Current Search: Research Repository (x) » * (x) » Citation (x) » Department of Biomedical Sciences (x) » info:fedora/fsu:department_of_nutrition_food_and_exercise_sciences (x) » Developmental biology (x)
Search results
Pages
- Title
- Impaired Antisaccades In Obsessive-compulsive Disorder: Evidence From Meta-analysis And A Large Empirical Study.
- Creator
-
Bey, Katharina, Lennertz, Leonhard, Gruetzmann, Rosa, Heinzel, Stephan, Kaufmann, Christian, Klawohn, Julia, Riesel, Anja, Meyhoefer, Inga, Ettinger, Ulrich, Kathmann, Norbert,...
Show moreBey, Katharina, Lennertz, Leonhard, Gruetzmann, Rosa, Heinzel, Stephan, Kaufmann, