Current Search: Research Repository (x) » * (x) » Citation (x) » Department of Biomedical Sciences (x) » Male (x)
Search results
Pages
- Title
- Genetic Influences on Pharmacological Interventions in Psoriasis.
- Creator
-
Ahmed, Hana, Yusuf, Nabiha
- Abstract/Description
-
Psoriasis is a common chronic inflammatory disease that affects 2% of the population. Therapeutic intervention for psoriasis mainly targets inflammatory cascade through the use of topical agents, phototherapy, systemic agents and the newer biologic agents. The efficacy of many treatments used in psoriasis varies from patient to patient, and some of this variance in response can presumably be attributed to genetic differences. While current research findings are still limited, the clinical...
Show morePsoriasis is a common chronic inflammatory disease that affects 2% of the population. Therapeutic intervention for psoriasis mainly targets inflammatory cascade through the use of topical agents, phototherapy, systemic agents and the newer biologic agents. The efficacy of many treatments used in psoriasis varies from patient to patient, and some of this variance in response can presumably be attributed to genetic differences. While current research findings are still limited, the clinical utilization of pharmacogenetics allows for tailored treatment plans that have the potential for better response amongst patients as well as conserving expenditures and healthcare resources. In this review, we hope to focus and summarize the conclusions and findings of studies done on the topic of pharmacogenetics in the treatment of psoriasis.
Show less - Date Issued
- 2017-04-24
- Identifier
- FSU_libsubv1_scholarship_submission_1516305863_e8df6723, 10.4172/2155-9554.1000392
- Format
- Citation
- Title
- Investigating the Dynamics and Polyanion Binding Sites of Fibroblast Growth Factor-1 Using Hydrogen-Deuterium Exchange Mass Spectrometry.
- Creator
-
Angalakurthi, Siva K, Tenorio, Connie A, Blaber, Michael, Middaugh, Russell
- Abstract/Description
-
In this study, we examined the local dynamics of acidic fibroblast growth factor (FGF-1) as well as the binding sites of various polyanions including poly-sulfates (heparin and low MW heparin) and poly-phosphates (phytic acid and ATP) using hydrogen-deuterium exchange mass spectrometry (HX-MS). For local dynamics, results are analyzed at the peptide level as well as in terms of buried amides employing crystallographic B-factors and compared with a residue level heat map generated from HX-MS...
Show moreIn this study, we examined the local dynamics of acidic fibroblast growth factor (FGF-1) as well as the binding sites of various polyanions including poly-sulfates (heparin and low MW heparin) and poly-phosphates (phytic acid and ATP) using hydrogen-deuterium exchange mass spectrometry (HX-MS). For local dynamics, results are analyzed at the peptide level as well as in terms of buried amides employing crystallographic B-factors and compared with a residue level heat map generated from HX-MS results. Results show that strand 4 and 5 and the turn between them to be the most flexible regions as was previously seen by NMR. On the other hand, the C-terminal strands 8, 9 and 10 appear to be more rigid which is also consistent with crystallographic B-factors as well as local dynamics studies conducted by NMR. Crystal structures of FGF-1 in complex with heparin have shown that heparin binds to N-terminal Asn18 and to C-terminal Lys105, Tryp107, Lys112, Lys113, Arg119, Pro121, Arg122, Gln127 and Lys128 indicating electrostatic forces as dominant interactions. Heparin binding as determined by HX-MS is consistent with crystallography data. Previous studies have also shown that other polyanions including low MW heparin, phytic acid and ATP dramatically increase the thermal stability of FGF-1. Using HX-MS, we find other poly anions tested bind in a similar manner to heparin, primarily targeting the turns in the lysine rich C-terminal region of FGF-1 along with two distinct N-terminal regions that contains lysines and arginines/ histidines. This confirms the interactions between FGF-1 and polyanions are primary directed by electrostatics.
Show less - Date Issued
- 2018-04-05
- Identifier
- FSU_libsubv1_scholarship_submission_1523040928_8f170751
- Format
- Citation
- Title
- An insight into the thermodynamic characteristics of human thrombopoietin complexation with TN1 antibody.
- Creator
-
Arai, Shigeki, Shibazaki, Chie, Adachi, Motoyasu, Honjo, Eijiro, Tamada, Taro, Maeda, Yoshitake, Tahara, Tomoyuki, Kato, Takashi, Miyazaki, Hiroshi, Blaber, Michael, Kuroki, Ryota
- Abstract/Description
-
Human thrombopoietin (hTPO) primarily stimulates megakaryocytopoiesis and platelet production and is neutralized by the mouse TN1 antibody. The thermodynamic characteristics of TN1 antibody-hTPO complexation were analyzed by isothermal titration calorimetry (ITC) using an antigen-binding fragment (Fab) derived from the TN1 antibody (TN1-Fab). To clarify the mechanism by which hTPO is recognized by TN1-Fab the conformation of free TN1-Fab was determined to a resolution of 2.0 Å using X-ray...
Show moreHuman thrombopoietin (hTPO) primarily stimulates megakaryocytopoiesis and platelet production and is neutralized by the mouse TN1 antibody. The thermodynamic characteristics of TN1 antibody-hTPO complexation were analyzed by isothermal titration calorimetry (ITC) using an antigen-binding fragment (Fab) derived from the TN1 antibody (TN1-Fab). To clarify the mechanism by which hTPO is recognized by TN1-Fab the conformation of free TN1-Fab was determined to a resolution of 2.0 Å using X-ray crystallography and compared with the hTPO-bound form of TN1-Fab determined by a previous study. This structural comparison revealed that the conformation of TN1-Fab does not substantially change after hTPO binding and a set of 15 water molecules is released from the antigen-binding site (paratope) of TN1-Fab upon hTPO complexation. Interestingly, the heat capacity change (ΔCp) measured by ITC (-1.52 ± 0.05 kJ mol(-1) K(-1) ) differed significantly from calculations based upon the X-ray structure data of the hTPO-bound and unbound forms of TN1-Fab (-1.02 ∼ 0.25 kJ mol(-1) K(-1) ) suggesting that hTPO undergoes an induced-fit conformational change combined with significant desolvation upon TN1-Fab binding. The results shed light on the structural biology associated with neutralizing antibody recognition.
Show less - Date Issued
- 2016-10-01
- Identifier
- FSU_pmch_27419667, 10.1002/pro.2985, PMC5029525, 27419667, 27419667
- Format
- Citation
- Title
- Sex Differences in Drosophila Somatic Gene Expression: Variation and Regulation by doublesex..
- Creator
-
Arbeitman, Michelle N, New, Felicia N, Fear, Justin M, Howard, Tiffany S, Dalton, Justin E, Graze, Rita M
- Abstract/Description
-
Sex differences in gene expression have been widely studied in Drosophila melanogaster Sex differences vary across strains, but many molecular studies focus on only a single strain, or on genes that show sexually dimorphic expression in many strains. How extensive variability is and whether this variability occurs among genes regulated by sex determination hierarchy terminal transcription factors is unknown. To address these questions, we examine differences in sexually dimorphic gene...
Show moreSex differences in gene expression have been widely studied in Drosophila melanogaster Sex differences vary across strains, but many molecular studies focus on only a single strain, or on genes that show sexually dimorphic expression in many strains. How extensive variability is and whether this variability occurs among genes regulated by sex determination hierarchy terminal transcription factors is unknown. To address these questions, we examine differences in sexually dimorphic gene expression between two strains in Drosophila adult head tissues. We also examine gene expression in doublesex (dsx) mutant strains to determine which sex-differentially expressed genes are regulated by DSX, and the mode by which DSX regulates expression. We find substantial variation in sex-differential expression. The sets of genes with sexually dimorphic expression in each strain show little overlap. The prevalence of different DSX regulatory modes also varies between the two strains. Neither the patterns of DSX DNA occupancy, nor mode of DSX regulation explain why some genes show consistent sex-differential expression across strains. We find that the genes identified as regulated by DSX in this study are enriched with known sites of DSX DNA occupancy. Finally, we find that sex-differentially expressed genes and genes regulated by DSX are highly enriched on the fourth chromosome. These results provide insights into a more complete pool of potential DSX targets, as well as revealing the molecular flexibility of DSX regulation.
Show less - Date Issued
- 2016-07-07
- Identifier
- FSU_pmch_27172187, 10.1534/g3.116.027961, PMC4938635, 27172187, 27172187, g3.116.027961
- Format
- Citation
- Title
- Discovery Of A Coregulatory Interaction Between Kaposi's Sarcoma-associated Herpesvirus Orf45 And The Viral Protein Kinase Orf36.
- Creator
-
Avey, Denis, Tepper, Sarah, Pifer, Benjamin, Bahga, Amritpal, Williams, Hunter, Gillen, Joseph, Li, Wenwei, Ogden, Sarah, Zhu, Fanxiu
- Abstract/Description
-
Kaposi's sarcoma-associated herpesvirus ( KSHV) is the causative agent of three human malignancies. KSHV ORF36 encodes a serine/threonine viral protein kinase, which is conserved throughout all herpesviruses. Although several studies have identified the viral and cellular substrates of conserved herpesvirus protein kinases (CHPKs), the precise functions of KSHV ORF36 during lytic replication remain elusive. Here, we report that ORF36 interacts with another lytic protein, ORF45, in a manner...
Show moreKaposi's sarcoma-associated herpesvirus ( KSHV) is the causative agent of three human malignancies. KSHV ORF36 encodes a serine/threonine viral protein kinase, which is conserved throughout all herpesviruses. Although several studies have identified the viral and cellular substrates of conserved herpesvirus protein kinases (CHPKs), the precise functions of KSHV ORF36 during lytic replication remain elusive. Here, we report that ORF36 interacts with another lytic protein, ORF45, in a manner dependent on ORF36 kinase activity. We mapped the regions of ORF36 and ORF45 involved in the binding. Their association appears to be mediated by electrostatic interactions, since deletion of either the highly basic N terminus of ORF36 or an acidic patch of ORF45 abolished the binding. In addition, the dephosphorylation of ORF45 protein dramatically reduced its association with ORF36. Importantly, ORF45 enhances both the stability and kinase activity of ORF36. Consistent with previous studies of CHPK homologs, we detected ORF36 protein in extracellular virions. To investigate the roles of ORF36 in the context of KSHV lytic replication, we used bacterial artificial chromosome mutagenesis to engineer both ORF36-null and kinase-dead mutants. We found that ORF36-null/mutant virions are moderately defective in viral particle production and are further deficient in primary infection. In summary, our results uncover a functionally important interaction between ORF36 and ORF45 and indicate a significant role of ORF36 in the production of infectious progeny virions. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus with a significant public health burden. KSHV ORF36 encodes a serine/threonine viral protein kinase, whose functions throughout the viral life cycle have not been elucidated. Here, we report that ORF36 interacts with another KSHV protein, ORF45. We mapped the regions of ORF36 and ORF45 involved in their association and further characterized the consequences of this interaction. We engineered ORF36 mutant viruses in order to investigate the functional roles of ORF36 in the context of KSHV lytic replication, and we confirmed that ORF36 is a component of KSHV virions. Moreover, we found that ORF36 mutants are defective in virion production and primary infection. In summary, we discovered and characterized a functionally important interaction between KSHV ORF36 and ORF45, and our results suggest a significant role of ORF36 in the production of infectious progeny virions, a process critical for KSHV pathogenesis.
Show less - Date Issued
- 2016-07
- Identifier
- FSU_libsubv1_wos_000378340300010, 10.1128/JVI.00516-16
- Format
- Citation
- Title
- Analysis of the Molecular Pathogenesis of Cardiomyopathy-Causing cTnT Mutants I79N, ΔE96, and ΔK210.
