Current Search: Research Repository (x) » * (x) » Citation (x) » Department of Biomedical Sciences (x) » Nucleic acids research (x) » Lee, Choogon (x)
Search results
Pages
- Title
- Impaired Antisaccades In Obsessive-compulsive Disorder: Evidence From Meta-analysis And A Large Empirical Study.
- Creator
-
Bey, Katharina, Lennertz, Leonhard, Gruetzmann, Rosa, Heinzel, Stephan, Kaufmann, Christian, Klawohn, Julia, Riesel, Anja, Meyhoefer, Inga, Ettinger, Ulrich, Kathmann, Norbert,...
Show moreBey, Katharina, Lennertz, Leonhard, Gruetzmann, Rosa, Heinzel, Stephan, Kaufmann, Christian, Klawohn, Julia, Riesel, Anja, Meyhoefer, Inga, Ettinger, Ulrich, Kathmann, Norbert, Wagner, Michael
Show less - Abstract/Description
-
Increasing evidence indicates that patients with obsessive-compulsive disorder (OCD) exhibit alterations in fronto-striatal circuitry. Performance deficits in the antisaccade task would support this model, but results from previous small-scale studies have been inconclusive as either increased error rates, prolonged antisaccade latencies, both or neither have been reported in OCD patients. In order to address this issue, we investigated antisaccade performance in a large sample of OCD...
Show moreIncreasing evidence indicates that patients with obsessive-compulsive disorder (OCD) exhibit alterations in fronto-striatal circuitry. Performance deficits in the antisaccade task would support this model, but results from previous small-scale studies have been inconclusive as either increased error rates, prolonged antisaccade latencies, both or neither have been reported in OCD patients. In order to address this issue, we investigated antisaccade performance in a large sample of OCD patients (n = 169) and matched control subjects (n = 183). As impaired antisaccade performance constitutes a potential endophenotype of OCD, unaffected first-degree relatives of OCD patients (n = 100) were assessed, as well. Furthermore, we conducted a quantitative meta-analysis to integrate our data with previous findings. In the empirical study, OCD patients exhibited significantly increased antisaccade latencies, intra-subject variability (ISV) of antisaccade latencies, and antisaccade error rates. The latter effect was driven by errors with express latency (80-130 ms), as patients did not differ significantly from controls with regards to regular errors (>130 ms). Notably, unaffected relatives of OCD patients showed elevated antisaccade express error rates and increased ISV of antisaccade latencies, as well. Antisaccade performance was not associated with state anxiety within groups. Among relatives, however, we observed a significant correlation between antisaccade error rate and harm avoidance. Medication status of OCD patients, symptom severity, depressive comorbidity, comorbid anxiety disorders and OCD symptom dimensions did not significantly affect antisaccade performance. Meta-analysis of 10 previous and the present empirical study yielded a medium-sized effect (SMD = 0.48, p < 0.001) for higher error rates in OCD patients, while the effect for latencies did not reach significance owing to strong heterogeneity (SMD = 0.51, p = 0.069). Our results support the assumption of impaired antisaccade performance in OCD, although effects sizes were only moderately large. Furthermore, we provide the first evidence that increased antisaccade express error rates and ISV of antisaccade latencies may constitute endophenotypes of OCD. Findings regarding these more detailed antisaccade parameters point to potentially underlying mechanisms, such as early pre-stimulus inhibition of the superior colliculus.
Show less - Date Issued
- 2018-06-29
- Identifier
- FSU_libsubv1_wos_000436854900001, 10.3389/fpsyt.2018.00284
- Format
- Citation
- Title
- Expanded Coverage Of The 26s Proteasome Conformational Landscape Reveals Mechanisms Of Peptidase Gating.
- Creator
-
Eisele, Markus R., Reed, Randi G., Rudack, Till, Schweitzer, Andreas, Beck, Florian, Nagy, Istvan, Pfeifer, Guenter, Plitzko, Juergen M., Baumeister, Wolfgang, Tomko, Robert J.,...
Show moreEisele, Markus R., Reed, Randi G., Rudack, Till, Schweitzer, Andreas, Beck, Florian, Nagy, Istvan, Pfeifer, Guenter, Plitzko, Juergen M., Baumeister, Wolfgang, Tomko, Robert J., Sakata, Eri
Show less - Abstract/Description
-
The proteasome is the central protease for intracellular protein breakdown. Coordinated binding and hydrolysis of ATP by the six proteasomal ATPase subunits induces conformational changes that drive the unfolding and translocation of substrates into the proteolytic 20S core particle for degradation. Here, we combine genetic and biochemical approaches with cryo-electron microscopy and integrative modeling to dissect the relationship between individual nucleotide binding events and proteasome...
Show moreThe proteasome is the central protease for intracellular protein breakdown. Coordinated binding and hydrolysis of ATP by the six proteasomal ATPase subunits induces conformational changes that drive the unfolding and translocation of substrates into the proteolytic 20S core particle for degradation. Here, we combine genetic and biochemical approaches with cryo-electron microscopy and integrative modeling to dissect the relationship between individual nucleotide binding events and proteasome conformational dynamics. We demonstrate unique impacts of ATP binding by individual ATPases on the proteasome conformational distribution and report two conformational states of the proteasome suggestive of a rotary ATP hydrolysis mechanism. These structures, coupled with functional analyses, reveal key roles for the ATPases Rpt1 and Rpt6 in gating substrate entry into the core particle. This deepened knowledge of proteasome conformational dynamics reveals key elements of intersubunit communication within the proteasome and clarifies the regulation of substrate entry into the proteolytic chamber.
Show less - Date Issued
- 2018-07-31
- Identifier
- FSU_libsubv1_wos_000440377500019, 10.1016/j.celrep.2018.07.004
- Format
- Citation
- Title
- Integrative Analysis Of Lncrnas In Th17 Cell Lineage To Discover New Potential Biomarkers And Therapeutic Targets In Autoimmune Diseases.
- Creator
-
Teimuri, Shohreh, Hosseini, Aref, Rezaenasab, Ahmad, Ghaedi, Kamran, Ghoveud, Elahe, Etemadifar, Masoud, Nasr-Esfahani, Mohammad Hossein, Megraw, Timothy L.
- Abstract/Description
-
Th17 cells play a critical role in the pathogenesis of autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, and inflammatory bowel disease. Despite the extensive investigation into this T cell lineage, little is understood regarding the role of Th17 lineage-specific lncRNAs (long non-coding RNAs) > 200 nt. lncRNAs may influence disease through a variety of mechanisms; their expression could be regulated by SNPs. lncRNAs can...
Show moreTh17 cells play a critical role in the pathogenesis of autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, and inflammatory bowel disease. Despite the extensive investigation into this T cell lineage, little is understood regarding the role of Th17 lineage-specific lncRNAs (long non-coding RNAs) > 200 nt. lncRNAs may influence disease through a variety of mechanisms; their expression could be regulated by SNPs. lncRNAs can also affect the expression of neighboring genes or complementary miRNAs, and their expression may have lineage-specific patterns. In the system biology study presented here, the effective lncRNAs from different criteria were predicted for each autoimmune disease, and we then evaluated their expression levels in 50 MS patients compared to 25 controls using qRT-PCR. We identified changes in the expression levels of AL450992.2, AC009948.5, and RP11-98D18.3 as potential peripheral blood mononuclear cell (PBMC) biomarkers for MS among our studied lncRNAs in which co-expression analysis of AL450992.2 had the most AUCs, and the relationship to RORC was also assessed. We propose that the recurrently deregulated lncRNAs identified in this report could provide a valuable resource for studies aimed at delineating the relationship between functional lncRNAs and autoimmune disorders.
Show less - Date Issued
- 2018-09-07
- Identifier
- FSU_libsubv1_wos_000443860200034, 10.1016/j.omtn.2018.05.022
- Format
- Citation
- Title
- Troponin Through The Looking-glass: Emerging Roles Beyond Regulation Of Striated Muscle Contraction.
- Creator
-
Johnston, Jamie R., Chase, P. Bryant, Pinto, Jose Renato
- Abstract/Description
-
Troponin is a heterotrimeric Ca2+-binding protein that has a well-established role in regulating striated muscle contraction. However, mounting evidence points to novel cellular functions of troponin, with profound implications in cancer, cardiomyopathy pathogenesis and skeletal muscle aging. Here, we highlight the non-canonical roles and aberrant expression patterns of troponin beyond the sarcomeric milieu. Utilizing bioinformatics tools and online databases, we also provide pathway,...
Show moreTroponin is a heterotrimeric Ca2+-binding protein that has a well-established role in regulating striated muscle contraction. However, mounting evidence points to novel cellular functions of troponin, with profound implications in cancer, cardiomyopathy pathogenesis and skeletal muscle aging. Here, we highlight the non-canonical roles and aberrant expression patterns of troponin beyond the sarcomeric milieu. Utilizing bioinformatics tools and online databases, we also provide pathway, subcellular localization, and protein-protein/DNA interaction analyses that support a role for troponin in multiple subcellular compartments. This emerging knowledge challenges the conventional view of troponin as a sarcomere-specific protein exclusively involved in muscle contraction and may transform the way we think about sarcomeric proteins, particularly in the context of human disease and aging.
Show less - Date Issued
- 2018-01-02
- Identifier
- FSU_libsubv1_wos_000419615500116, 10.18632/oncotarget.22879
- Format
- Citation
- Title
- Attention And Working Memory Deficits In A Perinatal Nicotine Exposure Mouse Model.
- Creator
-
Zhang, Lin, Spencer, Thomas J., Biederman, Joseph, Bhide, Pradeep G.
- Abstract/Description
-
Background Cigarette smoking by pregnant women is associated with a significant increase in the risk for cognitive disorders in their children. Preclinical models confirm this risk by showing that exposure of the developing brain to nicotine produces adverse behavioral outcomes. Here we describe behavioral phenotypes resulting from perinatal nicotine exposure in a mouse model, and discuss our findings in the context of findings from previously published studies using preclinical models of...
Show moreBackground Cigarette smoking by pregnant women is associated with a significant increase in the risk for cognitive disorders in their children. Preclinical models confirm this risk by showing that exposure of the developing brain to nicotine produces adverse behavioral outcomes. Here we describe behavioral phenotypes resulting from perinatal nicotine exposure in a mouse model, and discuss our findings in the context of findings from previously published studies using preclinical models of developmental nicotine exposure. Methodology/Principal findings Female C57BI/6 mice received drinking water containing nicotine (100pg/ml) + saccharin (2%) starting 3 weeks prior to breeding and continuing throughout pregnancy, and until 3 weeks postpartum. Over the same period, female mice in two control groups received drinking water containing saccharin (2%) or plain drinking water. Offspring from each group were weaned at 3-weeks of age and subjected to behavioral analyses at 3 months of age. We examined spontaneous locomotor activity, anxiety-like behavior, spatial working memory, object based attention, recognition memory and impulsive-like behavior. We found significant deficits in attention and working memory only in male mice, and no significant changes in the other behavioral phenotypes in male or female mice. Exposure to saccharin alone did not produce significant changes in either sex. Conclusion/Significance The perinatal nicotine exposure produced significant deficits in attention and working memory in a sex-dependent manner in that the male but not female offspring displayed these behaviors. These behavioral phenotypes are associated with attention deficit hyperactivity disorder (ADHD) and have been reported in other studies that used pre-or perinatal nicotine exposure. Therefore, we suggest that preclinical models of developmental nicotine exposure could be useful tools for modeling ADHD and related disorders.
Show less - Date Issued
- 2018-05-24
- Identifier
- FSU_libsubv1_wos_000433084300123, 10.1371/journal.pone.0198064
- Format
- Citation
- Title
- Diverse Intrinsic Properties Shape Functional Phenotype Of Low-frequency Neurons In The Auditory Brainstem.
- Creator
-
Hong, Hui, Wang, Xiaoyu, Lu, Ting, Zorio, Diego A. R., Wang, Yuan, Sanchez, Jason Tait
- Abstract/Description
-
In the auditory system, tonotopy is the spatial arrangement of where sounds of different frequencies are processed. Defined by the organization of neurons and their inputs, tonotopy emphasizes distinctions in neuronal structure and function across topographic gradients and is a common feature shared among vertebrates. In this study we characterized action potential firing patterns and ion channel properties from neurons located in the extremely low-frequency region of the chicken nucleus...
Show moreIn the auditory system, tonotopy is the spatial arrangement of where sounds of different frequencies are processed. Defined by the organization of neurons and their inputs, tonotopy emphasizes distinctions in neuronal structure and function across topographic gradients and is a common feature shared among vertebrates. In this study we characterized action potential firing patterns and ion channel properties from neurons located in the extremely low-frequency region of the chicken nucleus magnocellularis (NM), an auditory brainstem structure. We found that NM neurons responsible for encoding the lowest sound frequencies (termed NMc neurons) have enhanced excitability and fired bursts of action potentials to sinusoidal inputs <= 10 Hz; a distinct firing pattern compared to higher-frequency neurons. This response property was due to lower amounts of voltage dependent potassium (K-v) conductances, unique combination of K-v subunits and specialized sodium (Na-v) channel properties. Particularly, NMc neurons had significantly lower K(v)1 and K(v)3 currents, but higher K(v)2current. NMc neurons also showed larger and faster transient Nav current (I-NaT) with different voltage dependence of inactivation from higher-frequency neurons. In contrast, significantly smaller resurgent sodium current (I-NaR) was present in NMc with kinetics and voltage dependence that differed from higher-frequency neurons. Immunohistochemistry showed expression of Na(v)1.6 channel subtypes across the tonotopic axis. However, various immunoreactive patterns were observed between regions, likely underlying some tonotopic differences in I-N(aT) and I-NaR. Finally, using pharmacology and computational modeling, we concluded that K(v)3, K(v)2 channels and I-NaR work synergistically to regulate burst firing in NMc.
Show less - Date Issued
- 2018-06-26
- Identifier
- FSU_libsubv1_wos_000436338700001, 10.3389/fncel.2018.00175
- Format
- Citation
- Title
- Identification Of Anti-gram-negative Bacteria Agents Targeting The Interaction Between Ribosomal Proteins L12 And L10.
- Creator
-
Wang, Weiwei, Liu, Chao, Zhu, Ningyu, Lin, Yuan, Jiang, Jiandong, Wang, Yanchang, Li, Yan, Si, Shuyi
- Abstract/Description
-
Gram-negative bacteria have become the main pathogens and cause serious clinical problems with increased morbidity and mortality. However, the slow discovery of new antimicrobial agents is unable to meet the need for the treatment of bacterial infections caused by drug-resistant strains. The interaction of L12 and L10 is essential for ribosomal function and protein synthesis. In this study, a yeast two-hybrid system was established to successfully detect the interaction between L12 and L10...
Show moreGram-negative bacteria have become the main pathogens and cause serious clinical problems with increased morbidity and mortality. However, the slow discovery of new antimicrobial agents is unable to meet the need for the treatment of bacterial infections caused by drug-resistant strains. The interaction of L12 and L10 is essential for ribosomal function and protein synthesis. In this study, a yeast two-hybrid system was established to successfully detect the interaction between L12 and L10 proteins from gram-negative bacteria Escherichia coli, which allows us to screen compounds that specifically disrupt this interaction. With this system, we identified two compounds IMB-84 and IMB-87 that block L12-L10 interaction and show bactericidal activity against E. coli. We used glutathione-S-transferase (GST) pull-down and surface plasmon resonance (SPR) assays to demonstrate that these compounds disrupt L12-L10 interaction in vitro and the target of compounds was further confirmed by the overexpression of target proteins. Moreover, protein synthesis and elongation factor G-dependent GTPase activities are inhibited by two compounds. Therefore, we have identified two antibacterial agents that disrupt L12-L10 interaction by using yeast two-hybrid system. (C) 2018 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
Show less - Date Issued
- 2018-09-01
- Identifier
- FSU_libsubv1_wos_000445032400007, 10.1016/j.apsb.2018.07.006
- Format
- Citation
- Title
- An Hpsc-derived Tissue-resident Macrophage Model Reveals Differential Responses Of Macrophages To Zikv And Deny Infection.
- Creator
-
Lang, Jianshe, Cheng, Yichen, Rolfe, Alyssa, Hammack, Christy, Vera, Daniel, Kyle, Kathleen, Wang, Jingying, Meissner, Torsten B., Ren, Yi, Cowan, Chad, Tang, Hengli
- Abstract/Description
-
Zika virus (ZIKV) and dengue virus (DENV) are two closely related flaviviruses that lead to different clinical outcomes. The mechanism for the distinct pathogenesis of ZIKV and DENV is poorly understood. Here, we investigate ZIKV and DENV infection of macrophages using a human pluripotent stem cell (hPSC)-derived macrophage model and discover key virus-specific responses. ZIKV and DENV productively infect hPSC-derived macrophages. DENV, but not ZIKV, infection of macrophages strongly...
Show moreZika virus (ZIKV) and dengue virus (DENV) are two closely related flaviviruses that lead to different clinical outcomes. The mechanism for the distinct pathogenesis of ZIKV and DENV is poorly understood. Here, we investigate ZIKV and DENV infection of macrophages using a human pluripotent stem cell (hPSC)-derived macrophage model and discover key virus-specific responses. ZIKV and DENV productively infect hPSC-derived macrophages. DENV, but not ZIKV, infection of macrophages strongly activates macrophage migration inhibitory factor (MIF) secretion and decreases macrophage migration. Neutralization of MIF leads to improved migratory ability of DENV-infected macrophages. In contrast, ZIKV-infected macrophages exhibit prolonged migration and express low levels of pro-inflammatory cytokines and chemokines. Mechanistically, ZIKV disrupts the nuclear factor kappa B (NF-kappa B)-MIF positive feedback loop by inhibiting the NF-kappa B signaling pathway. Our results demonstrate the utility of hPSC-derived macrophages in infectious disease modeling and suggest that the distinct impact of ZIKV and DENV on macrophage immune response may underlie different pathogenesis of Zika and dengue diseases.
Show less - Date Issued
- 2018-08-14
- Identifier
- FSU_libsubv1_wos_000441583100006, 10.1016/j.stemcr.2018.06.006
- Format
- Citation
- Title
- The Absence Of Specific Yeast Heat-shock Proteins Leads To Abnormal Aggregation And Compromised Autophagic Clearance Of Mutant Huntingtin Proteins.
- Creator
-
Higgins, Ryan, Kabbaj, Marie-Helene, Hatcher, Alexa, Wang, Yanchang
- Abstract/Description
-
The functionality of a protein depends on its correct folding, but newly synthesized proteins are susceptible to aberrant folding and aggregation. Heat shock proteins (HSPs) function as molecular chaperones that aid in protein folding and the degradation of misfolded proteins. Trinucleotide (CAG) repeat expansion in the Huntingtin gene (HTT) results in the expression of misfolded Huntingtin protein (Htt), which contributes to the development of Huntington's disease. We previously found that...
Show moreThe functionality of a protein depends on its correct folding, but newly synthesized proteins are susceptible to aberrant folding and aggregation. Heat shock proteins (HSPs) function as molecular chaperones that aid in protein folding and the degradation of misfolded proteins. Trinucleotide (CAG) repeat expansion in the Huntingtin gene (HTT) results in the expression of misfolded Huntingtin protein (Htt), which contributes to the development of Huntington's disease. We previously found that the degradation of mutated Htt with polyQ expansion (Htt103QP) depends on both ubiquitin proteasome system and autophagy. However, the role of heat shock proteins in the clearance of mutated Htt remains poorly understood. Here, we report that cytosolic Hsp70 (Ssa family), its nucleotide exchange factors (Sse1 and Fes1), and a Hsp40 co-chaperone (Ydj1) are required for inclusion body formation of Htt103QP proteins and their clearance via autophagy. Extended induction of Htt103QPGFP leads to the formation of a single inclusion body in wild-type yeast cells, but mutant cells lacking these HSPs exhibit increased number of Htt103QP aggregates. Most notably, we detected more aggregated forms of Htt103QP in sse1 Delta. mutant cells using an agarose gel assay. Increased protein aggregates are also observed in these HSP mutants even in the absence Htt103QP overexpression. Importantly, these HSPs are required for autophagy- mediated Htt103QP clearance, but are less critical for proteasome-dependent degradation. These findings suggest a chaperone network that facilitates inclusion body formation of misfolded proteins and the subsequent autophagic clearance.
Show less - Date Issued
- 2018-01-18
- Identifier
- FSU_libsubv1_wos_000422749500056, 10.1371/journal.pone.0191490
- Format
- Citation
- Title
- Low dose pramipexole is neuroprotective in the MPTP mouse model of Parkinson's disease, and downregulates the dopamine transporter via the D3 receptor.
- Creator
-
Joyce, Jeffery N., Woolsey, Cheryl, Ryoo, Han, Borwege, Sabine, Hagner, Diane
- Abstract/Description
-
Background Our aim was to determine if pramipexole, a D3 preferring agonist, effectively reduced dopamine neuron and fiber loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model when given at intraperitoneal doses corresponding to clinical doses. We also determined whether subchronic treatment with pramipexole regulates dopamine transporter function, thereby reducing intracellular transport of the active metabolite of MPTP, 1-methyl-4-phenylpyridinium (MPP+). Methods Ten...
Show moreBackground Our aim was to determine if pramipexole, a D3 preferring agonist, effectively reduced dopamine neuron and fiber loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model when given at intraperitoneal doses corresponding to clinical doses. We also determined whether subchronic treatment with pramipexole regulates dopamine transporter function, thereby reducing intracellular transport of the active metabolite of MPTP, 1-methyl-4-phenylpyridinium (MPP+). Methods Ten 12-month old C57BL/6 mice were treated with MPTP (or saline) twice per day at 20 mg/kg s.c. (4 injections over 48 h). Mice were pretreated for 3 days and during the 2-day MPTP regimen with pramipexole (0.1 mg/kg/day) or saline. Stereological quantification of dopamine neuron number and optical density measurement of dopamine fiber loss were carried out at 1 week after treatment, using immunostaining for dopamine transporter (DAT) and tyrosine hydroxylase (TH). Additional wild-type (WT) and D3 receptor knockout (KO) mice were treated for 5 days with pramipexole (0.1 mg/kg/day) or vehicle. The kinetics of [3H]MPP+ and [3H]DA uptake (V max and K m) were determined 24 h later; and at 24 h and 14 days dopamine transporter density was measured by quantitative autoradiography. Results Pramipexole treatment completely antagonized the neurotoxic effects of MPTP, as measured by substantia nigra and ventral tegmental area TH-immunoreactive cell counts. MPTP- induced loss of striatal innervation, as measured by DAT-immunoreactivity, was partially prevented by pramipexole, but not with regard to TH-IR. Pramipexole also reduced DAT- immunoreactivity in non-MPTP treated mice. Subchronic treatment with pramipexole lowered the V max for [3H]DA and [3H]MPP+ uptake into striatal synaptosomes of WT mice. Pramipexole treatment lowered V max in WT but not D3 KO mice; however, D3 KO mice had lower V max for [3H]DA uptake. There was no change in DAT number in WT with pramipexole treatment or D3 KO mice at 24 h post-treatment, but there was a reduction in WT-pramipexole treated and not in D3 KO mice at 14 days post-treatment. Conclusion These results suggest that protection occurs at clinically suitable doses of pramipexole. Protection could be due to a reduced amount of MPP+ taken up into DA terminals via DAT. D3 receptor plays an important role in this regulation of transporter uptake and availability.
