Current Search: Research Repository (x) » * (x) » Citation (x) » Department of Biomedical Sciences (x) » Stefanovic, Branko (x) » Oncotarget (x)
Search results
- Title
- Troponin Through The Looking-glass: Emerging Roles Beyond Regulation Of Striated Muscle Contraction.
- Creator
-
Johnston, Jamie R., Chase, P. Bryant, Pinto, Jose Renato
- Abstract/Description
-
Troponin is a heterotrimeric Ca2+-binding protein that has a well-established role in regulating striated muscle contraction. However, mounting evidence points to novel cellular functions of troponin, with profound implications in cancer, cardiomyopathy pathogenesis and skeletal muscle aging. Here, we highlight the non-canonical roles and aberrant expression patterns of troponin beyond the sarcomeric milieu. Utilizing bioinformatics tools and online databases, we also provide pathway,...
Show moreTroponin is a heterotrimeric Ca2+-binding protein that has a well-established role in regulating striated muscle contraction. However, mounting evidence points to novel cellular functions of troponin, with profound implications in cancer, cardiomyopathy pathogenesis and skeletal muscle aging. Here, we highlight the non-canonical roles and aberrant expression patterns of troponin beyond the sarcomeric milieu. Utilizing bioinformatics tools and online databases, we also provide pathway, subcellular localization, and protein-protein/DNA interaction analyses that support a role for troponin in multiple subcellular compartments. This emerging knowledge challenges the conventional view of troponin as a sarcomere-specific protein exclusively involved in muscle contraction and may transform the way we think about sarcomeric proteins, particularly in the context of human disease and aging.
Show less - Date Issued
- 2018-01-02
- Identifier
- FSU_libsubv1_wos_000419615500116, 10.18632/oncotarget.22879
- Format
- Citation
- Title
- Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers.
- Creator
-
Hurwitz, Stephanie N, Rider, Mark A, Bundy, Joseph L, Liu, Xia, Singh, Rakesh K, Meckes, David G
- Abstract/Description
-
Packed with biological information, extracellular vesicles (EVs) offer exciting promise for biomarker discovery and applications in therapeutics and non-invasive diagnostics. Currently, our understanding of EV contents is confined by the limited cells from which vesicles have been characterized utilizing the same enrichment method. Using sixty cell lines from the National Cancer Institute (NCI-60), here we provide the largest proteomic profile of EVs in a single study, identifying 6,071...
Show morePacked with biological information, extracellular vesicles (EVs) offer exciting promise for biomarker discovery and applications in therapeutics and non-invasive diagnostics. Currently, our understanding of EV contents is confined by the limited cells from which vesicles have been characterized utilizing the same enrichment method. Using sixty cell lines from the National Cancer Institute (NCI-60), here we provide the largest proteomic profile of EVs in a single study, identifying 6,071 proteins with 213 common to all isolates. Proteins included established EV markers, and vesicular trafficking proteins such as Rab GTPases and tetraspanins. Differentially-expressed proteins offer potential for cancer diagnosis and prognosis. Network analysis of vesicle quantity and proteomes identified EV components associated with vesicle secretion, including CD81, CD63, syntenin-1, VAMP3, Rab GTPases, and integrins. Integration of vesicle proteomes with whole-cell molecular profiles revealed similarities, suggesting EVs provide a reliable reflection of their progenitor cell content, and are therefore excellent indicators of disease.
Show less - Date Issued
- 2016-12-27
- Identifier
- FSU_pmch_27894104, 10.18632/oncotarget.13569, PMC5341331, 27894104, 27894104, 13569
- Format
- Citation
- Title
- Gastric cancer associated variant of DNA polymerase beta (Leu22Pro) promotes DNA replication associated double strand breaks.
- Creator
-
Rozacky, Jenna, Nemec, Antoni A, Sweasy, Joann B, Kidane, Dawit
- Abstract/Description
-
DNA polymerase beta (Pol β) is a key enzyme for the protection against oxidative DNA lesions via its role in base excision repair (BER). Approximately 1/3 of tumors studied to date express Pol β variant proteins, and several tumors overexpress Pol β. Pol β possesses DNA polymerase and dRP lyase activities, both of which are known to be important for efficient BER. The dRP lyase activity resides within the 8kDa amino terminal domain of Pol β, is responsible for removal of the 5' phosphate...
Show moreDNA polymerase beta (Pol β) is a key enzyme for the protection against oxidative DNA lesions via its role in base excision repair (BER). Approximately 1/3 of tumors studied to date express Pol β variant proteins, and several tumors overexpress Pol β. Pol β possesses DNA polymerase and dRP lyase activities, both of which are known to be important for efficient BER. The dRP lyase activity resides within the 8kDa amino terminal domain of Pol β, is responsible for removal of the 5' phosphate group (5'-dRP). The DNA polymerase subsequently fills the gaps. Previously, we demonstrated that the human gastric cancer-associated variant of Pol β (Leu22Pro (L22P)) lacks dRP lyase function in vitro. Here, we report that L22P-expressing cells harbor significantly increased replication associated DNA double strand breaks (DSBs) and defective maintenance of the nascent DNA strand (NDS) during replication stress. Moreover, L22P-expressing cells are sensitive to PARP1 inhibitors, which suggests trapped PARP1 binds to the 5'-dRP group and blocks replications forks, resulting in fork collapse and DSBs. Our data suggest that the normal function of the dRP lyase is critical to maintain replication fork integrity and prevent replication fork collapse to DSBs and cellular transformation.