- Creator
-
Bai, Fan, Caster, Hannah, Pinto, Jose, Kawai, Masataka
- Abstract/Description
-
Three troponin T (TnT) mutants that cause hypertrophic, restrictive, and dilated cardiomyopathy (I79N, ΔE96, and ΔK210, respectively), were examined using the thin-filament extraction/reconstitution technique. Effects of Ca(2+), ATP, phosphate, and ADP concentrations on force and its transients were studied at 25°C. Maximal Ca(2+) tension (THC) and Ca(2+)-activatable tension (Tact), respectively, were similar among I79N, ΔE96, and WT, whereas ΔK210 led to a significantly lower THC (∼20% less)...
Show moreThree troponin T (TnT) mutants that cause hypertrophic, restrictive, and dilated cardiomyopathy (I79N, ΔE96, and ΔK210, respectively), were examined using the thin-filament extraction/reconstitution technique. Effects of Ca(2+), ATP, phosphate, and ADP concentrations on force and its transients were studied at 25°C. Maximal Ca(2+) tension (THC) and Ca(2+)-activatable tension (Tact), respectively, were similar among I79N, ΔE96, and WT, whereas ΔK210 led to a significantly lower THC (∼20% less) and Tact (∼25% less) than did WT. In pCa solution containing 8 mM Pi and ionic strength adjusted to 200 mM, the Ca(2+) sensitivity (pCa50) of I79N (5.63 ± 0.02) and ΔE96 (5.60 ± 0.03) was significantly greater than that of WT (5.45 ± 0.04), but the pCa50 of ΔK210 (5.54 ± 0.04) remained similar to that of WT. Five equilibrium constants were deduced using sinusoidal analysis. All three mutants showed significantly lower K0 (ADP association constant) and larger K4 (equilibrium constant of force generation step) relative to the corresponding values for WT. I79N and ΔK210 were associated with a K2 (equilibrium constant of cross-bridge detachment step) significantly lower than that of ΔE96 and WT. These results demonstrated that at pCa 4.66, the force/cross-bridge is ∼18% less in I79N and ∼41% less in ΔK210 than that in WT. These results indicate that the molecular pathogenesis of the cardiac TnT mutation-related cardiomyopathies is different for each mutation.
Show less - Date Issued
- 2013
- Identifier
- FSU_migr_biomed_faculty_publications-0051, 10.1016/j.bpj.2013.04.001
- Format
- Citation
- Title
- Myofilament Ca2+ Sensitization Causes Susceptibility to Cardiac Arrhythmia in Mice.
- Creator
-
Baudenbacher, Franz, Schober, Tilmann, Pinto, Jose, Sidorov, Veniamin, Hilliard, Fredrick, Solaro, R. John, Potter, James, Knollmann, Björn C.
- Abstract/Description
-
In human cardiomyopathy, anatomical abnormalities such as hypertrophy and fibrosis contribute to the risk of ventricular arrhythmias and sudden death. Here we have shown that increased myofilament Ca2+ sensitivity, also a common feature in both inherited and acquired human cardiomyopathies, created arrhythmia susceptibility in mice, even in the absence of anatomical abnormalities. In mice expressing troponin T mutants that cause hypertrophic cardiomyopathy in humans, the risk of developing...
Show moreIn human cardiomyopathy, anatomical abnormalities such as hypertrophy and fibrosis contribute to the risk of ventricular arrhythmias and sudden death. Here we have shown that increased myofilament Ca2+ sensitivity, also a common feature in both inherited and acquired human cardiomyopathies, created arrhythmia susceptibility in mice, even in the absence of anatomical abnormalities. In mice expressing troponin T mutants that cause hypertrophic cardiomyopathy in humans, the risk of developing ventricular tachycardia was directly proportional to the degree of Ca2+ sensitization caused by the troponin T mutation. Arrhythmia susceptibility was reproduced with the Ca2+-sensitizing agent EMD 57033 and prevented by myofilament Ca2+ desensitization with blebbistatin. Ca2+ sensitization markedly changed the shape of ventricular action potentials, resulting in shorter effective refractory periods, greater beat-to-beat variability of action potential durations, and increased dispersion of ventricular conduction velocities at fast heart rates. Together these effects created an arrhythmogenic substrate. Thus, myofilament Ca2+ sensitization represents a heretofore unrecognized arrhythmia mechanism. The protective effect of blebbistatin provides what we believe to be the first direct evidence that reduction of Ca2+ sensitivity in myofilaments is antiarrhythmic and might be beneficial to individuals with hypertrophic cardiomyopathy.
Show less - Date Issued
- 2008
- Identifier
- FSU_migr_biomed_faculty_publications-0050, 10.1172/JCI36642
- Format
- Citation
- Title
- Cardiomyocyte Circadian Oscillations Are Cell-autonomous, Amplified By Beta-adrenergic Signaling, And Synchronized In Cardiac Ventricle Tissue.
- Creator
-
Beesley, Stephen, Noguchi, Takako, Welsh, David K.
- Abstract/Description
-
Circadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in...
Show moreCircadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in culture. In the present study, we examined the relationship between intrinsic myocardial function and circadian rhythms in cultures from mouse heart. We cultured ventricular explants or dispersed cardiomyocytes from neonatal mice expressing a PER2::LUC bioluminescent reporter of circadian clock gene expression. We found that isoproterenol, a beta-adrenoceptor agonist known to increase heart rate and contractility, also amplifies PER2 circadian rhythms in ventricular explants. We found robust, cell-autonomous PER2 circadian rhythms in dispersed cardiomyocytes. Single-cell rhythms were initially synchronized in ventricular explants but desynchronized in dispersed cells. In addition, we developed a method for long-term, simultaneous monitoring of clock gene expression, contraction rate, and basal intracellular Ca2+ level in cardiomyocytes using PER2:: LUC in combination with GCaMP3, a genetically encoded fluorescent Ca2+ reporter. In contrast to robust PER2 circadian rhythms in cardiomyocytes, we detected no rhythms in contraction rate and only weak rhythms in basal Ca2+ level. In summary, we found that PER2 circadian rhythms of cardiomyocytes are cell-autonomous, amplified by adrenergic signaling, and synchronized by intercellular communication in ventricle explants, but we detected no robust circadian rhythms in contraction rate or basal Ca2+.
Show less - Date Issued
- 2016-07-26
- Identifier
- FSU_libsubv1_wos_000381515600037, 10.1371/journal.pone.0159618
- Format
- Citation
- Title
- Crystal Structure and Biochemical Characterization of Human Kallikrein 6 Reveals a Trypsin-like Kallikrein is Expressed in the Central Nervous System.
- Creator
-
Bernett, Matthew, Blaber, Sachiko, Scarisbrick, Isobel, Dhanarajan, Pushparani, Thompson, Steven, Blaber, Michael
- Abstract/Description
-
The human kallikreins are a large multigene family of closely related serine-type proteases. In this regard, they are similar to the multigene kallikrein families characterized in mice and rats. There is a much more extensive body of knowledge regarding the function of mouse and rat kallikreins in comparison with the human kallikreins. Human kallikrein 6 has been proposed as the homologue to rat myelencephalon-specific protease, an arginine-specific degradative-type protease abundantly...
Show moreThe human kallikreins are a large multigene family of closely related serine-type proteases. In this regard, they are similar to the multigene kallikrein families characterized in mice and rats. There is a much more extensive body of knowledge regarding the function of mouse and rat kallikreins in comparison with the human kallikreins. Human kallikrein 6 has been proposed as the homologue to rat myelencephalon-specific protease, an arginine-specific degradative-type protease abundantly expressed in the central nervous system and implicated in demyelinating disease. We present the x-ray crystal structure of mature, active recombinant human kallikrein 6 at 1.75-Å resolution. This high resolution model provides the first three-dimensional view of one of the human kallikreins and one of only a few structures of serine proteases predominantly expressed in the central nervous system. Enzymatic data are presented that support the identification of human kallikrein 6 as the functional homologue of rat myelencephalon-specific protease and are corroborated by a molecular phylogenetic analysis. Furthermore, the x-ray data provide support for the characterization of human kallikrein 6 as a degradative protease with structural features more similar to trypsin than the regulatory kallikreins.
Show less - Date Issued
- 2002-04-30
- Identifier
- FSU_libsubv1_scholarship_submission_1464374012, 10.1074/jbc.M202392200
- Format
- Citation
- Title
- Impaired Antisaccades In Obsessive-compulsive Disorder: Evidence From Meta-analysis And A Large Empirical Study.
- Creator
-
Bey, Katharina, Lennertz, Leonhard, Gruetzmann, Rosa, Heinzel, Stephan, Kaufmann, Christian, Klawohn, Julia, Riesel, Anja, Meyhoefer, Inga, Ettinger, Ulrich, Kathmann, Norbert,...
Show moreBey, Katharina, Lennertz, Leonhard, Gruetzmann, Rosa, Heinzel, Stephan, Kaufmann, Christian, Klawohn, Julia, Riesel, Anja, Meyhoefer, Inga, Ettinger, Ulrich, Kathmann, Norbert, Wagner, Michael
Show less - Abstract/Description
-
Increasing evidence indicates that patients with obsessive-compulsive disorder (OCD) exhibit alterations in fronto-striatal circuitry. Performance deficits in the antisaccade task would support this model, but results from previous small-scale studies have been inconclusive as either increased error rates, prolonged antisaccade latencies, both or neither have been reported in OCD patients. In order to address this issue, we investigated antisaccade performance in a large sample of OCD...
Show moreIncreasing evidence indicates that patients with obsessive-compulsive disorder (OCD) exhibit alterations in fronto-striatal circuitry. Performance deficits in the antisaccade task would support this model, but results from previous small-scale studies have been inconclusive as either increased error rates, prolonged antisaccade latencies, both or neither have been reported in OCD patients. In order to address this issue, we investigated antisaccade performance in a large sample of OCD patients (n = 169) and matched control subjects (n = 183). As impaired antisaccade performance constitutes a potential endophenotype of OCD, unaffected first-degree relatives of OCD patients (n = 100) were assessed, as well. Furthermore, we conducted a quantitative meta-analysis to integrate our data with previous findings. In the empirical study, OCD patients exhibited significantly increased antisaccade latencies, intra-subject variability (ISV) of antisaccade latencies, and antisaccade error rates. The latter effect was driven by errors with express latency (80-130 ms), as patients did not differ significantly from controls with regards to regular errors (>130 ms). Notably, unaffected relatives of OCD patients showed elevated antisaccade express error rates and increased ISV of antisaccade latencies, as well. Antisaccade performance was not associated with state anxiety within groups. Among relatives, however, we observed a significant correlation between antisaccade error rate and harm avoidance. Medication status of OCD patients, symptom severity, depressive comorbidity, comorbid anxiety disorders and OCD symptom dimensions did not significantly affect antisaccade performance. Meta-analysis of 10 previous and the present empirical study yielded a medium-sized effect (SMD = 0.48, p < 0.001) for higher error rates in OCD patients, while the effect for latencies did not reach significance owing to strong heterogeneity (SMD = 0.51, p = 0.069). Our results support the assumption of impaired antisaccade performance in OCD, although effects sizes were only moderately large. Furthermore, we provide the first evidence that increased antisaccade express error rates and ISV of antisaccade latencies may constitute endophenotypes of OCD. Findings regarding these more detailed antisaccade parameters point to potentially underlying mechanisms, such as early pre-stimulus inhibition of the superior colliculus.
Show less - Date Issued
- 2018-06-29
- Identifier
- FSU_libsubv1_wos_000436854900001, 10.3389/fpsyt.2018.00284
- Format
- Citation
- Title
- Identification of G1-regulated genes in normally cycling human cells.