Show less - Date Issued
- 2004-10-11
- Identifier
- FSU_libsubv1_scholarship_submission_1542402256_a8dcf884, 10.1186/1741-7007-2-22
- Format
- Citation
- Title
- Microrna-22 Inhibits The Proliferation And Migration, And Increases The Cisplatin Sensitivity, Of Osteosarcoma Cells.
- Creator
-
Zhou, Xiang, Natino, Dimple, Zhai, Xu, Gao, Zhongyang, He, Xijing
- Abstract/Description
-
Osteosarcoma (OS) is the major type of primary bone tumor and is associated with a poor prognosis due to chemotherapy resistance. Accumulating evidence indicates that microRNAs (miRNAs/miRs) may influence the tumor progression of OS and cell sensitivity to chemotherapy. In the present study, a total of 7 patients with OS and 7 healthy volunteers were recruited. Reverse transcription-quantitative polymerase chain reaction and ELISA were performed to determine the expression of miRNAs and mRNAs...
Show moreOsteosarcoma (OS) is the major type of primary bone tumor and is associated with a poor prognosis due to chemotherapy resistance. Accumulating evidence indicates that microRNAs (miRNAs/miRs) may influence the tumor progression of OS and cell sensitivity to chemotherapy. In the present study, a total of 7 patients with OS and 7 healthy volunteers were recruited. Reverse transcription-quantitative polymerase chain reaction and ELISA were performed to determine the expression of miRNAs and mRNAs in the serum of participants. Furthermore, the biological function of miR-22 and S100A11 was examined in MG-63 cells using Cell Counting Kit-8 assays, Transwell migration assays and western blot analysis to determine the effects on cell proliferation, migration and protein expression, respectively, while MG-63 cell sensitivity to cisplatin was assessed by measuring cell viability following cisplatin treatment and calculating the half maximal inhibitory concentration (IC50). Additionally, the association between miR-22 and S100 calcium-binding protein A11 (S100A11) was validated using a luciferase reporter assay. The results demonstrated that miR-22 expression was significantly reduced in patients with OS and the MG-63 OS cell line, compared with healthy volunteers and the normal osteoblast hFOB 1.19 cell line, respectively, while the expression of S100A11 was negatively associated with miR-22 levels in the MG-63 cell line. Furthermore, overexpression of miR-22 inhibited the proliferation and migratory ability of MG-63 cells, and increased the sensitivity of MG-63 cells to cisplatin treatment; however, overexpression of S100A11 partially attenuated the alterations in proliferation, migratory ability and chemosensitivity that were induced by miR-22 overexpression. In addition, it was confirmed that S100A11 is a direct target gene of miR-22 in MG-63 cells. In conclusion, to the best of our knowledge, the present study is the first to demonstrate that miR-22 may be a promising therapeutic target and may have potential as part of a combination treatment alongside chemotherapeutic agents for OS.
Show less - Date Issued
- 2018-05-01
- Identifier
- FSU_libsubv1_wos_000430556800125, 10.3892/mmr.2018.8790
- Format
- Citation
- Title
- PIB is a non-specific imaging marker of amyloid-beta (A beta) peptide-related cerebral amyloidosis.
- Creator
-
Lockhart, A., Lamb, J. R., Osredkar, T., Sue, L. I., Joyce, J. N., Ye, L., Libri, V., Leppert, D., Beach, T. G.
- Abstract/Description
-
The in vivo imaging probe [11C]-PIB (Pittsburgh Compound B, N-methyl[11C]2-(4'-methylaminophenyl-6-hydroxybenzathiazole) is under evaluation as a key imaging tool in Alzheimer's disease (AD) and to date has been assumed to bind with high affinity and specificity to the amyloid structures associated with classical plaques (CPs), one of the pathological hallmarks of the disease. However, no studies have systematically investigated PIB binding to human neuropathological brain specimens at the...
Show moreThe in vivo imaging probe [11C]-PIB (Pittsburgh Compound B, N-methyl[11C]2-(4'-methylaminophenyl-6-hydroxybenzathiazole) is under evaluation as a key imaging tool in Alzheimer's disease (AD) and to date has been assumed to bind with high affinity and specificity to the amyloid structures associated with classical plaques (CPs), one of the pathological hallmarks of the disease. However, no studies have systematically investigated PIB binding to human neuropathological brain specimens at the tracer concentrations achieved during in vivo imaging scans. Using a combination of autoradiography and histochemical techniques, we demonstrate that PIB, in addition to binding CPs clearly delineates diffuse plaques and cerebrovascular amyloid angiopathy (CAA). The interaction of PIB with CAA was not fully displaceable and this may be linked to the apolipoprotein E-epsilon4 allele. PIB was also found to label neurofibrillary tangles, although the overall intensity of this binding was markedly lower than that associated with the amyloid-beta (Abeta) pathology. The data provide a molecular explanation for PIB's limited specificity in diagnosing and monitoring disease progression in AD and instead indicate that the ligand is primarily a non-specific marker of Abeta-peptide related cerebral amyloidosis.
Show less - Date Issued
- 2007
- Identifier
- FSU_libsubv1_scholarship_submission_1541626890_c5ba9397, 10.1093/brain/awm191
- Format
- Citation
- Title
- Allosteric Transmission along a Loosely Structured Backbone Allows a Cardiac Troponin C Mutant to Function with Only One Ca Ion.
- Creator
-
Marques, Mayra de A, Pinto, Jose Renato, Moraes, Adolfo H, Iqbal, Anwar, de Magalhães, Mariana T Q, Monteiro, Jamila, Pedrote, Murilo M, Sorenson, Martha M, Silva, Jerson L, de...
Show moreMarques, Mayra de A, Pinto, Jose Renato, Moraes, Adolfo H, Iqbal, Anwar, de Magalhães, Mariana T Q, Monteiro, Jamila, Pedrote, Murilo M, Sorenson, Martha M, Silva, Jerson L, de Oliveira, Guilherme A P
Show less - Abstract/Description
-
Hypertrophic cardiomyopathy (HCM) is one of the most common cardiomyopathies and a major cause of sudden death in young athletes. The Ca sensor of the sarcomere, cardiac troponin C (cTnC), plays an important role in regulating muscle contraction. Although several cardiomyopathy-causing mutations have been identified in cTnC, the limited information about their structural defects has been mapped to the HCM phenotype. Here, we used high-resolution electron-spray ionization mass spectrometry ...
Show moreHypertrophic cardiomyopathy (HCM) is one of the most common cardiomyopathies and a major cause of sudden death in young athletes. The Ca sensor of the sarcomere, cardiac troponin C (cTnC), plays an important role in regulating muscle contraction. Although several cardiomyopathy-causing mutations have been identified in cTnC, the limited information about their structural defects has been mapped to the HCM phenotype. Here, we used high-resolution electron-spray ionization mass spectrometry (ESI-MS), Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG-RD), and affinity measurements of cTnC for the thin filament in reconstituted papillary muscles to provide evidence of an allosteric mechanism in mutant cTnC that may play a role to the HCM phenotype. We showed that the D145E mutation leads to altered dynamics on a μs-ms time scale and deactivates both of the divalent cation-binding sites of the cTnC C-domain. CPMG-RD captured a low populated protein-folding conformation triggered by the Glu-145 replacement of Asp. Paradoxically, although D145E C-domain was unable to bind Ca, these changes along its backbone allowed it to attach more firmly to thin filaments than the wild-type isoform, providing evidence for an allosteric response of the Ca-binding site II in the N-domain. Our findings explain how the effects of an HCM mutation in the C-domain reflect up into the N-domain to cause an increase of Ca affinity in site II, thus opening up new insights into the HCM phenotype.
Show less - Date Issued
- 2017-02-10
- Identifier
- FSU_pmch_28049727, 10.1074/jbc.M116.765362, PMC5313108, 28049727, 28049727, M116.765362
- Format
- Citation
- Title
- Premature Silencing of the Spindle Assembly Checkpoint Is Prevented by the Bub1-H2A-Sgo1-PP2A Axis in .
- Creator
-
Jin, Fengzhi, Bokros, Michael, Wang, Yanchang
- Abstract/Description
-
The spindle assembly checkpoint (SAC) monitors mistakes in kinetochore-microtubule interaction and its activation prevents anaphase entry. The SAC remains active until all chromosomes have achieved bipolar attachment which applies tension on kinetochores. Our previous data in budding yeast show that Ipl1/Aurora B kinase and a centromere-associated protein, Sgo1, are required to prevent SAC silencing prior to tension generation, but we believe that this regulatory network is incomplete. Bub1...
Show moreThe spindle assembly checkpoint (SAC) monitors mistakes in kinetochore-microtubule interaction and its activation prevents anaphase entry. The SAC remains active until all chromosomes have achieved bipolar attachment which applies tension on kinetochores. Our previous data in budding yeast show that Ipl1/Aurora B kinase and a centromere-associated protein, Sgo1, are required to prevent SAC silencing prior to tension generation, but we believe that this regulatory network is incomplete. Bub1 kinase is one of the SAC components, and Bub1-dependent H2A phosphorylation triggers centromere recruitment of Sgo1 by H2A in yeast and human cells. Although yeast cells lacking the kinase domain of Bub1 show competent SAC activation, we found that the mutant cells fail to maintain a prolonged checkpoint arrest in the presence of tensionless attachment. Mutation of the Bub1 phosphorylation site in H2A also results in premature SAC silencing in yeast cells. Previous data indicate that Sgo1 protein binds to PP2A, and we found that Δ mutants exhibited premature SAC silencing as well. We further revealed that mutants with abolished binding to H2A or PP2A displayed premature SAC silencing. Together, our results suggest that, in budding yeast , the Bub1-H2A-Sgo1-PP2A axis prevents SAC silencing and helps prolonged checkpoint arrest prior to tension establishment at kinetochores.
Show less - Date Issued
- 2017-03-01
- Identifier
- FSU_pmch_28040741, 10.1534/genetics.116.195727, PMC5340331, 28040741, 28040741, genetics.116.195727
- Format
- Citation
- Title
- The Autolytic Regulation of Human Kallikrein-Related Peptidase 6.
- Creator
-
Blaber, Sachiko, Yoon, Hyesook, Scarisbrick, Isobel, Juliano, Maria, Blaber, Michael
- Abstract/Description
-
Human kallikrein-related peptidase 6 (KLK6) is a member of the kallikrein family of serine-type proteases, characterized as an arginine-specific digestive-type protease capable of degrading a wide-variety of extracellular matrix proteins. KLK6 has been proposed to be a useful biomarker for breast and ovarian cancer prognosis, is abundantly expressed in the CNS and cerebrospinal fluid, and is intimately associated with regions of active inflammatory demyelination in multiple sclerosis (MS)...
Show moreHuman kallikrein-related peptidase 6 (KLK6) is a member of the kallikrein family of serine-type proteases, characterized as an arginine-specific digestive-type protease capable of degrading a wide-variety of extracellular matrix proteins. KLK6 has been proposed to be a useful biomarker for breast and ovarian cancer prognosis, is abundantly expressed in the CNS and cerebrospinal fluid, and is intimately associated with regions of active inflammatory demyelination in multiple sclerosis (MS) lesions. Inhibition of KLK6 results in delayed onset and reduced severity of symptoms associated with experimental autoimmune encephalomyelitis, suggesting a key effector role for this protease in CNS inflammatory disease. KLK6 has been shown to autolytically cleave internally, leading to inactivation and suggesting a negative feedback inhibition control mechanism. Alternatively, the ability of KLK6 to self-activate has also been reported, suggesting a positive feedback activation loop control mechanism. Activation of pro-KLK6 requires hydrolysis after a Lys residue; however, KLK6 exhibits 2 order of magnitude reduced affinity for hydrolysis after Lys versus Arg residues; therefore, the ability to autolytically activate has been called into question. In the present study the catalytic activity of KLK6 toward its pro-sequence and internal autolytic sequence is characterized. The results show that the ability of KLK6 to activate pro-KLK6 is essentially negligible when compared to the rate of the internal autolytic inactivation or to the ability of other proteases to activate pro-KLK6. The results thus show that the primary autolytic regulatory mechanism of KLK6 is negative feedback inhibition, and activation is likely achieved through the action of a separate protease.