Show less - Date Issued
- 2015-09-15
- Identifier
- FSU_pmch_26090616, 10.18632/oncotarget.4426, PMC4695199, 26090616, 26090616, 4426
- Format
- Citation
- Title
- Identification of a novel Polo-like kinase 1 inhibitor that specifically blocks the functions of Polo-Box domain.
- Creator
-
Chen, Yunyu, Zhang, Jing, Li, Dongsheng, Jiang, Jiandong, Wang, Yanchang, Si, Shuyi
- Abstract/Description
-
Polo-like kinase 1 (Plk1) is a promising target for cancer therapy due to its essential role in cell division. In addition to a highly conserved kinase domain, Plk1 also contains a Polo-Box domain (PBD), which is essential for Plk1's subcellular localization and mitotic functions. We adopted a fluorescence polarization assay and identified a new Plk1 PBD inhibitor T521 from a small-molecule compound library. T521 specifically inhibits the PBD of Plk1, but not those of Plk2-3. T521 exhibits...
Show morePolo-like kinase 1 (Plk1) is a promising target for cancer therapy due to its essential role in cell division. In addition to a highly conserved kinase domain, Plk1 also contains a Polo-Box domain (PBD), which is essential for Plk1's subcellular localization and mitotic functions. We adopted a fluorescence polarization assay and identified a new Plk1 PBD inhibitor T521 from a small-molecule compound library. T521 specifically inhibits the PBD of Plk1, but not those of Plk2-3. T521 exhibits covalent binding to some lysine residues of Plk1 PBD, which causes significant changes in the secondary structure of Plk1 PBD. Using a cell-based assay, we showed that T521 impedes the interaction between Plk1 and Bub1, a mitotic checkpoint protein. Moreover, HeLa cells treated with T521 exhibited dramatic mitotic defects. Importantly, T521 suppresses the growth of A549 cells in xenograft nude mice. Taken together, we have identified a novel Plk1 inhibitor that specifically disrupts the functions of Plk1 PBD and shows anticancer activity.
Show less - Date Issued
- 2017-01-03
- Identifier
- FSU_pmch_27902479, 10.18632/oncotarget.13603, PMC5352051, 27902479, 27902479, 13603
- Format
- Citation
- Title
- Identification of the oncogenic kinase TOPK/PBK as a master mitotic regulator of C2H2 zinc finger proteins.
- Creator
-
Rizkallah, Raed, Batsomboon, Paratchata, Dudley, Gregory B, Hurt, Myra M
- Abstract/Description
-
TOPK/PBK is an oncogenic kinase upregulated in most human cancers and its high expression correlates with poor prognosis. TOPK is known to be activated by Cdk1 and needed for mitotic cell division; however, its mitotic functions are not yet fully understood. In this study, we show that TOPK plays a global mitotic role by simultaneously regulating hundreds of DNA binding proteins. C2H2 zinc finger proteins (ZFPs) constitute the largest family of human proteins. All C2H2 ZFPs contain a highly...
Show moreTOPK/PBK is an oncogenic kinase upregulated in most human cancers and its high expression correlates with poor prognosis. TOPK is known to be activated by Cdk1 and needed for mitotic cell division; however, its mitotic functions are not yet fully understood. In this study, we show that TOPK plays a global mitotic role by simultaneously regulating hundreds of DNA binding proteins. C2H2 zinc finger proteins (ZFPs) constitute the largest family of human proteins. All C2H2 ZFPs contain a highly conserved linker sequence joining their multi-zinc finger domains. We have previously shown that phosphorylation of this conserved motif serves as a global mechanism for the coordinate dissociation of C2H2 ZFPs from condensing chromatin, during mitosis. Here, using a panel of kinase inhibitors, we identified K252a as a potent inhibitor of mitotic ZFP linker phosphorylation. We generated a biotinylated form of K252a and used it to purify candidate kinases. From these candidates we identified TOPK/PBK, in vitro and in vivo, as the master ZFP linker kinase. Furthermore, we show precise temporal correlation between TOPK activating phosphorylation by Cdk1 and linker phosphorylation in mitosis. The identification of this fundamental role of TOPK underscores its significance as a promising novel target of cancer therapeutics.
Show less - Date Issued
- 2015-01-30
- Identifier
- FSU_pmch_25575812, 10.18632/oncotarget.2735, PMC4359306, 25575812, 25575812, 2735
- Format
- Citation