,
Georgia Institute of Technology, 2007.

[25] Malcolm Harvey. The Nuclear SU3 Model, volume 1 of Advances in Nuclear
Physics, page 67. Plenum Press, New York, 1968.

[26] D. J. Rowe. Dynamical symmetries of nuclear collective models. Prog.Part. Nucl.
Phys., 37:265, 1996.

[27] S. T. Belyaev, I. M. Pavlichenkov, and Yu F. Smirnov. A study of the generalized
density matrix in the su(3) model of elliott for an arbitrary oscillator n-shell.
Nuclear Physics A, 441(1):33, 1985.

76

http://cosmo.volya.net


[28] G. Thiamova, D. J. Rowe, and J. L. Wood. Coupled-SU(3) models of rotational
states in nuclei. Nuclear Physics A, 780(3-4):112, 2006.

[29] G. Racah. Theory of complex spectra. ii. Phys. Rev., 62:438, 1942.

[30] G. Racah. Theory of complex spectra. iii. Phys. Rev., 63:367, 1943.

[31] A. Shalit and I. Talmi. Nuclear shell theory. New York: Academic Press, 1963.

[32] I. Talmi. Energies of f7/2
n nuclear configurations. Phys. Rev., 107(1):326–327,

1957.

[33] A. Volya, B. A. Brown, and V. Zelevinsky. Exact solution of the nuclear pairing
problem. Phys. Lett. B, 509(1-2):37, 2001.

[34] P. Chau Huu-Tai, A. Frank, N. A. Smirnova, and P. Van Isacker. Geometry of
random interactions. Phys. Rev. C, 66(6):061302, 2002.

[35] A. Volya. Interplay of pairing and multipole interactions in a simple model.
Phys. Rev. C, 65(4):044311, 2002.

[36] R. Casten. Nuclear structure from a simple perspective, volume 23. Oxford
University Press, 2000.

[37] J. M. Allmond, R. Zaballa, A. M. Oros-Peusquens, W. D. Kulp, and J. L. Wood.
Triaxial rotor model description of e2 properties in186,188,190,192os. Phys. Rev. C,
78(1):014302, 2008.

[38] V. Zelevinsky, D. Mulhall, and A. Volya. Do we understand the role of incoherent
interactions in many-body physics? Phys. Atom. Nucl., 64:525–535, 2001.

[39] V. Zelevinsky, A. Volya, and N. Auerbach. Nuclear schiff moment and soft
vibrational modes. Phys. Rev. C, 78(1):014310, 2008.

[40] M. Horoi and V. Zelevinsky. Random interactions explore the nuclear landscape:
Predominance of prolate nuclear deformations. Phys. Rev. C, 81(3):034306, 2010.

[41] B. Castel and K. Goeke. Prolate-oblate energy difference and shape variation in
the f − p shell. Phys. Rev. C, 13(4):1765–1767, 1976.

[42] B. Castel, D. J. Rowe, and L. Zamick. Why are deformed nuclei prolate? Physics
Letters B, 236(2):121, 1990.

[43] N. Tajima, Y. R. Shimizu, and N. Suzuki. Origin of prolate dominance of nuclear
deformation. Prog.Theor.Phys.Suppl., (146):628, 2002.

[44] I. Hamamoto and B. R. Mottelson. Further examination of prolate-shape domi-
nance in nuclear deformation. Phys. Rev. C, 79(3):034317, 2009.

77



[45] W. A. Richter, M. G. Van Der Merwe, R. E. Julies, and B. A. Brown.

[46] B. H. Wildenthal. Empirical strengths of spin operators in nuclei. Progress in
Particle and Nuclear Physics, 11:5 – 51, 1984.

78



BIOGRAPHICAL SKETCH

Volha Abramkina earned her bachelor’s degree in physics from Grodno State Uni-

versity in 2000. In 2004 she began her graduate studies at Florida State University

and later joined the Theoretical Nuclear Physics group. After earning a master’s

degree in 2006 she moved to the University of Illinois at Urbana-Champaign where,

as a graduate student, she conducted research in biophysics. In 2007 she returned to

Florida State University and resumed her work in theoretical nuclear physics under

the direction of Dr. Alexander Volya. In summer 2011, she successfully defended her

dissertation.

79


	The Florida State University
	DigiNole Commons
	5-17-2011

	The Emergence of Collective Phenomena in Systems with Random Interactions
	Volha Abramkina
	Recommended Citation


	List of Tables
	List of Figures
	Abstract
	Introduction
	Time-reversal invariance and ground-state spin statistics in the TBRE
	Ground-state regularities in the TBRE
	External T-violation: magnetic field
	Internal T-violation: one-body scalar operator

	Collective motion in nuclei
	Signatures of collective motion in nuclei
	Models of nuclear rotations
	Rigid rotor model
	Elliot SU(3) model

	Vibrations and boson model
	Pairing and seniority model
	Collective observables

	Mean field in the TBRE and its properties
	The single j level model
	Quadrupole collectivity
	Triaxiality
	Higher multipole moments
	Multipole structure of the Hamiltonian

	Models beyond single j
	Realistic model space

	QQ Hamiltonian
	Rotational bands
	Shapes of deformation

	Conclusion
	E2 transition rates in the seniority scheme on one level
	SU(3) irreducible representations for the ground state band
	Bibliography
	Biographical Sketch