Show less - Date Issued
- 2007
- Identifier
- FSU_migr_biomed_faculty_publications-0002, 10.1021/bi6025006, PMC2517904
- Format
- Citation
- Title
- Functional Intersection of the Kallikrein-Related Peptidases (KLKs) and Thrombostasis Axis.
- Creator
-
Blaber, Michael, Yoon, Hyesook, Juliano, Maria, Scarisbrick, Isobel, Blaber, Sachiko
- Abstract/Description
-
A large body of emerging evidence indicates a functional interaction between the kallikrein-related peptidases (KLKs) and proteases of the thrombostasis axis. These interactions appear relevant for both normal health as well as pathologies associated with inflammation, tissue injury, and remodeling. Regulatory interactions between the KLKs and thrombostasis proteases could impact several serious human diseases, including neurodegeneration and cancer. The emerging network of specific...
Show moreA large body of emerging evidence indicates a functional interaction between the kallikrein-related peptidases (KLKs) and proteases of the thrombostasis axis. These interactions appear relevant for both normal health as well as pathologies associated with inflammation, tissue injury, and remodeling. Regulatory interactions between the KLKs and thrombostasis proteases could impact several serious human diseases, including neurodegeneration and cancer. The emerging network of specific interactions between these two protease families appears to be complex, and much work remains to elucidate it. Complete understanding how this functional network resolves over time, given specific initial conditions, and how it might be controllably manipulated, will probably contribute to the emergence of novel diagnostics and therapeutic agents for major diseases.
Show less - Date Issued
- 2010
- Identifier
- FSU_migr_biomed_faculty_publications-0018, 10.1515/BC.2010.024, PMC3047482
- Format
- Citation
- Title
- X-ray Structure and Biophysical Properties of Rabbit Fibroblast Growth Factor 1.
- Creator
-
Lee, Jihun, Blaber, Sachiko, Irsigler, Andre, Aspinwall, Eric, Blaber, Michael
- Abstract/Description
-
The rabbit is an important and de facto animal model in the study of ischemic disease and angiogenic therapy. Additionally, fibroblast growth factor 1 (FGF-1) is emerging as one of the most important growth factors for novel proangiogenic and pro-arteriogenic therapy. However, despite its significance, the fundamental biophysical properties of rabbit FGF-1, including its X-ray structure, have never been reported. Here, the cloning, crystallization, X-ray structure and determination of the...
Show moreThe rabbit is an important and de facto animal model in the study of ischemic disease and angiogenic therapy. Additionally, fibroblast growth factor 1 (FGF-1) is emerging as one of the most important growth factors for novel proangiogenic and pro-arteriogenic therapy. However, despite its significance, the fundamental biophysical properties of rabbit FGF-1, including its X-ray structure, have never been reported. Here, the cloning, crystallization, X-ray structure and determination of the biophysical properties of rabbit FGF-1 are described. The X-ray structure shows that the amino-acid differences between human and rabbit FGF-1 are solvent-exposed and therefore potentially immunogenic, while the biophysical studies identify differences in thermostability and receptor-binding affinity that distinguish rabbit FGF-1 from human FGF-1.
Show less - Date Issued
- 2009
- Identifier
- FSU_migr_biomed_faculty_publications-0016, 10.1107/S1744309109040287, PMC2777034
- Format
- Citation
- Title
- Evolution of a Protein Folding Nucleus.
- Creator
-
Xia, Xue, Longo, Liam M., Sutherland, Mason A., Blaber, Michael
- Abstract/Description
-
The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding...
Show moreThe folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome.
Show less - Date Issued
- 2015-12-10
- Identifier
- FSU_libsubv1_scholarship_submission_1464367133, 10.1002/pro.2848, PMC4918426
- Format
- Citation
- Title
- Activation Profiles of Human Kallikrein-Related Peptidases by Matrix Metalloproteinases.
- Creator
-
Yoon, Hyesook, Blaber, Sachiko, Li, Wu, Scarisbrick, Isobel, Blaber, Michael
- Abstract/Description
-
Abstract The 15 human kallikrein-related peptidases (KLKs) are clinically important biomarkers and therapeutic targets of interest in inflammation, cancer, and neurodegenerative disease. KLKs are secreted as inactive pro-forms (pro-KLKs) that are activated extracellularly by specific proteolytic release of their amino-terminal pro-peptide, and this is a key step in their functional regulation. Physiologically relevant KLK regulatory cascades of activation have been described in skin...
Show moreAbstract The 15 human kallikrein-related peptidases (KLKs) are clinically important biomarkers and therapeutic targets of interest in inflammation, cancer, and neurodegenerative disease. KLKs are secreted as inactive pro-forms (pro-KLKs) that are activated extracellularly by specific proteolytic release of their amino-terminal pro-peptide, and this is a key step in their functional regulation. Physiologically relevant KLK regulatory cascades of activation have been described in skin desquamation and semen liquefaction, and work by a large number of investigators has elucidated pairwise and autolytic activation relationships among the KLKs with the potential for more extensive activation cascades. More recent work has asked whether functional intersection of KLKs with other types of regulatory proteases exists. Such studies show a capacity for members of the thrombostasis axis to act as broad activators of pro-KLKs. In the present report, we ask whether such functional intersection is possible between the KLKs and the members of the matrix metalloproteinase (MMP) family by evaluating the ability of the MMPs to activate pro-KLKs. The results identify MMP-20 as a broad activator of pro-KLKs, suggesting the potential for intersection of the KLK and MMP axes under pathological dysregulation of MMP-20 expression.
Show less - Date Issued
- 2013
- Identifier
- FSU_migr_biomed_faculty_publications-0042, 10.1515/hsz-2012-0249, PMC3709557
- Format
- Citation
- Title
- A Single Aromatic Core Mutation Converts a Designed "Primitive" Protein from Halophile to Mesophile Folding.
- Creator
-
Longo, Liam, Tenorio, Conniee, Kumru, Ozan, Middaugh, Russell, Blaber, Michael
- Abstract/Description
-
The halophile environment has a number of compelling aspects with regard to the origin of structured polypeptides (i.e., proteogenesis) and, instead of a curious niche that living systems adapted into, the halophile environment is emerging as a candidate “cradle” for proteogenesis. In this viewpoint, a subsequent halophile-to-mesophile transition was a key step in early evolution. Several lines of evidence indicate that aromatic amino acids were a late addition to the codon table and not part...
Show moreThe halophile environment has a number of compelling aspects with regard to the origin of structured polypeptides (i.e., proteogenesis) and, instead of a curious niche that living systems adapted into, the halophile environment is emerging as a candidate “cradle” for proteogenesis. In this viewpoint, a subsequent halophile-to-mesophile transition was a key step in early evolution. Several lines of evidence indicate that aromatic amino acids were a late addition to the codon table and not part of the original “prebiotic” set comprising the earliest polypeptides. We test the hypothesis that the availability of aromatic amino acids could facilitate a halophile-to-mesophile transition by hydrophobic core-packing enhancement. The effects of aromatic amino acid substitutions were evaluated in the core of a “primitive” designed protein enriched for the 10 prebiotic amino acids (A,D,E,G,I,L,P,S,T,V)--having an exclusively prebiotic core and requiring halophilic conditions for folding. The results indicate that a single aromatic amino acid substitution is capable of eliminating the requirement of halophile conditions for folding of a “primitive” polypeptide. Thus, the availability of aromatic amino acids could have facilitated a critical halophile-to-mesophile protein folding adaptation--identifying a selective advantage for the incorporation of aromatic amino acids into the codon table.
Show less - Date Issued
- 2014-10-25
- Identifier
- FSU_libsubv1_scholarship_submission_1456504194, 10.1002/pro.2580, PMC4282409
- Format
- Citation
- Title
- Engineering an Improved Crystal Contact Across a Solvent-Mediated Interface of Human Fibroblast Growth Factor 1.
- Creator
-
Meher, Akshaya, Blaber, Sachiko, Lee, Jihun, Honjo, Ejiro, Kuroki, Ryota, Blaber, Michael
- Abstract/Description
-
Large-volume protein crystals are a prerequisite for neutron diffraction studies and their production represents a bottleneck in obtaining neutron structures. Many protein crystals that permit the collection of high-resolution X-ray diffraction data are inappropriate for neutron diffraction owing to a plate-type morphology that limits the crystal volume. Human fibroblast growth factor 1 crystallizes in a plate morphology that yields atomic resolution X-ray diffraction data but has...
Show moreLarge-volume protein crystals are a prerequisite for neutron diffraction studies and their production represents a bottleneck in obtaining neutron structures. Many protein crystals that permit the collection of high-resolution X-ray diffraction data are inappropriate for neutron diffraction owing to a plate-type morphology that limits the crystal volume. Human fibroblast growth factor 1 crystallizes in a plate morphology that yields atomic resolution X-ray diffraction data but has insufficient volume for neutron diffraction. The thin physical dimension has been identified as corresponding to the b cell edge and the X-ray structure identified a solvent-mediated crystal contact adjacent to position Glu81 that was hypothesized to limit efficient crystal growth in this dimension. In this report, a series of mutations at this crystal contact designed to both reduce side-chain entropy and replace the solvent-mediated interface with direct side-chain contacts are reported. The results suggest that improved crystal growth is achieved upon the introduction of direct crystal contacts, while little improvement is observed with side-chain entropy-reducing mutations alone.
Show less - Date Issued
- 2009
- Identifier
- FSU_migr_biomed_faculty_publications-0017, 10.1107/S1744309109036987, PMC2777043
- Format
- Citation
- Title
- Trichostatin A (TSA) facilitates formation of partner preference in male prairie voles (Microtus ochrogaster).
- Creator
-
Duclot, F, Wang, H, Youssef, C, Liu, Y, Wang, Z, Kabbaj, M
- Abstract/Description
-
In the socially monogamous prairie voles (Microtus ochrogaster), the development of a social bonding is indicated by the formation of partner preference, which involves a variety of environmental and neurochemical factors and brain structures. In a most recent study in female prairie voles, we found that treatment with the histone deacetylase inhibitor trichostatin A (TSA) facilitates the formation of partner preference through up-regulation of oxytocin receptor (OTR) and vasopressin V1a...
Show moreIn the socially monogamous prairie voles (Microtus ochrogaster), the development of a social bonding is indicated by the formation of partner preference, which involves a variety of environmental and neurochemical factors and brain structures. In a most recent study in female prairie voles, we found that treatment with the histone deacetylase inhibitor trichostatin A (TSA) facilitates the formation of partner preference through up-regulation of oxytocin receptor (OTR) and vasopressin V1a receptor (V1aR) genes expression in the nucleus accumbens (NAcc). In the present study, we tested the hypothesis that TSA treatment also facilitates partner preference formation and alters OTR and V1aR genes expression in the NAcc in male prairie voles. We thus observed that central injection of TSA dose-dependently promoted the formation of partner preference in the absence of mating in male prairie voles. Interestingly, TSA treatment up-regulated OTR, but not V1aR, gene expression in the NAcc similarly as they were affected by mating - an essential process for naturally occurring partner preference. These data, together with others, not only indicate the involvement of epigenetic events but also the potential role of NAcc oxytocin in the regulation of partner preference in both male and female prairie voles.
Show less - Date Issued
- 2016-05-01
- Identifier
- FSU_pmch_27074037, 10.1016/j.yhbeh.2016.04.001, PMC4893910, 27074037, 27074037, S0018-506X(16)30152-0
- Format
- Citation
- Title
- Withaferin-A reduces type I collagen expression in vitro and inhibits development of myocardial fibrosis in vivo.