- Creator
-
Beyrouthy, Maroun J, Alexander, Karen E, Baldwin, Amy, Whitfield, Michael L, Bass, Hank W, McGee, Dan, Hurt, Myra M
- Abstract/Description
-
Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked. We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were...
Show moreObtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked. We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb) by qPCR to further validate the newly identified genes. Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells progressing normally through the cell division cycle. This group of genes may contain future targets for drug development and treatment of human disease.
Show less - Date Issued
- 2008-01-01
- Identifier
- FSU_pmch_19079774, 10.1371/journal.pone.0003943, PMC2600614, 19079774, 19079774
- Format
- Citation
- Title
- DNA sequences proximal to human mitochondrial DNA deletion breakpoints prevalent in human disease form G-quadruplexes, a class of DNA structures inefficiently unwound by the mitochondrial replicative Twinkle helicase.
- Creator
-
Bharti, Sanjay Kumar, Sommers, Joshua A, Zhou, Jun, Kaplan, Daniel L, Spelbrink, Johannes N, Mergny, Jean-Louis, Brosh, Robert M
- Abstract/Description
-
Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the "Pattern Finder" G-quadruplex (G4) predictor...
Show moreMitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the "Pattern Finder" G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase.
Show less - Date Issued
- 2014-10-24
- Identifier
- FSU_pmch_25193669, 10.1074/jbc.M114.567073, PMC4208006, 25193669, 25193669, M114.567073
- Format
- Citation
- Title
- The Autolytic Regulation of Human Kallikrein-Related Peptidase 6.
- Creator
-
Blaber, Sachiko, Yoon, Hyesook, Scarisbrick, Isobel, Juliano, Maria, Blaber, Michael
- Abstract/Description
-
Human kallikrein-related peptidase 6 (KLK6) is a member of the kallikrein family of serine-type proteases, characterized as an arginine-specific digestive-type protease capable of degrading a wide-variety of extracellular matrix proteins. KLK6 has been proposed to be a useful biomarker for breast and ovarian cancer prognosis, is abundantly expressed in the CNS and cerebrospinal fluid, and is intimately associated with regions of active inflammatory demyelination in multiple sclerosis (MS)...
Show moreHuman kallikrein-related peptidase 6 (KLK6) is a member of the kallikrein family of serine-type proteases, characterized as an arginine-specific digestive-type protease capable of degrading a wide-variety of extracellular matrix proteins. KLK6 has been proposed to be a useful biomarker for breast and ovarian cancer prognosis, is abundantly expressed in the CNS and cerebrospinal fluid, and is intimately associated with regions of active inflammatory demyelination in multiple sclerosis (MS) lesions. Inhibition of KLK6 results in delayed onset and reduced severity of symptoms associated with experimental autoimmune encephalomyelitis, suggesting a key effector role for this protease in CNS inflammatory disease. KLK6 has been shown to autolytically cleave internally, leading to inactivation and suggesting a negative feedback inhibition control mechanism. Alternatively, the ability of KLK6 to self-activate has also been reported, suggesting a positive feedback activation loop control mechanism. Activation of pro-KLK6 requires hydrolysis after a Lys residue; however, KLK6 exhibits 2 order of magnitude reduced affinity for hydrolysis after Lys versus Arg residues; therefore, the ability to autolytically activate has been called into question. In the present study the catalytic activity of KLK6 toward its pro-sequence and internal autolytic sequence is characterized. The results show that the ability of KLK6 to activate pro-KLK6 is essentially negligible when compared to the rate of the internal autolytic inactivation or to the ability of other proteases to activate pro-KLK6. The results thus show that the primary autolytic regulatory mechanism of KLK6 is negative feedback inhibition, and activation is likely achieved through the action of a separate protease.
Show less - Date Issued
- 2007
- Identifier
- FSU_migr_biomed_faculty_publications-0002, 10.1021/bi6025006, PMC2517904
- Format
- Citation
- Title
- Functional Intersection of the Kallikrein-Related Peptidases (KLKs) and Thrombostasis Axis.
- Creator
-
Blaber, Michael, Yoon, Hyesook, Juliano, Maria, Scarisbrick, Isobel, Blaber, Sachiko
- Abstract/Description
-
A large body of emerging evidence indicates a functional interaction between the kallikrein-related peptidases (KLKs) and proteases of the thrombostasis axis. These interactions appear relevant for both normal health as well as pathologies associated with inflammation, tissue injury, and remodeling. Regulatory interactions between the KLKs and thrombostasis proteases could impact several serious human diseases, including neurodegeneration and cancer. The emerging network of specific...
Show moreA large body of emerging evidence indicates a functional interaction between the kallikrein-related peptidases (KLKs) and proteases of the thrombostasis axis. These interactions appear relevant for both normal health as well as pathologies associated with inflammation, tissue injury, and remodeling. Regulatory interactions between the KLKs and thrombostasis proteases could impact several serious human diseases, including neurodegeneration and cancer. The emerging network of specific interactions between these two protease families appears to be complex, and much work remains to elucidate it. Complete understanding how this functional network resolves over time, given specific initial conditions, and how it might be controllably manipulated, will probably contribute to the emergence of novel diagnostics and therapeutic agents for major diseases.
Show less - Date Issued
- 2010
- Identifier
- FSU_migr_biomed_faculty_publications-0018, 10.1515/BC.2010.024, PMC3047482
- Format
- Citation
- Title
- Emergence of Symmetric Protein Architecture from a Simple Peptide Motif: Evolutionary Models.
- Creator
-
Blaber, Michael, Lee, Jihun, Longo, Liam
- Abstract/Description
-
Structural symmetry is observed in the majority of fundamental protein folds and gene duplication and fusion evolutionary processes are postulated to be responsible. However, convergent evolution leading to structural symmetry has also been proposed; additionally, there is debate regarding the extent to which exact primary structure symmetry is compatible with efficient protein folding. Issues of symmetry in protein evolution directly impact strategies for de novo protein design as symmetry...
Show moreStructural symmetry is observed in the majority of fundamental protein folds and gene duplication and fusion evolutionary processes are postulated to be responsible. However, convergent evolution leading to structural symmetry has also been proposed; additionally, there is debate regarding the extent to which exact primary structure symmetry is compatible with efficient protein folding. Issues of symmetry in protein evolution directly impact strategies for de novo protein design as symmetry can substantially simplify the design process. Additionally, when considering gene duplication and fusion in protein evolution, there are two competing models: ‘‘emergent architecture’’ and ‘‘conserved architecture’’. Recent experimental work has shed light on both the evolutionary process leading to symmetric protein folds as well as the ability of symmetric primary structure to efficiently fold. Such studies largely support a ‘‘conserved architecture’’ evolutionary model, suggesting that complex protein architecture was an early evolutionary achievement involving oligomerization of smaller polypeptides.
Show less - Date Issued
- 2012-06-26
- Identifier
- FSU_libsubv1_scholarship_submission_1464369511, 10.1007/s00018-012-1077-3
- Format
- Citation
- Title
- Accelerated healing in NONcNZO10/LtJ type 2 diabetic mice by FGF 1.
- Creator
-
Blaber, Sachiko, Diaz, Jose, Blaber, Michael
- Abstract/Description
-
The development of novel therapies to treat chronic diabetic ulcers depends upon appropriate animal models for early stage investigation. The NONcNZO10/LtJ mouse is a new polygenic strain developed to more realistically model human metabolic syndrome and obesity-induced Type 2 diabetes; however, detailed wound healing properties have not been reported. In this report we describe a quantitative wound healing study in the NONcNZO10/LtJ mouse using a splinted excisional wound. The rate of wound...
Show moreThe development of novel therapies to treat chronic diabetic ulcers depends upon appropriate animal models for early stage investigation. The NONcNZO10/LtJ mouse is a new polygenic strain developed to more realistically model human metabolic syndrome and obesity-induced Type 2 diabetes; however, detailed wound healing properties have not been reported. In this report we describe a quantitative wound healing study in the NONcNZO10/LtJ mouse using a splinted excisional wound. The rate of wound healing is compared to various controls, and is also quantified in response to topical administration of normal and mutant fibroblast growth factor-1 (FGF-1). Quantitation of re-epithelialization shows that the diabetic condition in the NONcNZO10/LtJ mouse is concomitant with a decreased rate of dermal healing. Furthermore, topical administration of a FGF-1/heparin formulation effectively accelerates re-epithelialization. A similar acceleration can also be achieved by a stabilized mutant form of FGF-1 formulated in the absence of heparin. Such accelerated rates of healing are not associated with any abnormal histology in the healed wounds. The results identify the NONcNZO10/LtJ mouse as a useful model of impaired wound healing in type II diabetes, and further, identify engineered forms of FGF-1 as a potential “second-generation” therapeutic to promote diabetic dermal wound healing.
Show less - Date Issued
- 2015-06-19
- Identifier
- FSU_libsubv1_scholarship_submission_1456505007, 10.1111/wrr.12305
- Format
- Citation
- Title
- Fin1-PP1 Helps Clear Spindle Assembly Checkpoint Protein Bub1 from Kinetochores in Anaphase.
- Creator
-
Bokros, Michael, Gravenmier, Curtis, Jin, Fengzhi, Richmond, Daniel, Wang, Yanchang
- Abstract/Description
-
The spindle assembly checkpoint (SAC) monitors chromosome attachment defects, and the assembly of SAC proteins at kinetochores is essential for its activation, but the SAC disassembly process remains unknown. We found that deletion of a 14-3-3 protein, Bmh1, or hyperactivation of Cdc14 early anaphase release (FEAR) allows premature SAC silencing in budding yeast, which depends on a kinetochore protein Fin1 that forms a complex with protein phosphatase PP1. Previous works suggest that FEAR...
Show moreThe spindle assembly checkpoint (SAC) monitors chromosome attachment defects, and the assembly of SAC proteins at kinetochores is essential for its activation, but the SAC disassembly process remains unknown. We found that deletion of a 14-3-3 protein, Bmh1, or hyperactivation of Cdc14 early anaphase release (FEAR) allows premature SAC silencing in budding yeast, which depends on a kinetochore protein Fin1 that forms a complex with protein phosphatase PP1. Previous works suggest that FEAR-dependent Fin1 dephosphorylation promotes Bmh1-Fin1 dissociation, which enables kinetochore recruitment of Fin1-PP1. We found persistent kinetochore association of SAC protein Bub1 in fin1 Delta mutants after anaphase entry. Therefore, we revealed a mechanism that clears SAC proteins from kinetochores. After anaphase entry, FEAR activation promotes kinetochore enrichment of Fin1-PP1, resulting in SAC disassembly at kinetochores. This mechanism is required for efficient SAC silencing after SAC is challenged, and untimely Fin1-kinetochore association causes premature SAC silencing and chromosome missegregation.
Show less - Date Issued
- 2016-02-09
- Identifier
- FSU_libsubv1_wos_000369616100011, 10.1016/j.celrep.2016.01.007
- Format
- Citation
- Title
- Fin1-PP1 Helps Clear Spindle Assembly Checkpoint Protein Bub1 from Kinetochores in Anaphase.
- Creator
-
Bokros, Michael, Gravenmier, Curtis, Jin, Fengzhi, Richmond, Daniel, Wang, Yanchang
- Abstract/Description
-
The spindle assembly checkpoint (SAC) monitors chromosome attachment defects, and the assembly of SAC proteins at kinetochores is essential for its activation, but the SAC disassembly process remains unknown. We found that deletion of a 14-3-3 protein, Bmh1, or hyperactivation of Cdc14 early anaphase release (FEAR) allows premature SAC silencing in budding yeast, which depends on a kinetochore protein Fin1 that forms a complex with protein phosphatase PP1. Previous works suggest that FEAR...