- Creator
-
Challa, Azariyas A, Vukmirovic, Milica, Blackmon, John, Stefanovic, Branko
- Abstract/Description
-
Type I collagen is the most abundant protein in the human body. Its excessive synthesis results in fibrosis of various organs. Fibrosis is a major medical problem without an existing cure. Excessive synthesis of type I collagen in fibrosis is primarily due to stabilization of collagen mRNAs. We recently reported that intermediate filaments composed of vimentin regulate collagen synthesis by stabilizing collagen mRNAs. Vimentin is a primary target of Withaferin-A (WF-A). Therefore, we...
Show moreType I collagen is the most abundant protein in the human body. Its excessive synthesis results in fibrosis of various organs. Fibrosis is a major medical problem without an existing cure. Excessive synthesis of type I collagen in fibrosis is primarily due to stabilization of collagen mRNAs. We recently reported that intermediate filaments composed of vimentin regulate collagen synthesis by stabilizing collagen mRNAs. Vimentin is a primary target of Withaferin-A (WF-A). Therefore, we hypothesized that WF-A may reduce type I collagen production by disrupting vimentin filaments and decreasing the stability of collagen mRNAs. This study is to determine if WF-A exhibits anti-fibrotic properties in vitro and in vivo and to elucidate the molecular mechanisms of its action. In lung, skin and heart fibroblasts WF-A disrupted vimentin filaments at concentrations of 0.5-1.5 µM and reduced 3 fold the half-lives of collagen α1(I) and α2(I) mRNAs and protein expression. In addition, WF-A inhibited TGF-β1 induced phosphorylation of TGF-β1 receptor I, Smad3 phosphorylation and transcription of collagen genes. WF-A also inhibited in vitro activation of primary hepatic stellate cells and decreased their type I collagen expression. In mice, administration of 4 mg/kg WF-A daily for 2 weeks reduced isoproterenol-induced myocardial fibrosis by 50%. Our findings provide strong evidence that Withaferin-A could act as an anti-fibrotic compound against fibroproliferative diseases, including, but not limited to, cardiac interstitial fibrosis.
Show less - Date Issued
- 2012-01-01
- Identifier
- FSU_pmch_22900077, 10.1371/journal.pone.0042989, PMC3416765, 22900077, 22900077, PONE-D-12-16085
- Format
- Citation
- Title
- The functional and structural changes in the basilar artery due to overpressure blast injury.
- Creator
-
Toklu, Hale Z, Muller-Delp, Judy, Yang, Zhihui, Oktay, Şehkar, Sakarya, Yasemin, Strang, Kevin, Ghosh, Payal, Delp, Michael D, Scarpace, Philip J, Wang, Kevin K W, Tümer, Nihal
- Abstract/Description
-
Overpressure blast-wave induced brain injury (OBI) leads to progressive pathophysiologic changes resulting in a reduction in brain blood flow, blood brain barrier breakdown, edema, and cerebral ischemia. The aim of this study was to evaluate cerebral vascular function after single and repeated OBI. Male Sprague-Dawley rats were divided into three groups: Control (Naive), single OBI (30 psi peak pressure, 1 to 2 msec duration), and repeated (days 1, 4, and 7) OBI (r-OBI). Rats were killed 24...
Show moreOverpressure blast-wave induced brain injury (OBI) leads to progressive pathophysiologic changes resulting in a reduction in brain blood flow, blood brain barrier breakdown, edema, and cerebral ischemia. The aim of this study was to evaluate cerebral vascular function after single and repeated OBI. Male Sprague-Dawley rats were divided into three groups: Control (Naive), single OBI (30 psi peak pressure, 1 to 2 msec duration), and repeated (days 1, 4, and 7) OBI (r-OBI). Rats were killed 24 hours after injury and the basilar artery was isolated, cannulated, and pressurized (90 cm H2O). Vascular responses to potassium chloride (KCl) (30 to 100 mmol/L), endothelin-1 (10(-12) to 10(-7) mol/L), acetylcholine (ACh) (10(-10) to 10(-4) mol/L) and diethylamine-NONO-ate (DEA-NONO-ate) (10(-10) to 10(-4) mol/L) were evaluated. The OBI resulted in an increase in the contractile responses to endothelin and a decrease in the relaxant responses to ACh in both single and r-OBI groups. However, impaired DEA-NONO-ate-induced vasodilation and increased wall thickness to lumen ratio were observed only in the r-OBI group. The endothelin-1 type A (ET(A)) receptor and endothelial nitric oxide synthase (eNOS) immunoreactivity were significantly enhanced by OBI. These findings indicate that both single and r-OBI impairs cerebral vascular endothelium-dependent dilation, potentially a consequence of endothelial dysfunction and/or vascular remodelling in basilar arteries after OBI.
Show less - Date Issued
- 2015-12-01
- Identifier
- FSU_pmch_26104291, 10.1038/jcbfm.2015.151, PMC4671114, 26104291, 26104291, jcbfm2015151
- Format
- Citation
- Title
- The function and regulation of budding yeast Swe1 in response to interrupted DNA synthesis.
- Creator
-
Liu, Hong, Wang, Yanchang
- Abstract/Description
-
Periodically regulated cyclin-dependent kinase (Cdk) is required for DNA synthesis and mitosis. Hydroxyurea (HU) inhibits DNA synthesis by depleting dNTPs, the basic unit for DNA synthesis. HU treatment triggers the S-phase checkpoint, which arrests cells at S-phase, inhibits late origin firing and stabilizes replication forks. Using budding yeast as a model system, we found that Swe1, a negative regulator of Cdk, appears at S-phase and accumulates in HU treatment cells. Interestingly, this...
Show morePeriodically regulated cyclin-dependent kinase (Cdk) is required for DNA synthesis and mitosis. Hydroxyurea (HU) inhibits DNA synthesis by depleting dNTPs, the basic unit for DNA synthesis. HU treatment triggers the S-phase checkpoint, which arrests cells at S-phase, inhibits late origin firing and stabilizes replication forks. Using budding yeast as a model system, we found that Swe1, a negative regulator of Cdk, appears at S-phase and accumulates in HU treatment cells. Interestingly, this accumulation is not dependent on S-phase checkpoint. Deltahsl1, Deltahsl7, and cdc5-2 mutants, which have defects in Swe1 degradation, show HU sensitivity because of high Swe1 protein levels. We further demonstrated that their HU sensitivity is not a result of DNA damage accumulation or incomplete DNA synthesis; instead the sensitivity is due to their dramatically delayed recovery from HU-induced S-phase arrest. Strikingly, our in vivo data indicate that Swe1 inhibits the kinase activity of Clb2-Cdk1, but not that of Clb5-Cdk1. Therefore, S-phase accumulated Swe1 prevents Clb2-Cdk1-mediated mitotic activities, but has little effects on Clb5-Cdk1-associated S-phase progression.
Show less - Date Issued
- 2006-06-01
- Identifier
- FSU_pmch_16571676, 10.1091/mbc.E05-11-1093, PMC1474790, 16571676, 16571676, E05-11-1093
- Format
- Citation
- Title
- The genetics of sex: exploring differences..
- Creator
-
Arbeitman, Michelle N, Kopp, Artyom, Siegal, Mark L, Van Doren, Mark
- Abstract/Description
-
In this commentary, Michelle Arbeitman et al., examine the topic of the Genetics of Sex as explored in this month's issues of GENETICS and G3: Genes|Genomes|Genetics. These inaugural articles are part of a joint Genetics of Sex collection (ongoing) in the GSA journals.
- Date Issued
- 2014-06-17
- Identifier
- FSU_pmch_24939183, 10.1534/g3.114.011692, PMC4065266, 24939183, 24939183, 4/6/979
- Format
- Citation
- Title
- The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice.
- Creator
-
Sørensen, Gunnar, Reddy, India A, Weikop, Pia, Graham, Devon L, Stanwood, Gregg D, Wortwein, Gitta, Galli, Aurelio, Fink-Jensen, Anders
- Abstract/Description
-
Glucagon-like peptide 1 (GLP-1) analogues are used for the treatment of type 2 diabetes. The ability of the GLP-1 system to decrease food intake in rodents has been well described and parallels results from clinical trials. GLP-1 receptors are expressed in the brain, including within the ventral tegmental area (VTA) and the nucleus accumbens (NAc). Dopaminergic neurons in the VTA project to the NAc, and these neurons play a pivotal role in the rewarding effects of drugs of abuse. Based on the...
Show moreGlucagon-like peptide 1 (GLP-1) analogues are used for the treatment of type 2 diabetes. The ability of the GLP-1 system to decrease food intake in rodents has been well described and parallels results from clinical trials. GLP-1 receptors are expressed in the brain, including within the ventral tegmental area (VTA) and the nucleus accumbens (NAc). Dopaminergic neurons in the VTA project to the NAc, and these neurons play a pivotal role in the rewarding effects of drugs of abuse. Based on the anatomical distribution of GLP-1 receptors in the brain and the well-established effects of GLP-1 on food reward, we decided to investigate the effect of the GLP-1 analogue exendin-4 on cocaine- and dopamine D1-receptor agonist-induced hyperlocomotion, on acute and chronic cocaine self-administration, on cocaine-induced striatal dopamine release in mice and on cocaine-induced c-fos activation. Here, we report that GLP-1 receptor stimulation reduces acute and chronic cocaine self-administration and attenuates cocaine-induced hyperlocomotion. In addition, we show that peripheral administration of exendin-4 reduces cocaine-induced elevation of striatal dopamine levels and striatal c-fos expression implicating central GLP-1 receptors in these responses. The present results demonstrate that the GLP-1 system modulates cocaine's effects on behavior and dopamine homeostasis, indicating that the GLP-1 receptor may be a novel target for the pharmacological treatment of drug addiction.
Show less - Date Issued
- 2015-10-01
- Identifier
- FSU_pmch_26072178, 10.1016/j.physbeh.2015.06.013, PMC4668599, 26072178, 26072178, S0031-9384(15)00349-2
- Format
- Citation
- Title
- The transcription factor YY1 is a novel substrate for Aurora B kinase at G2/M transition of the cell cycle.
- Creator
-
Kassardjian, Ari, Rizkallah, Raed, Riman, Sarah, Renfro, Samuel H, Alexander, Karen E, Hurt, Myra M
- Abstract/Description
-
Yin Yang 1 (YY1) is a ubiquitously expressed and highly conserved multifunctional transcription factor that is involved in a variety of cellular processes. Many YY1-regulated genes have crucial roles in cell proliferation, differentiation, apoptosis, and cell cycle regulation. Numerous mechanisms have been shown to regulate the function of YY1, such as DNA binding affinity, subcellular localization, and posttranslational modification including phosphorylation. Polo-like kinase 1(Plk1) and...
Show moreYin Yang 1 (YY1) is a ubiquitously expressed and highly conserved multifunctional transcription factor that is involved in a variety of cellular processes. Many YY1-regulated genes have crucial roles in cell proliferation, differentiation, apoptosis, and cell cycle regulation. Numerous mechanisms have been shown to regulate the function of YY1, such as DNA binding affinity, subcellular localization, and posttranslational modification including phosphorylation. Polo-like kinase 1(Plk1) and Casein kinase 2α (CK2 α) were the first two kinases identified to phosphorylate YY1. In this study, we identify a third kinase. We report that YY1 is a novel substrate of the Aurora B kinase both in vitro and in vivo. Serine 184 phosphorylation of YY1 by Aurora B is cell cycle regulated and peaks at G2/M and is rapidly dephosphorylated, likely by protein phosphatase 1 (PP1) as the cells enter G1. Aurora A and Aurora C can also phosphorylate YY1 in vitro, but at serine/threonine residues other than serine 184. We present evidence that phosphorylation of YY1 in the central glycine/alanine (G/A)-rich region is important for DNA binding activity, with a potential phosphorylation/acetylation interplay regulating YY1 function. Given their importance in mitosis and overexpression in human cancers, Aurora kinases have been identified as promising therapeutic targets. Increasing our understanding of Aurora substrates will add to the understanding of their signaling pathways.
Show less - Date Issued
- 2012-01-01
- Identifier
- FSU_pmch_23226345, 10.1371/journal.pone.0050645, PMC3511337, 23226345, 23226345, PONE-D-12-19550
- Format
- Citation
- Title
- δ/ω-Plectoxin-Pt1a: an excitatory spider toxin with actions on both Ca(2+) and Na(+) channels..
- Creator
-
Zhou, Yi, Zhao, Mingli, Fields, Gregg B, Wu, Chun-Fang, Branton, W Dale
- Abstract/Description
-
The venom of spider Plectreurys tristis contains a variety of peptide toxins that selectively target neuronal ion channels. O-palmitoylation of a threonine or serine residue, along with a characteristic and highly constrained disulfide bond structure, are hallmarks of a family of toxins found in this venom. Here, we report the isolation and characterization of a new toxin, δ/ω-plectoxin-Pt1a, from this spider venom. It is a 40 amino acid peptide containing an O-palmitoylated Ser-39. Analysis...
Show moreThe venom of spider Plectreurys tristis contains a variety of peptide toxins that selectively target neuronal ion channels. O-palmitoylation of a threonine or serine residue, along with a characteristic and highly constrained disulfide bond structure, are hallmarks of a family of toxins found in this venom. Here, we report the isolation and characterization of a new toxin, δ/ω-plectoxin-Pt1a, from this spider venom. It is a 40 amino acid peptide containing an O-palmitoylated Ser-39. Analysis of δ/ω-plectoxin-Pt1a cDNA reveals a small precursor containing a secretion signal sequence, a 14 amino acid N-terminal propeptide, and a C-terminal amidation signal. The biological activity of δ/ω-plectoxin-Pt1a is also unique. It preferentially blocks a subset of Ca(2+) channels that is apparently not required for neurotransmitter release; decreases threshold for Na(+) channel activation; and slows Na(+) channel inactivation. As δ/ω-plectoxin-Pt1a enhances synaptic transmission by prolonging presynaptic release of neurotransmitter, its effects on Na(+) and Ca(2+) channels may act synergistically to sustain the terminal excitability.
Show less - Date Issued
- 2013-05-14
- Identifier
- FSU_pmch_23691198, 10.1371/journal.pone.0064324, PMC3653879, 23691198, 23691198, PONE-D-13-04611
- Format
- Citation
- Title
- The transcription factor YY1 is a substrate for Polo-like kinase 1 at the G2/M transition of the cell cycle.
- Creator
-
Rizkallah, Raed, Alexander, Karen E, Kassardjian, Ari, Lüscher, Bernhard, Hurt, Myra M
- Abstract/Description
-
Yin-Yang 1 (YY1) is an essential multifunctional zinc-finger protein. It has been shown over the past two decades to be a critical regulator of a vast array of biological processes, including development, cell proliferation and differentiation, DNA repair, and apoptosis. YY1 exerts its functions primarily as a transcription factor that can activate or repress gene expression, dependent on its spatial and temporal context. YY1 regulates a large number of genes involved in cell cycle...
Show moreYin-Yang 1 (YY1) is an essential multifunctional zinc-finger protein. It has been shown over the past two decades to be a critical regulator of a vast array of biological processes, including development, cell proliferation and differentiation, DNA repair, and apoptosis. YY1 exerts its functions primarily as a transcription factor that can activate or repress gene expression, dependent on its spatial and temporal context. YY1 regulates a large number of genes involved in cell cycle transitions, many of which are oncogenes and tumor-suppressor genes. YY1 itself has been classified as an oncogene and was found to be upregulated in many cancer types. Unfortunately, our knowledge of what regulates YY1 is very minimal. Although YY1 has been shown to be a phosphoprotein, no kinase has ever been identified for the phosphorylation of YY1. Polo-like kinase 1 (Plk1) has emerged in the past few years as a major cell cycle regulator, particularly for cell division. Plk1 has been shown to play important roles in the G/M transition into mitosis and for the proper execution of cytokinesis, processes that YY1 has been shown to regulate also. Here, we present evidence that Plk1 directly phosphorylates YY1 in vitro and in vivo at threonine 39 in the activation domain. We show that this phosphorylation is cell cycle regulated and peaks at G2/M. This is the first report identifying a kinase for which YY1 is a substrate.
Show less - Date Issued
- 2011-01-06
- Identifier
- FSU_pmch_21253604, 10.1371/journal.pone.0015928, PMC3017090, 21253604, 21253604
- Format
- Citation
- Title
- The replication initiation protein Sld2 regulates helicase assembly.
- Creator
-
Bruck, Irina, Kaplan, Daniel L
- Abstract/Description
-
Assembly of the Cdc45-Mcm2-7-GINS (CMG) replicative helicase complex must be regulated to ensure that DNA unwinding is coupled with DNA synthesis. Sld2 is required for the initiation of DNA replication in budding yeast. We identified a mutant of Sld2, Sld2-m1,4, that is specifically defective in Mcm2-7 binding. When this sld2-m1,4 mutant is expressed, cells exhibit severe inhibition of DNA replication. Furthermore, the CMG complex assembles prematurely in G1 in mutant cells, but not wild-type...
Show moreAssembly of the Cdc45-Mcm2-7-GINS (CMG) replicative helicase complex must be regulated to ensure that DNA unwinding is coupled with DNA synthesis. Sld2 is required for the initiation of DNA replication in budding yeast. We identified a mutant of Sld2, Sld2-m1,4, that is specifically defective in Mcm2-7 binding. When this sld2-m1,4 mutant is expressed, cells exhibit severe inhibition of DNA replication. Furthermore, the CMG complex assembles prematurely in G1 in mutant cells, but not wild-type cells. These data suggest that Sld2 binding to Mcm2-7 is essential to block the inappropriate formation of a CMG helicase complex in G1. We also study a mutant of Sld2 that is defective in binding DNA, sld2-DNA, and find that sld2-DNA cells exhibit no GINS-Mcm2-7 interaction. These data suggest that Sld2 association with DNA is required for CMG assembly in S phase.
Show less - Date Issued
- 2014-01-24
- Identifier
- FSU_pmch_24307213, 10.1074/jbc.M113.532085, PMC3900945, 24307213, 24307213, M113.532085
- Format
- Citation
- Title
- The signaling network that silences the spindle assembly checkpoint upon the establishment of chromosome bipolar attachment.
- Creator
-
Jin, Fengzhi, Wang, Yanchang
- Abstract/Description
-
Improper kinetochore attachments activate the spindle assembly checkpoint (SAC) to prevent anaphase onset, but it is poorly understood how this checkpoint is silenced to allow anaphase onset. Chromosome bipolar attachment applies tension on sister kinetochores, and the lack of tension delays anaphase onset. In budding yeast, the delay induced by tension defects depends on the intact SAC as well as increase in ploidy (Ipl1)/Aurora kinase and a centromere-associated protein ShuGOshin (Sgo1)....
Show moreImproper kinetochore attachments activate the spindle assembly checkpoint (SAC) to prevent anaphase onset, but it is poorly understood how this checkpoint is silenced to allow anaphase onset. Chromosome bipolar attachment applies tension on sister kinetochores, and the lack of tension delays anaphase onset. In budding yeast, the delay induced by tension defects depends on the intact SAC as well as increase in ploidy (Ipl1)/Aurora kinase and a centromere-associated protein ShuGOshin (Sgo1). Here we provide evidence indicating that Ipl1-dependent phosphorylation of the kinetochore protein Duo1 and Mps1 interacting (Dam1) prevents SAC silencing when tension is absent. The nonphosphorylatable dam1 mutant cells, as well as sgo1 mutant cells, are competent in SAC activation but unable to prevent SAC silencing in response to tension defects. We further found that phosphomimetic dam1 mutants exhibited delayed anaphase onset mainly due to the failure in SAC silencing, but destabilized kinetochore attachment likely plays a minor role in this delay. Because the tension resulting from bipolar attachment triggers the dephosphorylation of Dam1 by protein phosphatase 1, this dephosphorylation likely coordinates SAC silencing with chromosome bipolar attachment. Therefore, Sgo1, Ipl1 kinase, Dam1, and protein phosphatase 1 comprise the SAC silencing network that ensures the correct timing for anaphase onset.
Show less - Date Issued
- 2013-12-24
- Identifier
- FSU_pmch_24324173, 10.1073/pnas.1307595111, PMC3876237, 24324173, 24324173, 1307595111
- Format
- Citation
- Title
- A small molecule, MTBT, prevents cancer cell growth by activating p38 MAPK.
- Creator
-
Li, Yan, Zhang, Xuelian, Zhang, Jing, Li, Yongzhen, Liu, Wei, Wang, Zhen, Wang, Yanchang, Si, Shuyi
- Abstract/Description
-
Cancer is a disease of unscheduled cell division and many anticancer drugs target the cell cycle to inhibit the proliferation of cancer cells. We conducted a screen for new anticancer drugs that induce cell cycle arrest using a small compound library. From this screen, we identified 2-(3-methyl-thiophen-2-yl)-4-(3,4-dioxybenzene) thiazole (MTBT), which causes accumulation of cancer cells with 4N DNA content and inhibits colony formation of several cancer cell lines. We further showed that the...
Show moreCancer is a disease of unscheduled cell division and many anticancer drugs target the cell cycle to inhibit the proliferation of cancer cells. We conducted a screen for new anticancer drugs that induce cell cycle arrest using a small compound library. From this screen, we identified 2-(3-methyl-thiophen-2-yl)-4-(3,4-dioxybenzene) thiazole (MTBT), which causes accumulation of cancer cells with 4N DNA content and inhibits colony formation of several cancer cell lines. We further showed that the treatment of cancer cells with this compound for a longer time period leads to apoptosis, as indicated by the presence of cells with a sub-G1 peak and the appearance apoptotic markers. The increased phosphorylation of serine 10 on histone H3 in MTBT-treated cancer cells suggests cell cycle arrest in the M-phase. Strikingly, MTBT-induced cell cycle arrest and enhanced H3 (Ser10) phosphorylation are abrogated by the pretreatment with SB203580, a specific inhibitor of mitogen-activated protein kinase p38. Moreover, treatment of cancer cells with MTBT induces the phosphorylation of p38, indicative of p38 activation. Together, we have identified a new compound that inhibits cancer cell proliferation, which is likely a consequence of p38 activation.
Show less - Date Issued
- 2014-04-01
- Identifier
- FSU_pmch_24441745, 10.1097/CAD.0000000000000074, PMC4091034, 24441745, 24441745
- Format
- Citation
- Title
- δ/ω-Plectoxin-Pt1a: An Excitatory Spider Toxin with Actions on both Ca(2+) and Na(+) Channels.
- Creator
-
Zhou, Yi, Zhao, Mingli, Fields, Gregg B., Wu, Chun-Fang, Branton, W.
- Abstract/Description
-
The venom of spider Plectreurys tristis contains a variety of peptide toxins that selectively target neuronal ion channels. O-palmitoylation of a threonine or serine residue, along with a characteristic and highly constrained disulfide bond structure, are hallmarks of a family of toxins found in this venom. Here, we report the isolation and characterization of a new toxin, δ/ω-plectoxin-Pt1a, from this spider venom. It is a 40 amino acid peptide containing an O-palmitoylated Ser-39. Analysis...