Show moreThe spindle assembly checkpoint (SAC) monitors chromosome attachment defects, and the assembly of SAC proteins at kinetochores is essential for its activation, but the SAC disassembly process remains unknown. We found that deletion of a 14-3-3 protein, Bmh1, or hyperactivation of Cdc14 early anaphase release (FEAR) allows premature SAC silencing in budding yeast, which depends on a kinetochore protein Fin1 that forms a complex with protein phosphatase PP1. Previous works suggest that FEAR-dependent Fin1 dephosphorylation promotes Bmh1-Fin1 dissociation, which enables kinetochore recruitment of Fin1-PP1. We found persistent kinetochore association of SAC protein Bub1 in fin1Δ mutants after anaphase entry. Therefore, we revealed a mechanism that clears SAC proteins from kinetochores. After anaphase entry, FEAR activation promotes kinetochore enrichment of Fin1-PP1, resulting in SAC disassembly at kinetochores. This mechanism is required for efficient SAC silencing after SAC is challenged, and untimely Fin1-kinetochore association causes premature SAC silencing and chromosome missegregation.
Show less - Date Issued
- 2016-02-09
- Identifier
- FSU_pmch_26832405, 10.1016/j.celrep.2016.01.007, PMC4749444, 26832405, 26832405, S2211-1247(16)00027-9
- Format
- Citation
- Title
- Genotype-specific pathogenic effects in human dilated cardiomyopathy.
- Creator
-
Bollen, Ilse A E, Schuldt, Maike, Harakalova, Magdalena, Vink, Aryan, Asselbergs, Folkert W, Pinto, Jose R, Krüger, Martina, Kuster, Diederik W D, van der Velden, Jolanda
- Abstract/Description
-
Mutations in genes encoding cardiac troponin I (TNNI3) and cardiac troponin T (TNNT2) caused altered troponin protein stoichiometry in patients with dilated cardiomyopathy. TNNI3p.98trunc resulted in haploinsufficiency, increased Ca(2+) -sensitivity and reduced length-dependent activation. TNNT2p.K217del caused increased passive tension. A mutation in the gene encoding Lamin A/C (LMNAp.R331Q ) led to reduced maximal force development through secondary disease remodelling in patients suffering...
Show moreMutations in genes encoding cardiac troponin I (TNNI3) and cardiac troponin T (TNNT2) caused altered troponin protein stoichiometry in patients with dilated cardiomyopathy. TNNI3p.98trunc resulted in haploinsufficiency, increased Ca(2+) -sensitivity and reduced length-dependent activation. TNNT2p.K217del caused increased passive tension. A mutation in the gene encoding Lamin A/C (LMNAp.R331Q ) led to reduced maximal force development through secondary disease remodelling in patients suffering from dilated cardiomyopathy. Our study shows that different gene mutations induce dilated cardiomyopathy via diverse cellular pathways. Dilated cardiomyopathy (DCM) can be caused by mutations in sarcomeric and non-sarcomeric genes. In this study we defined the pathogenic effects of three DCM-causing mutations: the sarcomeric mutations in genes encoding cardiac troponin I (TNNI3p.98truncation ) and cardiac troponin T (TNNT2p.K217deletion ; also known as the p.K210del) and the non-sarcomeric gene mutation encoding lamin A/C (LMNAp.R331Q ). We assessed sarcomeric protein expression and phosphorylation and contractile behaviour in single membrane-permeabilized cardiomyocytes in human left ventricular heart tissue. Exchange with recombinant troponin complex was used to establish the direct pathogenic effects of the mutations in TNNI3 and TNNT2. The TNNI3p.98trunc and TNNT2p.K217del mutation showed reduced expression of troponin I to 39% and 51%, troponin T to 64% and 53%, and troponin C to 73% and 97% of controls, respectively, and altered stoichiometry between the three cardiac troponin subunits. The TNNI3p.98trunc showed pure haploinsufficiency, increased Ca(2+) -sensitivity and impaired length-dependent activation. The TNNT2p.K217del mutation showed a significant increase in passive tension that was not due to changes in titin isoform composition or phosphorylation. Exchange with wild-type troponin complex corrected troponin protein levels to 83% of controls in the TNNI3p.98trunc sample. Moreover, upon exchange all functional deficits in the TNNI3p.98trunc and TNNT2p.K217del samples were normalized to control values confirming the pathogenic effects of the troponin mutations. The LMNAp.R331Q mutation resulted in reduced maximal force development due to disease remodelling. Our study shows that different gene mutations induce DCM via diverse cellular pathways.
Show less - Date Issued
- 2017-07-15
- Identifier
- FSU_pmch_28436080, 10.1113/JP274145, PMC5509872, 28436080, 28436080
- Format
- Citation
- Title
- Tet 42, a novel tetracycline resistance determinant isolated from deep terrestrial subsurface bacteria.
- Creator
-
Brown, Mindy G, Mitchell, Elizabeth H, Balkwill, David L
- Abstract/Description
-
Tet 42, a novel tetracycline resistance determinant from deep subsurface bacteria, was characterized and found to have a 30% sequence similarity to TetA(Z). The protein is a putative efflux pump that shares characteristics with previously characterized pumps, including a divergently transcribed TetR repressor, a conserved GxxSDRxGRR motif, and transmembrane domains.
- Date Issued
- 2008-12-01
- Identifier
- FSU_pmch_18809935, 10.1128/AAC.00640-08, PMC2592862, 18809935, 18809935, AAC.00640-08
- Format
- Citation
- Title
- Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes..
- Creator
-
Brown, Amber N, Vied, Cynthia, Dennis, Jonathan H, Bhide, Pradeep G
- Abstract/Description
-
Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y) exposed to nicotine or...
Show moreDrugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y) exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.
Show less - Date Issued
- 2015-09-28
- Identifier
- FSU_pmch_26414157, 10.1371/journal.pone.0139103, PMC4586372, 26414157, 26414157, PONE-D-14-52968
- Format
- Citation
- Title
- The replication initiation protein Sld2 regulates helicase assembly.
- Creator
-
Bruck, Irina, Kaplan, Daniel L
- Abstract/Description
-
Assembly of the Cdc45-Mcm2-7-GINS (CMG) replicative helicase complex must be regulated to ensure that DNA unwinding is coupled with DNA synthesis. Sld2 is required for the initiation of DNA replication in budding yeast. We identified a mutant of Sld2, Sld2-m1,4, that is specifically defective in Mcm2-7 binding. When this sld2-m1,4 mutant is expressed, cells exhibit severe inhibition of DNA replication. Furthermore, the CMG complex assembles prematurely in G1 in mutant cells, but not wild-type...
Show moreAssembly of the Cdc45-Mcm2-7-GINS (CMG) replicative helicase complex must be regulated to ensure that DNA unwinding is coupled with DNA synthesis. Sld2 is required for the initiation of DNA replication in budding yeast. We identified a mutant of Sld2, Sld2-m1,4, that is specifically defective in Mcm2-7 binding. When this sld2-m1,4 mutant is expressed, cells exhibit severe inhibition of DNA replication. Furthermore, the CMG complex assembles prematurely in G1 in mutant cells, but not wild-type cells. These data suggest that Sld2 binding to Mcm2-7 is essential to block the inappropriate formation of a CMG helicase complex in G1. We also study a mutant of Sld2 that is defective in binding DNA, sld2-DNA, and find that sld2-DNA cells exhibit no GINS-Mcm2-7 interaction. These data suggest that Sld2 association with DNA is required for CMG assembly in S phase.
Show less - Date Issued
- 2014-01-24
- Identifier
- FSU_pmch_24307213, 10.1074/jbc.M113.532085, PMC3900945, 24307213, 24307213, M113.532085
- Format
- Citation
- Title
- A Positive Amplification Mechanism Involving a Kinase and Replication Initiation Factor Helps Assemble the Replication Fork Helicase.
- Creator
-
Bruck, Irina, Dhingra, Nalini, Kaplan, Daniel L
- Abstract/Description
-
The assembly of the replication fork helicase during S phase is key to the initiation of DNA replication in eukaryotic cells. One step in this assembly in budding yeast is the association of Cdc45 with the Mcm2-7 heterohexameric ATPase, and a second step is the assembly of the tetrameric GINS (G-chi-ii-an) complex with Mcm2-7. Dbf4-dependent kinase (DDK) and S-phase cyclin-dependent kinase (S-CDK) are two S phase-specific kinases that phosphorylate replication proteins during S phase, and...
Show moreThe assembly of the replication fork helicase during S phase is key to the initiation of DNA replication in eukaryotic cells. One step in this assembly in budding yeast is the association of Cdc45 with the Mcm2-7 heterohexameric ATPase, and a second step is the assembly of the tetrameric GINS (G-chi-ii-an) complex with Mcm2-7. Dbf4-dependent kinase (DDK) and S-phase cyclin-dependent kinase (S-CDK) are two S phase-specific kinases that phosphorylate replication proteins during S phase, and Dpb11, Sld2, Sld3, Pol ϵ, and Mcm10 are factors that are also required for replication initiation. However, the exact roles of these initiation factors in assembly of the replication fork helicase remain unclear. We show here that Dpb11 stimulates DDK phosphorylation of the minichromosome maintenance complex protein Mcm4 alone and also of the Mcm2-7 complex and the dsDNA-loaded Mcm2-7 complex. We further demonstrate that Dpb11 can directly recruit DDK to Mcm4. A DDK phosphomimetic mutant of Mcm4 bound Dpb11 with substantially higher affinity than wild-type Mcm4, suggesting a mechanism to recruit Dpb11 to DDK-phosphorylated Mcm2-7. Furthermore, dsDNA-loaded Mcm2-7 harboring the DDK phosphomimetic Mcm4 mutant bound GINS in the presence of Dpb11, suggesting a mechanism for how GINS is recruited to Mcm2-7. We isolated a mutant of Dpb11 that is specifically defective for binding to Mcm4. This mutant, when expressed in budding yeast, diminished cell growth and DNA replication, substantially decreased Mcm4 phosphorylation, and decreased association of GINS with replication origins. We conclude that Dpb11 functions with DDK and Mcm4 in a positive amplification mechanism to trigger the assembly of the replication fork helicase.
Show less - Date Issued
- 2017-02-24
- Identifier
- FSU_pmch_28082681, 10.1074/jbc.M116.772368, PMC5336144, 28082681, 28082681, M116.772368
- Format
- Citation
- Title
- Dpb11 May Function With Rpa And Dna To Initiate Dna Replication.
- Creator
-
Bruck, Irina, Dhingra, Nalini, Martinez, Matthew P., Kaplan, Daniel L.
- Abstract/Description
-
Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA,...
Show moreDpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,Delta C results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,Delta C also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation.
Show less - Date Issued
- 2017-05-03
- Identifier
- FSU_libsubv1_wos_000400647000095, 10.1371/journal.pone.0177147
- Format
- Citation
- Title
- Dpb11 may function with RPA and DNA to initiate DNA replication.
- Creator
-
Bruck, Irina, Dhingra, Nalini, Martinez, Matthew P, Kaplan, Daniel L
- Abstract/Description
-
Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA,...
Show moreDpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,ΔC results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,ΔC also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation.
Show less - Date Issued
- 2017-05-03
- Identifier
- FSU_pmch_28467467, 10.1371/journal.pone.0177147, PMC5415106, 28467467, 28467467, PONE-D-17-03239
- Format
- Citation
- Title
- Conserved mechanism for coordinating replication fork helicase assembly with phosphorylation of the helicase.