Show moreThe venom of spider Plectreurys tristis contains a variety of peptide toxins that selectively target neuronal ion channels. O-palmitoylation of a threonine or serine residue, along with a characteristic and highly constrained disulfide bond structure, are hallmarks of a family of toxins found in this venom. Here, we report the isolation and characterization of a new toxin, δ/ω-plectoxin-Pt1a, from this spider venom. It is a 40 amino acid peptide containing an O-palmitoylated Ser-39. Analysis of δ/ω-plectoxin-Pt1a cDNA reveals a small precursor containing a secretion signal sequence, a 14 amino acid N-terminal propeptide, and a C-terminal amidation signal. The biological activity of δ/ω-plectoxin-Pt1a is also unique. It preferentially blocks a subset of Ca(2+) channels that is apparently not required for neurotransmitter release; decreases threshold for Na(+) channel activation; and slows Na(+) channel inactivation. As δ/ω-plectoxin-Pt1a enhances synaptic transmission by prolonging presynaptic release of neurotransmitter, its effects on Na(+) and Ca(2+) channels may act synergistically to sustain the terminal excitability.
Show less - Date Issued
- 2013
- Identifier
- FSU_migr_biomed_faculty_publications-0044
- Format
- Citation
- Title
- Viral-mediated Zif268 expression in the prefrontal cortex protects against gonadectomy-induced working memory, long-term memory, and social interaction deficits in male rats.
- Creator
-
Dossat, Amanda M, Jourdi, Hussam, Wright, Katherine N, Strong, Caroline E, Sarkar, Ambalika, Kabbaj, Mohamed
- Abstract/Description
-
In humans, some males experience reductions in testosterone levels, as a natural consequence of aging or in the clinical condition termed hypogonadism, which are associated with impaired cognitive performance and mood disorder(s). Some of these behavioral deficits can be reversed by testosterone treatment. Our previous work in rats reported that sex differences in the expression of the transcription factor Zif268, a downstream target of testosterone, within the medial prefrontal cortex (mPFC)...
Show moreIn humans, some males experience reductions in testosterone levels, as a natural consequence of aging or in the clinical condition termed hypogonadism, which are associated with impaired cognitive performance and mood disorder(s). Some of these behavioral deficits can be reversed by testosterone treatment. Our previous work in rats reported that sex differences in the expression of the transcription factor Zif268, a downstream target of testosterone, within the medial prefrontal cortex (mPFC) mediates sex differences in social interaction. In the present study, we aimed to examine the effects of gonadectomy (GNX) in male rats on mPFC Zif268 expression, mood and cognitive behaviors. We also examined whether reinstitution of Zif268 in GNX rats will correct some of the behavioral deficits observed following GNX. Our results show that GNX induced a downregulation of Zif268 protein in the mPFC, which was concomitant with impaired memory in the y-maze and spontaneous object recognition test, reduced social interaction time, and depression-like behaviors in the forced swim test. Reinstitution of mPFC Zif268, using a novel adeno-associated-viral (AAV) construct, abrogated GNX-induced working memory and long-term memory impairments, and reductions in social interaction time, but not GNX-induced depression-like behaviors. These findings suggest that mPFC Zif268 exerts beneficial effects on memory and social interaction, and could be a potential target for novel treatments for behavioral impairments observed in hypogonadal and aged men with declining levels of gonadal hormones.
Show less - Date Issued
- 2017-01-06
- Identifier
- FSU_pmch_27816701, 10.1016/j.neuroscience.2016.10.062, PMC5154846, 27816701, 27816701, S0306-4522(16)30603-0
- Format
- Citation
- Title
- Effects of Neonatal Methamphetamine and Stress on Brain Monoamines and Corticosterone in Preweanling Rats.
- Creator
-
Jablonski, Sarah A, Graham, Devon L, Vorhees, Charles V, Williams, Michael T
- Abstract/Description
-
Neonatal exposure to methamphetamine (MA) and developmental chronic stress significantly alter neurodevelopmental profiles that show a variety of long-term physiological and behavioral effects. In the current experiment, Sprague-Dawley rats were exposed to one of two housing conditions along with MA. Rats were given 0 (saline), 5, or 7.5 mg/kg MA, four times per day from postnatal day (P)11 to 15 or P11 to 20. Half of the litters were reared in cages with standard bedding and half with no...
Show moreNeonatal exposure to methamphetamine (MA) and developmental chronic stress significantly alter neurodevelopmental profiles that show a variety of long-term physiological and behavioral effects. In the current experiment, Sprague-Dawley rats were exposed to one of two housing conditions along with MA. Rats were given 0 (saline), 5, or 7.5 mg/kg MA, four times per day from postnatal day (P)11 to 15 or P11 to 20. Half of the litters were reared in cages with standard bedding and half with no bedding. Separate litters were assessed at P15 or P20 for organ weights (adrenals, spleen, thymus); corticosterone; and monoamine assessments (dopamine, serotonin, norepinephrine) and their metabolites within the neostriatum, hippocampus, and prefrontal cortex. Findings show neonatal MA altered monoamines, corticosterone, and organ characteristics alone, and as a function of developmental age and stress compared with controls. These alterations may in part be responsible for MA and early life stress-induced long-term learning and memory deficits.
Show less - Date Issued
- 2017-02-01
- Identifier
- FSU_pmch_27817108, 10.1007/s12640-016-9680-y, PMC5551505, 27817108, 27817108, 10.1007/s12640-016-9680-y
- Format
- Citation
- Title
- Ubiquilin/Dsk2 promotes inclusion body formation and vacuole (lysosome)-mediated disposal of mutated huntingtin.
- Creator
-
Chuang, Kun-Han, Liang, Fengshan, Higgins, Ryan, Wang, Yanchang
- Abstract/Description
-
Ubiquilin proteins contain a ubiquitin-like domain (UBL) and ubiquitin-associated domain(s) that interact with the proteasome and ubiquitinated substrates, respectively. Previous work established the link between ubiquilin mutations and neurodegenerative diseases, but the function of ubiquilin proteins remains elusive. Here we used a misfolded huntingtin exon I containing a 103-polyglutamine expansion (Htt103QP) as a model substrate for the functional study of ubiquilin proteins. We found...
Show moreUbiquilin proteins contain a ubiquitin-like domain (UBL) and ubiquitin-associated domain(s) that interact with the proteasome and ubiquitinated substrates, respectively. Previous work established the link between ubiquilin mutations and neurodegenerative diseases, but the function of ubiquilin proteins remains elusive. Here we used a misfolded huntingtin exon I containing a 103-polyglutamine expansion (Htt103QP) as a model substrate for the functional study of ubiquilin proteins. We found that yeast ubiquilin mutant (dsk2Δ) is sensitive to Htt103QP overexpression and has a defect in the formation of Htt103QP inclusion bodies. Our evidence further suggests that the UBL domain of Dsk2 is critical for inclusion body formation. Of interest, Dsk2 is dispensable for Htt103QP degradation when Htt103QP is induced for a short time before noticeable inclusion body formation. However, when the inclusion body forms after a long Htt103QP induction, Dsk2 is required for efficient Htt103QP clearance, as well as for autophagy-dependent delivery of Htt103QP into vacuoles (lysosomes). Therefore our data indicate that Dsk2 facilitates vacuole-mediated clearance of misfolded proteins by promoting inclusion body formation. Of importance, the defect of inclusion body formation in dsk2 mutants can be rescued by human ubiquilin 1 or 2, suggesting functional conservation of ubiquilin proteins.
Show less - Date Issued
- 2016-07-01
- Identifier
- FSU_pmch_27170182, 10.1091/mbc.E16-01-0026, PMC4927277, 27170182, 27170182, mbc.E16-01-0026
- Format
- Citation
- Title
- Ubiquilin/dsk2 Promotes Inclusion Body Formation And Vacuole (lysosome)-mediated Disposal Of Mutated Huntingtin.
- Creator
-
Chuang, Kun-Han, Liang, Fengshan, Higgins, Ryan, Wang, Yanchang
- Abstract/Description
-
Ubiquilin proteins contain a ubiquitin-like domain (UBL) and ubiquitin-associated domain(s) that interact with the proteasome and ubiquitinated substrates, respectively. Previous work established the link between ubiquilin mutations and neurodegenerative diseases, but the function of ubiquilin proteins remains elusive. Here we used a misfolded huntingtin exon I containing a 103-polyglutamine expansion (Htt103QP) as a model substrate for the functional study of ubiquilin proteins. We found...
Show moreUbiquilin proteins contain a ubiquitin-like domain (UBL) and ubiquitin-associated domain(s) that interact with the proteasome and ubiquitinated substrates, respectively. Previous work established the link between ubiquilin mutations and neurodegenerative diseases, but the function of ubiquilin proteins remains elusive. Here we used a misfolded huntingtin exon I containing a 103-polyglutamine expansion (Htt103QP) as a model substrate for the functional study of ubiquilin proteins. We found that yeast ubiquilin mutant (dsk2.) is sensitive to Htt103QP overexpression and has a defect in the formation of Htt103QP inclusion bodies. Our evidence further suggests that the UBL domain of Dsk2 is critical for inclusion body formation. Of interest, Dsk2 is dispensable for Htt103QP degradation when Htt103QP is induced for a short time before noticeable inclusion body formation. However, when the inclusion body forms after a long Htt103QP induction, Dsk2 is required for efficient Htt103QP clearance, as well as for autophagy-dependent delivery of Htt103QP into vacuoles (lysosomes). Therefore our data indicate that Dsk2 facilitates vacuole-mediated clearance of misfolded proteins by promoting inclusion body formation. Of importance, the defect of inclusion body formation in dsk2 mutants can be rescued by human ubiquilin 1 or 2, suggesting functional conservation of ubiquilin proteins.
Show less - Date Issued
- 2016-07-01
- Identifier
- FSU_libsubv1_wos_000379008900006, 10.1091/mbc.E16-01-0026
- Format
- Citation
- Title
- Zinc supplementation provides behavioral resiliency in a rat model of traumatic brain injury.
- Creator
-
Cope, Elise C, Morris, Deborah R, Scrimgeour, Angus G, VanLandingham, Jacob W, Levenson, Cathy W
- Abstract/Description
-
Depression, anxiety, and impairments in learning and memory are all associated with traumatic brain injury (TBI). Because of the strong link between zinc deficiency, depression, and anxiety, in both humans and rodent models, we hypothesized that dietary zinc supplementation prior to injury could provide behavioral resiliency to lessen the severity of these outcomes after TBI. Rats were fed a marginal zinc deficient (5 ppm), zinc adequate (30 ppm), or zinc supplemented (180 ppm) diet for 4...
Show moreDepression, anxiety, and impairments in learning and memory are all associated with traumatic brain injury (TBI). Because of the strong link between zinc deficiency, depression, and anxiety, in both humans and rodent models, we hypothesized that dietary zinc supplementation prior to injury could provide behavioral resiliency to lessen the severity of these outcomes after TBI. Rats were fed a marginal zinc deficient (5 ppm), zinc adequate (30 ppm), or zinc supplemented (180 ppm) diet for 4 weeks followed by a moderately-severe TBI using the well-established model of controlled cortical impact (CCI). Following CCI, rats displayed depression-like behaviors as measured by the 2-bottle saccharin preference test for anhedonia. Injury also resulted in evidence of stress and impairments in Morris water maze (MWM) performance compared to sham-injured controls. While moderate zinc deficiency did not worsen outcomes following TBI, rats that were fed the zinc supplemented diet for 4 weeks showed significantly attenuated increases in adrenal weight (p<0.05) as well as reduced depression-like behaviors (p<0.001). Supplementation prior to injury improved resilience such that there was not only significant improvements in cognitive behavior compared to injured rats fed an adequate diet (p<0.01), there were no significant differences between supplemented and sham-operated rats in MWM performance at any point in the 10-day trial. These data suggest a role for supplemental zinc in preventing cognitive and behavioral deficits associated with TBI.
Show less - Date Issued
- 2011-10-24
- Identifier
- FSU_pmch_21699908, 10.1016/j.physbeh.2011.06.007, PMC3506179, 21699908, 21699908, S0031-9384(11)00322-2
- Format
- Citation
- Title
- Zinc and neurogenesis: making new neurons from development to adulthood..
- Creator
-
Levenson, Cathy W, Morris, Deborah
- Abstract/Description
-
Stem cell proliferation, neuronal differentiation, cell survival, and migration in the central nervous system are all important steps in the normal process of neurogenesis. These mechanisms are highly active during gestational and early neonatal brain development. Additionally, in select regions of the brain, stem cells give rise to new neurons throughout the human lifespan. Recent work has revealed key roles for the essential trace element zinc in the control of both developmental and adult...
Show moreStem cell proliferation, neuronal differentiation, cell survival, and migration in the central nervous system are all important steps in the normal process of neurogenesis. These mechanisms are highly active during gestational and early neonatal brain development. Additionally, in select regions of the brain, stem cells give rise to new neurons throughout the human lifespan. Recent work has revealed key roles for the essential trace element zinc in the control of both developmental and adult neurogenesis. Given the prevalence of zinc deficiency, these findings have implications for brain development, cognition, and the regulation of mood.
Show less - Date Issued
- 2011-03-01
- Identifier
- FSU_pmch_22332038, 10.3945/an.110.000174, PMC3065768, 22332038, 22332038, 000174
- Format
- Citation
- Title
- Zinc in the central nervous system: From molecules to behavior..
- Creator
-
Gower-Winter, Shannon D, Levenson, Cathy W
- Abstract/Description
-
The trace metal zinc is a biofactor that plays essential roles in the central nervous system across the lifespan from early neonatal brain development through the maintenance of brain function in adults. At the molecular level, zinc regulates gene expression through transcription factor activity and is responsible for the activity of dozens of key enzymes in neuronal metabolism. At the cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and...
Show moreThe trace metal zinc is a biofactor that plays essential roles in the central nervous system across the lifespan from early neonatal brain development through the maintenance of brain function in adults. At the molecular level, zinc regulates gene expression through transcription factor activity and is responsible for the activity of dozens of key enzymes in neuronal metabolism. At the cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Given these key roles, it is not surprising that alterations in brain zinc status have been implicated in a wide array of neurological disorders including impaired brain development, neurodegenerative disorders such as Alzheimer's disease, and mood disorders including depression. Zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders.
Show less - Date Issued
- 2012-05-01
- Identifier
- FSU_pmch_22473811, 10.1002/biof.1012, PMC3757551, 22473811, 22473811
- Format
- Citation
- Title
- Zinc regulation of transcriptional activity during retinoic acid-induced neuronal differentiation.
- Creator
-
Morris, Deborah R, Levenson, Cathy W
- Abstract/Description
-
Zinc deficiency impairs the proliferation and differentiation of stem cells in the central nervous system that participate in neurogenesis. To examine the molecular mechanisms responsible for the role of this essential nutrient in neuronal precursor cells and neuronal differentiation, we identified zinc-dependent changes in the DNA-binding activity of zinc finger proteins and other transcription factors in proliferating human Ntera-2 neuronal precursor cells undergoing retinoic acid...
Show moreZinc deficiency impairs the proliferation and differentiation of stem cells in the central nervous system that participate in neurogenesis. To examine the molecular mechanisms responsible for the role of this essential nutrient in neuronal precursor cells and neuronal differentiation, we identified zinc-dependent changes in the DNA-binding activity of zinc finger proteins and other transcription factors in proliferating human Ntera-2 neuronal precursor cells undergoing retinoic acid-stimulated differentiation into a neuronal phenotype. We found that zinc deficiency altered binding activity of 28 transcription factors including retinoid X receptor (RXR) known to participate in neuronal differentiation. Alterations in zinc finger transcription factor activity were not simply the result of removal of zinc from these proteins during zinc deficiency, as the activity of other zinc-binding transcription factors such as the glucocorticoid receptor was increased by as much as twofold over zinc-adequate conditions, and nonzinc-binding transcription factors such as nuclear factor-1 and heat shock transcription factor-1 were increased by as much as fourfold over control. Western analysis did not detect significant decreases in total RXR protein abundance in neuronal precursors, suggesting that the decrease in DNA-binding activity was not simply the result of a reduction in RXR levels in neuronal precursor cells. Rather, use of a reporter gene construct containing retinoic acid response elements upstream from a luciferase coding sequence revealed that zinc deficiency results in decreased transcriptional activity of RXR and reductions in retinoic acid-mediated gene transcription during neuronal differentiation. These results show that zinc deficiency has implications for both developmental and adult neurogenesis.
Show less - Date Issued
- 2013-11-01
- Identifier
- FSU_pmch_24029070, 10.1016/j.jnutbio.2013.06.002, PMC3832953, 24029070, 24029070, S0955-2863(13)00126-5
- Format
- Citation
- Title
- Structural and Protein Interaction Effects of Hypertrophic and Dilated Cardiomyopathic Mutations in Alpha-Tropomyosin.
- Creator
-
Pinto, Jose Renato, Chang, Audrey N., Greenfield, Norma J., Singh, Abhishek, Potter, James D.
- Abstract/Description
-
The potential alterations to structure and associations with thin filament proteins caused by the dilated cardiomyopathy (DCM) associated tropomyosin (Tm) mutants E40K and E54K, and the hypertrophic cardiomyopathy (HCM) associated Tm mutants E62Q and L185R, were investigated. In order to ascertain what the cause of the known functional effects may be, structural and protein-protein interaction studies were conducted utilizing actomyosin ATPase activity measurements and spectroscopy. In...
Show moreThe potential alterations to structure and associations with thin filament proteins caused by the dilated cardiomyopathy (DCM) associated tropomyosin (Tm) mutants E40K and E54K, and the hypertrophic cardiomyopathy (HCM) associated Tm mutants E62Q and L185R, were investigated. In order to ascertain what the cause of the known functional effects may be, structural and protein-protein interaction studies were conducted utilizing actomyosin ATPase activity measurements and spectroscopy. In actomyosin ATPase measurements, both HCM mutants and the DCM mutant E54K caused increases in Ca2+-induced maximal ATPase activities, while E40K caused a decrease. Investigation of Tm's ability to inhibit actomyosin ATPase in the absence of troponin showed that HCM-associated mutant Tms did not inhibit as well as wildtype, whereas the DCM associated mutant E40K inhibited better. E54K did not inhibit the actomyosin ATPase activity at any concentration of Tm tested. Thermal denaturation studies by circular dichroism and molecular modeling of the mutations in Tm showed that in general, the DCM mutants caused localized destabilization of the Tm dimers, while the HCM mutants resulted in increased stability. These findings demonstrate that the structural alterations in Tm observed here may affect the regulatory function of Tm on actin, thereby directly altering the ATPase rates of myosin.
Show less - Date Issued
- 2014-12-02
- Identifier
- FSU_libsubv1_scholarship_submission_1475067030, 10.3389/fphys.2014.00460, PMC4251307
- Format
- Citation
- Title
- Hypertrophic Cardiomyopathy Cardiac Troponin C Mutations Differentially Affect Slow Skeletal And Cardiac Muscle Regulation.
- Creator
-
Veltri, Tiago, Landim-Vieira, Maicon, Parvatiyar, Michelle S., Gonzalez-Martinez, David, Jones, Karissa M. Dieseldorff, Michell, Clara A., Dweck, David, Landstrom, Andrew P.,...
Show moreVeltri, Tiago, Landim-Vieira, Maicon, Parvatiyar, Michelle S., Gonzalez-Martinez, David, Jones, Karissa M. Dieseldorff, Michell, Clara A., Dweck, David, Landstrom, Andrew P., Chase, P. Bryant, Pinto, Jose R.
Show less - Abstract/Description
-
Mutations in TNNC1-the gene encoding cardiac troponin C (cTnC)-that have been associated with hypertrophic cardiomyopathy (HCM) and cardiac dysfunction may also affect Ca2+-regulation and function of slow skeletal muscle since the same gene is expressed in both cardiac and slow skeletal muscle. Therefore, we reconstituted rabbit soleus fibers and bovine masseter myofibrils with mutant cTnCs (A8V, C84Y, E134D, and D145E) associated with HCM to investigate their effects on contractile force and...
Show moreMutations in TNNC1-the gene encoding cardiac troponin C (cTnC)-that have been associated with hypertrophic cardiomyopathy (HCM) and cardiac dysfunction may also affect Ca2+-regulation and function of slow skeletal muscle since the same gene is expressed in both cardiac and slow skeletal muscle. Therefore, we reconstituted rabbit soleus fibers and bovine masseter myofibrils with mutant cTnCs (A8V, C84Y, E134D, and D145E) associated with HCM to investigate their effects on contractile force and ATPase rates, respectively. Previously, we showed that these HCM cTnC mutants, except for E134D, increased the Ca2+ sensitivity of force development in cardiac preparations. In the current study, an increase in Ca2+ sensitivity of isometric force was only observed for the C84Y mutant when reconstituted in soleus fibers. Incorporation of cTnC C84Y in bovine masseter myofibrils reduced the ATPase activity at saturating [Ca2+], whereas, incorporation of cTnC D145E increased the ATPase activity at inhibiting and saturating [Ca2+]. We also tested whether reconstitution of cardiac fibers with troponin complexes containing the cTnC mutants and slow skeletal troponin I (ssTnI) could emulate the slow skeletal functional phenotype. Reconstitution of cardiac fibers with troponin complexes containing ssTnI attenuated the Ca2+ sensitization of isometric force when cTnC A8V and D145E were present; however, it was enhanced for C84Y. In summary, although the A8V and D145E mutants are present in both muscle types, their functional phenotype is more prominent in cardiac muscle than in slow skeletal muscle, which has implications for the protein-protein interactions within the troponin complex. The C84Y mutant warrants further investigation since it drastically alters the properties of both muscle types and may account for the earlier clinical onset in the proband.
Show less - Date Issued
- 2017-04-20
- Identifier
- FSU_libsubv1_wos_000402869900001, 10.3389/fphys.2017.00221, PMC5397416
- Format
- Citation
- Title
- Reversal Learning Deficits Associated with Increased Frontal Cortical Brain-Derived Neurotrophic Factor Tyrosine Kinase B Signaling in a Prenatal Cocaine Exposure Mouse Model.
- Creator
-
McCarthy, Deirdre M, Bell, Genevieve A, Cannon, Elisa N, Mueller, Kaly A, Huizenga, Megan N, Sadri-Vakili, Ghazaleh, Fadool, Debra A, Bhide, Pradeep G
- Abstract/Description
-
Prenatal cocaine exposure remains a major public health concern because of its adverse impact on cognitive function in children and adults. We report that prenatal cocaine exposure produces significant deficits in reversal learning, a key component of cognitive flexibility, in a mouse model. We used an olfactory reversal learning paradigm and found that the prenatally cocaine-exposed mice showed a marked failure to learn the reversed paradigm. Because brain-derived neurotrophic factor (BDNF)...
Show morePrenatal cocaine exposure remains a major public health concern because of its adverse impact on cognitive function in children and adults. We report that prenatal cocaine exposure produces significant deficits in reversal learning, a key component of cognitive flexibility, in a mouse model. We used an olfactory reversal learning paradigm and found that the prenatally cocaine-exposed mice showed a marked failure to learn the reversed paradigm. Because brain-derived neurotrophic factor (BDNF) is a key regulator of cognitive functions, and because prenatal cocaine exposure increases the expression of BDNF and the phosphorylated form of its receptor, tyrosine kinase B (TrkB), we examined whether BDNF-TrkB signaling is involved in mediating the reversal learning deficit in prenatally cocaine-exposed mice. Systemic administration of a selective TrkB receptor antagonist restored normal reversal learning in prenatally cocaine-exposed mice, suggesting that increased BDNF-TrkB signaling may be an underlying mechanism of reversal learning deficits. Our findings provide novel mechanistic insights into the reversal learning phenomenon and may have significant translational implications because impaired cognitive flexibility is a key symptom in psychiatric conditions of developmental onset.
Show less - Date Issued
- 2016-01-01
- Identifier
- FSU_pmch_27951531, 10.1159/000452739, PMC5360472, 27951531, 27951531, 000452739
- Format
- Citation