- Creator
-
Bruck, Irina, Kaplan, Daniel L
- Abstract/Description
-
Dbf4-dependent kinase (DDK) phosphorylates minichromosome maintenance 2 (Mcm2) during S phase in yeast, and Sld3 recruits cell division cycle 45 (Cdc45) to minichromosome maintenance 2-7 (Mcm2-7). We show here DDK-phosphoryled Mcm2 preferentially interacts with Cdc45 in vivo, and that Sld3 stimulates DDK phosphorylation of Mcm2 by 11-fold. We identified a mutation of the replication initiation factor Sld3, Sld3-m16, that is specifically defective in stimulating DDK phosphorylation of Mcm2....
Show moreDbf4-dependent kinase (DDK) phosphorylates minichromosome maintenance 2 (Mcm2) during S phase in yeast, and Sld3 recruits cell division cycle 45 (Cdc45) to minichromosome maintenance 2-7 (Mcm2-7). We show here DDK-phosphoryled Mcm2 preferentially interacts with Cdc45 in vivo, and that Sld3 stimulates DDK phosphorylation of Mcm2 by 11-fold. We identified a mutation of the replication initiation factor Sld3, Sld3-m16, that is specifically defective in stimulating DDK phosphorylation of Mcm2. Wild-type expression levels of sld3-m16 result in severe growth and DNA replication defects. Cells expressing sld3-m16 exhibit no detectable Mcm2 phosphorylation in vivo, reduced replication protein A-ChIP signal at an origin, and diminished Go, Ichi, Ni, and San association with Mcm2-7. Treslin, the human homolog of Sld3, stimulates human DDK phosphorylation of human Mcm2 by 15-fold. DDK phosphorylation of human Mcm2 decreases the affinity of Mcm5 for Mcm2, suggesting a potential mechanism for helicase ring opening. These data suggest a conserved mechanism for replication initiation: Sld3/Treslin coordinates Cdc45 recruitment to Mcm2-7 with DDK phosphorylation of Mcm2 during S phase.
Show less - Date Issued
- 2015-09-08
- Identifier
- FSU_pmch_26305950, 10.1073/pnas.1509608112, PMC4568703, 26305950, 26305950, 1509608112
- Format
- Citation
- Title
- The Replication Initiation Protein Sld3/Treslin Orchestrates the Assembly of the Replication Fork Helicase during S Phase.
- Creator
-
Bruck, Irina, Kaplan, Daniel L
- Abstract/Description
-
The initiation of DNA replication is a highly regulated process in eukaryotic cells, and central to the process of initiation is the assembly and activation of the replication fork helicase. The replication fork helicase is comprised of CMG (Cdc45, Mcm2-7, and GINS) in eukaryotic cells, and the mechanism underlying assembly of the CMG during S phase was studied in this article. We identified a point mutation of Sld3 that is specifically defective for Mcm3 and Mcm5 interaction (sld3-m10), and...
Show moreThe initiation of DNA replication is a highly regulated process in eukaryotic cells, and central to the process of initiation is the assembly and activation of the replication fork helicase. The replication fork helicase is comprised of CMG (Cdc45, Mcm2-7, and GINS) in eukaryotic cells, and the mechanism underlying assembly of the CMG during S phase was studied in this article. We identified a point mutation of Sld3 that is specifically defective for Mcm3 and Mcm5 interaction (sld3-m10), and also identified a point mutation of Sld3 that is specifically defective for single-stranded DNA (ssDNA) interaction (sld3-m9). Expression of wild-type levels of sld3-m9 resulted in a severe DNA replication defect with no recruitment of GINS to Mcm2-7, whereas expression of wild-type levels of sld3-m10 resulted in a severe replication defect with no Cdc45 recruitment to Mcm2-7. We propose a model for Sld3-mediated control of replication initiation, wherein Sld3 manages the proper assembly of the CMG during S phase. We also find that the biochemical functions identified for Sld3 are conserved in human Treslin, suggesting that Treslin orchestrates assembly of the CMG in human cells.
Show less - Date Issued
- 2015-11-06
- Identifier
- FSU_pmch_26405041, 10.1074/jbc.M115.688424, PMC4646389, 26405041, 26405041, M115.688424
- Format
- Citation
- Title
- Cdc45 protein-single-stranded DNA interaction is important for stalling the helicase during replication stress.
- Creator
-
Bruck, Irina, Kaplan, Daniel L
- Abstract/Description
-
Replicative polymerase stalling is coordinated with replicative helicase stalling in eukaryotes, but the mechanism underlying this coordination is not known. Cdc45 activates the Mcm2-7 helicase. We report here that Cdc45 from budding yeast binds tightly to long (≥ 40 nucleotides) genomic single-stranded DNA (ssDNA) and that 60mer ssDNA specifically disrupts the interaction between Cdc45 and Mcm2-7. We identified a mutant of Cdc45 that does not bind to ssDNA. When this mutant of cdc45 is...
Show moreReplicative polymerase stalling is coordinated with replicative helicase stalling in eukaryotes, but the mechanism underlying this coordination is not known. Cdc45 activates the Mcm2-7 helicase. We report here that Cdc45 from budding yeast binds tightly to long (≥ 40 nucleotides) genomic single-stranded DNA (ssDNA) and that 60mer ssDNA specifically disrupts the interaction between Cdc45 and Mcm2-7. We identified a mutant of Cdc45 that does not bind to ssDNA. When this mutant of cdc45 is expressed in budding yeast cells exposed to hydroxyurea, cell growth is severely inhibited, and excess RPA accumulates at or near an origin. Chromatin immunoprecipitation suggests that helicase movement is uncoupled from polymerase movement for mutant cells exposed to hydroxyurea. These data suggest that Cdc45-ssDNA interaction is important for stalling the helicase during replication stress.
Show less - Date Issued
- 2013-03-15
- Identifier
- FSU_pmch_23382391, 10.1074/jbc.M112.440941, PMC3597796, 23382391, 23382391, M112.440941
- Format
- Citation
- Title
- Sex Differences In The Molecular Signature Of The Developing Mouse Hippocampus.
- Creator
-
Bundy, Joseph L., Vied, Cynthia, Nowakowski, Richard S.
- Abstract/Description
-
Background: A variety of neurological disorders, including Alzheimer's disease, Parkinson's disease, major depressive disorder, dyslexia and autism, are differentially prevalent between females and males. To better understand the possible molecular basis for the sex-biased nature of neurological disorders, we used a developmental series of female and male mice at 1, 2, and 4 months of age to assess both mRNA and protein in the hippocampus with RNA-sequencing and mass-spectrometry,...
Show moreBackground: A variety of neurological disorders, including Alzheimer's disease, Parkinson's disease, major depressive disorder, dyslexia and autism, are differentially prevalent between females and males. To better understand the possible molecular basis for the sex-biased nature of neurological disorders, we used a developmental series of female and male mice at 1, 2, and 4 months of age to assess both mRNA and protein in the hippocampus with RNA-sequencing and mass-spectrometry, respectively. Results: The transcriptomic analysis identifies 2699 genes that are differentially expressed between animals of different ages. The bulk of these differentially expressed genes are changed in both sexes at one or more ages, but a total of 198 transcripts are differentially expressed between females and males at one or more ages. The number of transcripts that are differentially expressed between females and males is greater in adult animals than in younger animals. Additionally, we identify 69 transcripts that show complex and sex-specific patterns of temporal regulation through postnatal development, 8 of which are heat-shock proteins. We also find a modest correlation between levels of mRNA and protein in the mouse hippocampus (Rho = 0.53). Conclusion: This study adds to the substantial body of evidence for transcriptomic regulation in the hippocampus during postnatal development. Additionally, this analysis reveals sex differences in the transcriptome of the developing mouse hippocampus, and further clarifies the need to include both female and male mice in longitudinal studies involving molecular changes in the hippocampus.
Show less - Date Issued
- 2017-03-16
- Identifier
- FSU_libsubv1_wos_000396759300004, 10.1186/s12864-017-3608-7
- Format
- Citation
- Title
- Sex differences in the molecular signature of the developing mouse hippocampus.
- Creator
-
Bundy, Joseph L, Vied, Cynthia, Nowakowski, Richard S
- Abstract/Description
-
A variety of neurological disorders, including Alzheimer's disease, Parkinson's disease, major depressive disorder, dyslexia and autism, are differentially prevalent between females and males. To better understand the possible molecular basis for the sex-biased nature of neurological disorders, we used a developmental series of female and male mice at 1, 2, and 4 months of age to assess both mRNA and protein in the hippocampus with RNA-sequencing and mass-spectrometry, respectively. The...
Show moreA variety of neurological disorders, including Alzheimer's disease, Parkinson's disease, major depressive disorder, dyslexia and autism, are differentially prevalent between females and males. To better understand the possible molecular basis for the sex-biased nature of neurological disorders, we used a developmental series of female and male mice at 1, 2, and 4 months of age to assess both mRNA and protein in the hippocampus with RNA-sequencing and mass-spectrometry, respectively. The transcriptomic analysis identifies 2699 genes that are differentially expressed between animals of different ages. The bulk of these differentially expressed genes are changed in both sexes at one or more ages, but a total of 198 transcripts are differentially expressed between females and males at one or more ages. The number of transcripts that are differentially expressed between females and males is greater in adult animals than in younger animals. Additionally, we identify 69 transcripts that show complex and sex-specific patterns of temporal regulation through postnatal development, 8 of which are heat-shock proteins. We also find a modest correlation between levels of mRNA and protein in the mouse hippocampus (Rho = 0.53). This study adds to the substantial body of evidence for transcriptomic regulation in the hippocampus during postnatal development. Additionally, this analysis reveals sex differences in the transcriptome of the developing mouse hippocampus, and further clarifies the need to include both female and male mice in longitudinal studies involving molecular changes in the hippocampus.
Show less - Date Issued
- 2017-03-16
- Identifier
- FSU_pmch_28302071, 10.1186/s12864-017-3608-7, PMC5356301, 28302071, 28302071, 10.1186/s12864-017-3608-7
- Format
- Citation
- Title
- Frequency dependence of power and its implications for contractile function of muscle fibers from the digital flexors of horses.
- Creator
-
Butcher, Michael T, Bertram, John E A, Syme, Douglas A, Hermanson, John W, Chase, P Bryant
- Abstract/Description
-
The digital flexors of horses must produce high force to support the body weight during running, and a need for these muscles to generate power is likely limited during locomotion over level ground. Measurements of power output from horse muscle fibers close to physiological temperatures, and when cyclic strain is imposed, will help to better understand the in vivo performance of the muscles as power absorbers and generators. Skinned fibers from the deep (DDF) and superficial (SDF) digital...
Show moreThe digital flexors of horses must produce high force to support the body weight during running, and a need for these muscles to generate power is likely limited during locomotion over level ground. Measurements of power output from horse muscle fibers close to physiological temperatures, and when cyclic strain is imposed, will help to better understand the in vivo performance of the muscles as power absorbers and generators. Skinned fibers from the deep (DDF) and superficial (SDF) digital flexors, and the soleus (SOL) underwent sinusoidal oscillations in length over a range of frequencies (0.5-16 Hz) and strain amplitudes (0.01-0.06) under maximum activation (pCa 5) at 30°C. Results were analyzed using both workloop and Nyquist plot analyses to determine the ability of the fibers to absorb or generate power and the frequency dependence of those abilities. Power absorption was dominant at most cycling frequencies and strain amplitudes in fibers from all three muscles. However, small amounts of power were generated (0.002-0.05 Wkg(-1)) at 0.01 strain by all three muscles at relatively slow cycling frequencies: DDF (4-7 Hz), SDF (4-5 Hz) and SOL (0.5-1 Hz). Nyquist analysis, reflecting the influence of cross-bridge kinetics on power generation, corroborated these results. The similar capacity for power generation by DDF and SDF versus lower for SOL, and the faster frequency at which this power was realized in DDF and SDF fibers, are largely explained by the fast myosin heavy chain isoform content in each muscle. Contractile function of DDF and SDF as power absorbers and generators, respectively, during locomotion may therefore be more dependent on their fiber architectural arrangement than on the physiological properties of their muscle fibers.
Show less - Date Issued
- 2014-10-07
- Identifier
- FSU_pmch_25293602, 10.14814/phy2.12174, PMC4254099, 25293602, 25293602, 2/10/e12174
- Format
- Citation
- Title
- A balancing act: heterochromatin protein 1a and the Polycomb group coordinate their levels to silence chromatin in Drosophila..
- Creator
-
Cabrera, Janel R, Olcese, Ursula, Horabin, Jamila I
- Abstract/Description
-
The small non-histone protein Heterochromatin protein 1a (HP1a) plays a vital role in packaging chromatin, most notably in forming constitutive heterochromatin at the centromeres and telomeres. A second major chromatin regulating system is that of the Polycomb/trithorax groups of genes which, respectively, maintain the repressed/activated state of euchromatin. Recent analyses suggest they affect the expression of a multitude of genes, beyond the homeotics whose alteration in expression lead...
Show moreThe small non-histone protein Heterochromatin protein 1a (HP1a) plays a vital role in packaging chromatin, most notably in forming constitutive heterochromatin at the centromeres and telomeres. A second major chromatin regulating system is that of the Polycomb/trithorax groups of genes which, respectively, maintain the repressed/activated state of euchromatin. Recent analyses suggest they affect the expression of a multitude of genes, beyond the homeotics whose alteration in expression lead to their initial discovery. Our data suggest that early in Drosophila development, HP1a collaborates with the Polycomb/trithorax groups of proteins to regulate gene expression and that the two chromatin systems do not act separately as convention describes. HP1a affects the levels of both the Polycomb complexes and RNA polymerase II at promoters, as assayed by chromatin immunoprecipitation analysis. Deposition of both the repressive (H3K27me3) and activating (H3K4me3) marks promoted by the Polycomb/trithorax group genes at gene promoters is affected. Additionally, depending on which parent contributes the null mutation of the HP1a gene, the levels of the H3K27me3 and H3K9me3 silencing marks at both promoters and heterochromatin are different. Changes in levels of the H3K27me3 and H3K9me3 repressive marks show a mostly reciprocal nature. The time around the mid-blastula transition, when the zygotic genome begins to be actively transcribed, appears to be a transition/decision point for setting the levels. We find that HP1a, which is normally critical for the formation of constitutive heterochromatin, also affects the generation of the epigenetic marks of the Polycomb/trithorax groups of proteins, chromatin modifiers which are key to maintaining gene expression in euchromatin. At gene promoters, deposition of both the repressive H3K27me3 and activating H3K4me3 marks of histone modifications shows a dependence on HP1a. Around the mid-blastula transition, when the zygotic genome begins to be actively transcribed, a pivotal decision for the level of silencing appears to take place. This is also when the embryo organizes its genome into heterochromatin and euchromatin. A balance between the HP1a and Polycomb group silencing systems appears to be set for the chromatin types that each system will primarily regulate.
Show less - Date Issued
- 2015-04-30
- Identifier
- FSU_pmch_25954320, 10.1186/s13072-015-0010-z, PMC4423169, 25954320, 25954320, 10
- Format
- Citation
- Title
- Nonmuscle myosin-dependent synthesis of type I collagen.
- Creator
-
Cai, Le, Fritz, Dillon, Stefanovic, Lela, Stefanovic, Branko
- Abstract/Description
-
Type I collagen, synthesized in all tissues as the heterotrimer of two alpha1(I) polypeptides and one alpha2(I) polypeptide, is the most abundant protein in the human body. Here we show that intact nonmuscle myosin filaments are required for the synthesis of heterotrimeric type I collagen. Conserved 5' stem-loop in collagen alpha1(I) and alpha2(I) mRNAs binds the RNA-binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with...
Show moreType I collagen, synthesized in all tissues as the heterotrimer of two alpha1(I) polypeptides and one alpha2(I) polypeptide, is the most abundant protein in the human body. Here we show that intact nonmuscle myosin filaments are required for the synthesis of heterotrimeric type I collagen. Conserved 5' stem-loop in collagen alpha1(I) and alpha2(I) mRNAs binds the RNA-binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with the filaments. Dissociation of nonmuscle myosin filaments results in secretion of collagen alpha1(I) homotrimer, diminished intracellular colocalization of collagen alpha1(I) and alpha2(I) polypeptides (required for folding of the heterotrimer), and their increased intracellular degradation. Inhibition of the motor function of myosin has similar collagen-specific effects, while disruption of actin filaments has a general effect on protein secretion. Nonmuscle myosin copurifies with polysomes, and there is a subset of polysomes involved in myosin-dependent translation of collagen mRNAs. These results indicate that association of collagen mRNAs with nonmuscle myosin filaments is necessary to coordinately synthesize collagen alpha1(I) and alpha2(I) polypeptides. We postulate that LARP6/myosin-dependent mechanism regulates the synthesis of heterotrimeric type I collagen by coordinating the translation of collagen mRNAs.
Show less - Date Issued
- 2010-08-27
- Identifier
- FSU_pmch_20603131, 10.1016/j.jmb.2010.06.057, PMC3674529, 20603131, 20603131, S0022-2836(10)00700-X
- Format
- Citation
- Title
- Light-regulated translational control of circadian behavior by eIF4E phosphorylation.
- Creator
-
Cao, Ruifeng, Gkogkas, Christos G, de Zavalia, Nuria, Blum, Ian D, Yanagiya, Akiko, Tsukumo, Yoshinori, Xu, Haiyan, Lee, Choogon, Storch, Kai-Florian, Liu, Andrew C, Amir,...
Show moreCao, Ruifeng, Gkogkas, Christos G, de Zavalia, Nuria, Blum, Ian D, Yanagiya, Akiko, Tsukumo, Yoshinori, Xu, Haiyan, Lee, Choogon, Storch, Kai-Florian, Liu, Andrew C, Amir, Shimon, Sonenberg, Nahum
Show less - Abstract/Description
-
The circadian (∼24 h) clock is continuously entrained (reset) by ambient light so that endogenous rhythms are synchronized with daily changes in the environment. Light-induced gene expression is thought to be the molecular mechanism underlying clock entrainment. mRNA translation is a key step of gene expression, but the manner in which clock entrainment is controlled at the level of mRNA translation is not well understood. We found that a light- and circadian clock-regulated MAPK/MNK pathway...
Show moreThe circadian (∼24 h) clock is continuously entrained (reset) by ambient light so that endogenous rhythms are synchronized with daily changes in the environment. Light-induced gene expression is thought to be the molecular mechanism underlying clock entrainment. mRNA translation is a key step of gene expression, but the manner in which clock entrainment is controlled at the level of mRNA translation is not well understood. We found that a light- and circadian clock-regulated MAPK/MNK pathway led to phosphorylation of the cap-binding protein eIF4E in the mouse suprachiasmatic nucleus of the hypothalamus, the locus of the master circadian clock in mammals. Phosphorylation of eIF4E specifically promoted translation of Period 1 (Per1) and Period 2 (Per2) mRNAs and increased the abundance of basal and inducible PER proteins, which facilitated circadian clock resetting and precise timekeeping. Together, these results highlight a critical role for light-regulated translational control in the physiology of the circadian clock.
Show less - Date Issued
- 2015-06-01
- Identifier
- FSU_pmch_25915475, 10.1038/nn.4010, PMC4446158, 25915475, 25915475, nn.4010
- Format
- Citation
- Title
- A novel role of vimentin filaments: binding and stabilization of collagen mRNAs..
- Creator
-
Challa, Azariyas A, Stefanovic, Branko
- Abstract/Description
-
The stem-loop in the 5' untranslated region (UTR) of collagen α1(I) and α2(I) mRNAs (5'SL) is the key element regulating their stability and translation. Stabilization of collagen mRNAs is the predominant mechanism for high collagen expression in fibrosis. LARP6 binds the 5'SL of α1(I) and α2(I) mRNAs with high affinity. Here, we report that vimentin filaments associate with collagen mRNAs in a 5'SL- and LARP6-dependent manner and stabilize collagen mRNAs. LARP6 interacts with vimentin...
Show moreThe stem-loop in the 5' untranslated region (UTR) of collagen α1(I) and α2(I) mRNAs (5'SL) is the key element regulating their stability and translation. Stabilization of collagen mRNAs is the predominant mechanism for high collagen expression in fibrosis. LARP6 binds the 5'SL of α1(I) and α2(I) mRNAs with high affinity. Here, we report that vimentin filaments associate with collagen mRNAs in a 5'SL- and LARP6-dependent manner and stabilize collagen mRNAs. LARP6 interacts with vimentin filaments through its La domain and colocalizes with the filaments in vivo. Knockdown of LARP6 by small interfering RNA (siRNA) or mutation of the 5'SL abrogates the interaction of collagen mRNAs with vimentin filaments. Vimentin knockout fibroblasts produce reduced amounts of type I collagen due to decreased stability of collagen α1(I) and α2(I) mRNAs. Disruption of vimentin filaments using a drug or by expression of dominant-negative desmin reduces type I collagen expression, primarily due to decreased stability of collagen mRNAs. RNA fluorescence in situ hybridization (FISH) experiments show that collagen α1(I) and α2(I) mRNAs are associated with vimentin filaments in vivo. Thus, vimentin filaments may play a role in the development of tissue fibrosis by stabilizing collagen mRNAs. This finding will serve as a rationale for targeting vimentin in the development of novel antifibrotic therapies.
Show less - Date Issued
- 2011-09-01
- Identifier
- FSU_pmch_21746880, 10.1128/MCB.05263-11, PMC3165730, 21746880, 21746880, MCB.05263-11
- Format
- Citation
- Title
- Rootletin organizes the ciliary rootlet to achieve neuron sensory function in Drosophila.
- Creator
-
Chen, Jieyan V, Kao, Ling-Rong, Jana, Swadhin C, Sivan-Loukianova, Elena, Mendonça, Susana, Cabrera, Oscar A, Singh, Priyanka, Cabernard, Clemens, Eberl, Daniel F, Bettencourt...
Show moreChen, Jieyan V, Kao, Ling-Rong, Jana, Swadhin C, Sivan-Loukianova, Elena, Mendonça, Susana, Cabrera, Oscar A, Singh, Priyanka, Cabernard, Clemens, Eberl, Daniel F, Bettencourt-Dias, Monica, Megraw, Timothy L
Show less - Abstract/Description
-
Cilia are essential for cell signaling and sensory perception. In many cell types, a cytoskeletal structure called the ciliary rootlet links the cilium to the cell body. Previous studies indicated that rootlets support the long-term stability of some cilia. Here we report that Drosophila melanogaster Rootletin (Root), the sole orthologue of the mammalian paralogs Rootletin and C-Nap1, assembles into rootlets of diverse lengths among sensory neuron subtypes. Root mutant neurons lack rootlets...
Show moreCilia are essential for cell signaling and sensory perception. In many cell types, a cytoskeletal structure called the ciliary rootlet links the cilium to the cell body. Previous studies indicated that rootlets support the long-term stability of some cilia. Here we report that Drosophila melanogaster Rootletin (Root), the sole orthologue of the mammalian paralogs Rootletin and C-Nap1, assembles into rootlets of diverse lengths among sensory neuron subtypes. Root mutant neurons lack rootlets and have dramatically impaired sensory function, resulting in behavior defects associated with mechanosensation and chemosensation. Root is required for cohesion of basal bodies, but the cilium structure appears normal in Root mutant neurons. We show, however, that normal rootlet assembly requires centrioles. The N terminus of Root contains a conserved domain and is essential for Root function in vivo. Ectopically expressed Root resides at the base of mother centrioles in spermatocytes and localizes asymmetrically to mother centrosomes in neuroblasts, both requiring Bld10, a basal body protein with varied functions.
Show less - Date Issued
- 2015-10-26
- Identifier
- FSU_pmch_26483560, 10.1083/jcb.201502032, PMC4621839, 26483560, 26483560, jcb.201502032
- Format
- Citation
- Title
- Spermitin: A Novel Mitochondrial Protein in Drosophila Spermatids.
- Creator
-
Chen, Jieyan, Megraw, Timothy
- Abstract/Description
-
Mitochondria, important energy centers in the cell, also control sperm cell morphogenesis.Drosophila spermatids have a remarkably large mitochondrial formation called the nebenkern. Immediately following meiosis during sperm development, the mitochondria in the spermatid fuse together into two large aggregates which then wrap around one another to produce the spherical nebenkern: a giant mitochondrion about 6 micrometers in diameter. The fused mitochondria play an important role in sperm tail...
Show moreMitochondria, important energy centers in the cell, also control sperm cell morphogenesis.Drosophila spermatids have a remarkably large mitochondrial formation called the nebenkern. Immediately following meiosis during sperm development, the mitochondria in the spermatid fuse together into two large aggregates which then wrap around one another to produce the spherical nebenkern: a giant mitochondrion about 6 micrometers in diameter. The fused mitochondria play an important role in sperm tail elongation by providing a structural platform to support the elongation of sperm cells. We have identified a novel testis-specific protein, Spermitin (Sprn), a protein with a Pleckstrin homology-like (PH) domain related to Ran-binding protein 1 at its C-terminus. Fluorescence microscopy showed that Sprn localizes at mitochondria in transfected Kc167 cells, and in the nebenkern throughout spermatid morphogenesis. The role of Sprn is unclear, as sprn mutant males are fertile, and have sperm tail length comparable to the wild-type.
Show less - Date Issued
- 2014
- Identifier
- FSU_migr_biomed_faculty_publications-0049, 10.1371/journal.pone.0108802
- Format
- Citation
- Title
- miRNAs are required for generating a time delay critical for the circadian oscillator.
- Creator
-
Chen, Rongmin, D'Alessandro, Matthew, Lee, Choogon
- Abstract/Description
-
Circadian clocks coordinate an organism's activities and regulate metabolic homeostasis in relation to daily environmental changes, most notably light/dark cycles. As in other organisms, the timekeeping mechanism in mammals depends on a self-sustaining transcriptional negative feedback loop with a built-in time delay in feedback inhibition. Although the time delay is essential for generating a slow, self-sustaining negative feedback loop with a period close to 24 hr, the exact mechanisms...
Show moreCircadian clocks coordinate an organism's activities and regulate metabolic homeostasis in relation to daily environmental changes, most notably light/dark cycles. As in other organisms, the timekeeping mechanism in mammals depends on a self-sustaining transcriptional negative feedback loop with a built-in time delay in feedback inhibition. Although the time delay is essential for generating a slow, self-sustaining negative feedback loop with a period close to 24 hr, the exact mechanisms underlying the time delay are not known. Here, we show that RNAi mediated by microRNAs (miRNAs) is an essential mechanism in generating the time delay. In Dicer-deficient (and thus miRNA-deficient) cells and mice, circadian rhythms were dramatically shortened (by ∼2 hr), although the rhythms remained robust. The period shortening was caused by faster PER1 and PER2 translation in the Dicer-deficient cells. We also identified three specific miRNAs that regulate Per expression and showed that knockdown of these miRNAs in wild-type cells also shortened the circadian period. Consistent with the canonical function of miRNAs as translational modulators of target genes and their widespread roles in cell physiology, circadian rhythms are also modulated by miRNA-mediated RNAi acting on posttranscriptional regulation of key clock genes. Our present study definitively shows that RNAi is an important modulator of circadian rhythms by controlling the pace of PER synthesis and presents a novel layer of regulation for the clock.
Show less - Date Issued
- 2013-10-21
- Identifier
- FSU_pmch_24094851, 10.1016/j.cub.2013.08.005, PMC3809330, 24094851, 24094851, S0960-9822(13)00981-0
- Format
- Citation
- Title
- Embryonic Stem Cells Promoting Macrophage Survival and Function are Crucial for Teratoma Development.
- Creator
-
Chen, Tianxiang, Wang, Xi, Guo, Lei, Wu, Mingmei, Duan, Zhaoxia, Lv, Jing, Tai, Wenjiao, Renganathan, Hemamalini, Didier, Ruth, Li, Jinhua, Sun, Dongming, Chen, Xiaoming, He,...
Show moreChen, Tianxiang, Wang, Xi, Guo, Lei, Wu, Mingmei, Duan, Zhaoxia, Lv, Jing, Tai, Wenjiao, Renganathan, Hemamalini, Didier, Ruth, Li, Jinhua, Sun, Dongming, Chen, Xiaoming, He, Xijing, Fan, Jianqing, Young, Wise, Ren, Yi
Show less - Abstract/Description
-
Stem cell therapies have had tremendous potential application for many diseases in recent years. However, the tumorigenic properties of stem cells restrict their potential clinical application; therefore, strategies for reducing the tumorigenic potential of stem cells must be established prior to transplantation. We have demonstrated that syngeneic transplantation of embryonic stem cells (ESCs) provokes an inflammatory response that involves the rapid recruitment of bone marrow-derived...
Show moreStem cell therapies have had tremendous potential application for many diseases in recent years. However, the tumorigenic properties of stem cells restrict their potential clinical application; therefore, strategies for reducing the tumorigenic potential of stem cells must be established prior to transplantation. We have demonstrated that syngeneic transplantation of embryonic stem cells (ESCs) provokes an inflammatory response that involves the rapid recruitment of bone marrow-derived macrophages (BMDMs). ESCs are able to prevent mature macrophages from macrophage colony-stimulating factor (M-CSF) withdrawal-induced apoptosis, and thus prolong macrophage lifespan significantly by blocking various apoptotic pathways in an M-CSF-independent manner. ESCs express and secrete IL-34, which may be responsible for ESC-promoted macrophage survival. This anti-apoptotic effect of ESCs involves activation of extracellular signal-regulated kinase (ERK)1/2 and PI3K/Akt pathways and thus, inhibition of ERK1/2 and PI3K/AKT activation decreases ESC-induced macrophage survival. Functionally, ESC-treated macrophages also showed a higher level of phagocytic activity. ESCs further serve to polarize BMDMs into M2-like macrophages that exhibit most tumor-associated macrophage phenotypic and functional features. ESC-educated macrophages produce high levels of arginase-1, Tie-2, and TNF-α, which participate in angiogenesis and contribute to teratoma progression. Our study suggests that induction of M2-like macrophage activation is an important mechanism for teratoma development. Strategies targeting macrophages to inhibit teratoma development would increase the safety of ESC-based therapies, inasmuch as the depletion of macrophages completely inhibits ESC-induced angiogenesis and teratoma development.
Show less - Date Issued
- 2014-07-04
- Identifier
- FSU_pmch_25071759, 10.3389/fimmu.2014.00275, PMC4082241, 25071759, 25071759
- Format
- Citation
- Title
- Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism.
- Creator
-
Chen, Rongmin, Schirmer, Aaron, Lee, Yongjin, Lee, Hyeongmin, Kumar, Vivek, Yoo, Seung-Hee, Takahashi, Joseph S, Lee, Choogon
- Abstract/Description
-
Circadian rhythms in mammals are generated by a transcriptional negative feedback loop that is driven primarily by oscillations of PER and CRY, which inhibit their own transcriptional activators, CLOCK and BMAL1. Current models posit that CRY is the dominant repressor, while PER may play an accessory role. In this study, however, constitutive expression of PER, and not CRY1, severely disrupted the clock in fibroblasts and liver. Furthermore, constitutive expression of PER2 in the brain and...
Show moreCircadian rhythms in mammals are generated by a transcriptional negative feedback loop that is driven primarily by oscillations of PER and CRY, which inhibit their own transcriptional activators, CLOCK and BMAL1. Current models posit that CRY is the dominant repressor, while PER may play an accessory role. In this study, however, constitutive expression of PER, and not CRY1, severely disrupted the clock in fibroblasts and liver. Furthermore, constitutive expression of PER2 in the brain and SCN of transgenic mice caused a complete loss of behavioral circadian rhythms in a conditional and reversible manner. These results demonstrate that rhythmic levels of PER2, rather than CRY1, are critical for circadian oscillations in cells and in the intact organism. Our biochemical evidence supports an elegant mechanism for the disparity: PER2 directly and rhythmically binds to CLOCK:BMAL1, while CRY only interacts indirectly; PER2 bridges CRY and CLOCK:BMAL1 to drive the circadian negative feedback loop.
Show less - Date Issued
- 2009-11-13
- Identifier
- FSU_pmch_19917250, 10.1016/j.molcel.2009.10.012, PMC3625733, 19917250, 19917250, S1097-2765(09)00777-1
- Format
- Citation
- Title
- Identification of a novel Polo-like kinase 1 inhibitor that specifically blocks the functions of Polo-Box domain.
- Creator
-
Chen, Yunyu, Zhang, Jing, Li, Dongsheng, Jiang, Jiandong, Wang, Yanchang, Si, Shuyi
- Abstract/Description
-
Polo-like kinase 1 (Plk1) is a promising target for cancer therapy due to its essential role in cell division. In addition to a highly conserved kinase domain, Plk1 also contains a Polo-Box domain (PBD), which is essential for Plk1's subcellular localization and mitotic functions. We adopted a fluorescence polarization assay and identified a new Plk1 PBD inhibitor T521 from a small-molecule compound library. T521 specifically inhibits the PBD of Plk1, but not those of Plk2-3. T521 exhibits...
Show morePolo-like kinase 1 (Plk1) is a promising target for cancer therapy due to its essential role in cell division. In addition to a highly conserved kinase domain, Plk1 also contains a Polo-Box domain (PBD), which is essential for Plk1's subcellular localization and mitotic functions. We adopted a fluorescence polarization assay and identified a new Plk1 PBD inhibitor T521 from a small-molecule compound library. T521 specifically inhibits the PBD of Plk1, but not those of Plk2-3. T521 exhibits covalent binding to some lysine residues of Plk1 PBD, which causes significant changes in the secondary structure of Plk1 PBD. Using a cell-based assay, we showed that T521 impedes the interaction between Plk1 and Bub1, a mitotic checkpoint protein. Moreover, HeLa cells treated with T521 exhibited dramatic mitotic defects. Importantly, T521 suppresses the growth of A549 cells in xenograft nude mice. Taken together, we have identified a novel Plk1 inhibitor that specifically disrupts the functions of Plk1 PBD and shows anticancer activity.
Show less - Date Issued
- 2017-01-03
- Identifier
- FSU_pmch_27902479, 10.18632/oncotarget.13603, PMC5352051, 27902479, 27902479, 13603
- Format
- Citation
- Title
- Anti-Inflammatory Mechanism of Neural Stem Cell Transplantation in Spinal Cord Injury.
- Creator
-
Cheng, Zhijian, Zhu, Wen, Cao, Kai, Wu, Fei, Li, Jin, Wang, Guoyu, Li, Haopen, Lu, Ming, Ren, Yi, He, Xijing
- Abstract/Description
-
Neural stem cell (NSC) transplantation has been proposed to promote functional recovery after spinal cord injury. However, a detailed understanding of the mechanisms of how NSCs exert their therapeutic plasticity is lacking. We transplanted mouse NSCs into the injured spinal cord seven days after SCI, and the Basso Mouse Scale (BMS) score was performed to assess locomotor function. The anti-inflammatory effects of NSC transplantation was analyzed by immunofluorescence staining of neutrophil...
Show moreNeural stem cell (NSC) transplantation has been proposed to promote functional recovery after spinal cord injury. However, a detailed understanding of the mechanisms of how NSCs exert their therapeutic plasticity is lacking. We transplanted mouse NSCs into the injured spinal cord seven days after SCI, and the Basso Mouse Scale (BMS) score was performed to assess locomotor function. The anti-inflammatory effects of NSC transplantation was analyzed by immunofluorescence staining of neutrophil and macrophages and the detection of mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interleukin-12 (IL-12). Furthermore, bone marrow-derived macrophages (BMDMs) were co-cultured with NSCs and followed by analyzing the mRNA levels of inducible nitric oxide synthase (iNOS), TNF-α, IL-1β, IL-6 and IL-10 with quantitative real-time PCR. The production of TNF-α and IL-1β by BMDMs was examined using the enzyme-linked immunosorbent assay (ELISA). Transplanted NSCs had significantly increased BMS scores (p < 0.05). Histological results showed that the grafted NSCs migrated from the injection site toward the injured area. NSCs transplantation significantly reduced the number of neutrophils and iNOS+/Mac-2+ cells at the epicenter of the injured area (p < 0.05). Meanwhile, mRNA levels of TNF-α, IL-1β, IL-6 and IL-12 in the NSCs transplantation group were significantly decreased compared to the control group. Furthermore, NSCs inhibited the iNOS expression of BMDMs and the release of inflammatory factors by macrophages in vitro (p < 0.05). These results suggest that NSC transplantation could modulate SCI-induced inflammatory responses and enhance neurological function after SCI via reducing M1 macrophage activation and infiltrating neutrophils. Thus, this study provides a new insight into the mechanisms responsible for the anti-inflammatory effect of NSC transplantation after SCI.
Show less - Date Issued
- 2016-08-23
- Identifier
- FSU_pmch_27563878, 10.3390/ijms17091380, PMC5037660, 27563878, 27563878, ijms17091380
- Format
- Citation
- Title
- Ubiquilin/Dsk2 promotes inclusion body formation and vacuole (lysosome)-mediated disposal of mutated huntingtin.
- Creator
-
Chuang, Kun-Han, Liang, Fengshan, Higgins, Ryan, Wang, Yanchang
- Abstract/Description
-
Ubiquilin proteins contain a ubiquitin-like domain (UBL) and ubiquitin-associated domain(s) that interact with the proteasome and ubiquitinated substrates, respectively. Previous work established the link between ubiquilin mutations and neurodegenerative diseases, but the function of ubiquilin proteins remains elusive. Here we used a misfolded huntingtin exon I containing a 103-polyglutamine expansion (Htt103QP) as a model substrate for the functional study of ubiquilin proteins. We found...
Show moreUbiquilin proteins contain a ubiquitin-like domain (UBL) and ubiquitin-associated domain(s) that interact with the proteasome and ubiquitinated substrates, respectively. Previous work established the link between ubiquilin mutations and neurodegenerative diseases, but the function of ubiquilin proteins remains elusive. Here we used a misfolded huntingtin exon I containing a 103-polyglutamine expansion (Htt103QP) as a model substrate for the functional study of ubiquilin proteins. We found that yeast ubiquilin mutant (dsk2Δ) is sensitive to Htt103QP overexpression and has a defect in the formation of Htt103QP inclusion bodies. Our evidence further suggests that the UBL domain of Dsk2 is critical for inclusion body formation. Of interest, Dsk2 is dispensable for Htt103QP degradation when Htt103QP is induced for a short time before noticeable inclusion body formation. However, when the inclusion body forms after a long Htt103QP induction, Dsk2 is required for efficient Htt103QP clearance, as well as for autophagy-dependent delivery of Htt103QP into vacuoles (lysosomes). Therefore our data indicate that Dsk2 facilitates vacuole-mediated clearance of misfolded proteins by promoting inclusion body formation. Of importance, the defect of inclusion body formation in dsk2 mutants can be rescued by human ubiquilin 1 or 2, suggesting functional conservation of ubiquilin proteins.
Show less - Date Issued
- 2016-07-01
- Identifier
- FSU_pmch_27170182, 10.1091/mbc.E16-01-0026, PMC4927277, 27170182, 27170182, mbc.E16-01-0026
- Format
- Citation
- Title
- Ubiquilin/dsk2 Promotes Inclusion Body Formation And Vacuole (lysosome)-mediated Disposal Of Mutated Huntingtin.
- Creator
-
Chuang, Kun-Han, Liang, Fengshan, Higgins, Ryan, Wang, Yanchang
- Abstract/Description
-
Ubiquilin proteins contain a ubiquitin-like domain (UBL) and ubiquitin-associated domain(s) that interact with the proteasome and ubiquitinated substrates, respectively. Previous work established the link between ubiquilin mutations and neurodegenerative diseases, but the function of ubiquilin proteins remains elusive. Here we used a misfolded huntingtin exon I containing a 103-polyglutamine expansion (Htt103QP) as a model substrate for the functional study of ubiquilin proteins. We found...
Show moreUbiquilin proteins contain a ubiquitin-like domain (UBL) and ubiquitin-associated domain(s) that interact with the proteasome and ubiquitinated substrates, respectively. Previous work established the link between ubiquilin mutations and neurodegenerative diseases, but the function of ubiquilin proteins remains elusive. Here we used a misfolded huntingtin exon I containing a 103-polyglutamine expansion (Htt103QP) as a model substrate for the functional study of ubiquilin proteins. We found that yeast ubiquilin mutant (dsk2.) is sensitive to Htt103QP overexpression and has a defect in the formation of Htt103QP inclusion bodies. Our evidence further suggests that the UBL domain of Dsk2 is critical for inclusion body formation. Of interest, Dsk2 is dispensable for Htt103QP degradation when Htt103QP is induced for a short time before noticeable inclusion body formation. However, when the inclusion body forms after a long Htt103QP induction, Dsk2 is required for efficient Htt103QP clearance, as well as for autophagy-dependent delivery of Htt103QP into vacuoles (lysosomes). Therefore our data indicate that Dsk2 facilitates vacuole-mediated clearance of misfolded proteins by promoting inclusion body formation. Of importance, the defect of inclusion body formation in dsk2 mutants can be rescued by human ubiquilin 1 or 2, suggesting functional conservation of ubiquilin proteins.
Show less - Date Issued
- 2016-07-01
- Identifier
- FSU_libsubv1_wos_000379008900006, 10.1091/mbc.E16-01-0026
- Format
- Citation
- Title
- A Mathematical Model for the Determination of Mouse Excisional Wound Healing Parameters from Photographic Data.
- Creator
-
Cogan, Nicholas G, Mellers, Alana, Patel, Bhavi, Powell, Brett, Aggarwal, Manu, Harper, Kathleen M, Blaber, Michael
- Abstract/Description
-
We present a mathematical model to quantify parameters of mouse excisional wound healing from photographic data. The equation is a piecewise linear function in log scale that includes key parameters of initial wound radius (R0), an initial wound stasis phase (Ti), and time to wound closure (Tc); subsequently, these terms permit calculation of a latter active proliferative phase (Tp), and the healing rate (HR) during this active phase. A daily photographic record of wound healing (utilizing 6...
Show moreWe present a mathematical model to quantify parameters of mouse excisional wound healing from photographic data. The equation is a piecewise linear function in log scale that includes key parameters of initial wound radius (R0), an initial wound stasis phase (Ti), and time to wound closure (Tc); subsequently, these terms permit calculation of a latter active proliferative phase (Tp), and the healing rate (HR) during this active phase. A daily photographic record of wound healing (utilizing 6 mm diameter splinted excisional wounds) permits the necessary sampling for robust parameter refinement. When implemented with an automated nonlinear fitting routine, the healing parameters are determined in an operator-independent (i.e. unbiased) manner. The model was evaluated using photographic data from a splinted excisional surgical procedure involving several different mouse cohorts. Model fitting demonstrates excellent coefficients of determination (R2) in each case. The model thus permits quantitation of key parameters of excisional wound healing, from initial wounding through to wound closure, from photographic data.
Show less - Date Issued
- 2018-04-17
- Identifier
- FSU_libsubv1_scholarship_submission_1522454139_52860c9c, 10.1111/wrr.12634
- Format
- Citation
- Title
- Improving treatments and outcomes: an emerging role for zinc in traumatic brain injury..
- Creator
-
Cope, Elise C, Morris, Deborah R, Levenson, Cathy W
- Abstract/Description
-
Traumatic brain injury is associated with a wide variety of behavioral deficits, including memory loss, depression, and anxiety. While treatments for these outcomes are currently limited, human clinical data suggest that supplemental zinc can be used during recovery to improve cognitive and behavioral deficits associated with brain injury. Additionally, pre-clinical models suggest that zinc may increase resilience to traumatic brain injury, making it potentially useful in populations at risk...
Show moreTraumatic brain injury is associated with a wide variety of behavioral deficits, including memory loss, depression, and anxiety. While treatments for these outcomes are currently limited, human clinical data suggest that supplemental zinc can be used during recovery to improve cognitive and behavioral deficits associated with brain injury. Additionally, pre-clinical models suggest that zinc may increase resilience to traumatic brain injury, making it potentially useful in populations at risk for injury.
Show less - Date Issued
- 2012-07-01
- Identifier
- FSU_pmch_22747843, 10.1111/j.1753-4887.2012.00486.x, PMC3801180, 22747843, 22747843
- Format
- Citation
- Title
- Neurotoxic effects of AZT on developing and adult neurogenesis.
- Creator
-
Demir, Meryem, Laywell, Eric D
- Abstract/Description
-
Azidothymidine (AZT) is a synthetic, chain-terminating nucleoside analog used to treat HIV-1 infection. While AZT is not actively transported across the blood brain barrier, it does accumulate at high levels in cerebrospinal fluid, and subsequently diffuses into the overlying parenchyma. Due to the close anatomical proximity of the neurogenic niches to the ventricular system, we hypothesize that diffusion from CSF exposes neural stem/progenitor cells and their progeny to biologically relevant...
Show moreAzidothymidine (AZT) is a synthetic, chain-terminating nucleoside analog used to treat HIV-1 infection. While AZT is not actively transported across the blood brain barrier, it does accumulate at high levels in cerebrospinal fluid, and subsequently diffuses into the overlying parenchyma. Due to the close anatomical proximity of the neurogenic niches to the ventricular system, we hypothesize that diffusion from CSF exposes neural stem/progenitor cells and their progeny to biologically relevant levels of AZT sufficient to perturb normal cell functions. We employed in vitro and in vivo models of mouse neurogenesis in order to assess the effects of AZT on developing and adult neurogenesis. Using in vitro assays we show that AZT reduces the population expansion potential of neural stem/progenitor cells by inducing senescence. Additionally, in a model of in vitro neurogenesis AZT severely attenuates neuroblast production. These effects are mirrored in vivo by clinically-relevant animal models. We show that in utero AZT exposure perturbs both population expansion and neurogenesis among neural stem/progenitor cells. Additionally, a short-term AZT regimen in adult mice suppresses subependymal zone neurogenesis. These data reveal novel negative effects of AZT on neural stem cell biology. Given that the sequelae of HIV infection often include neurologic deficits-subsumed under AIDS Dementia Complex (Brew, 1999)-it is important to determine to what extent AZT negatively affects neurological function in ways that contribute to, or exacerbate, ADC in order to avoid attributing iatrogenic drug effects to the underlying disease process, and thereby skewing the risk/benefit analysis of AZT therapy.
Show less - Date Issued
- 2015-03-20
- Identifier
- FSU_pmch_25852464, 10.3389/fnins.2015.00093, PMC4367529, 25852464, 25852464
- Format
- Citation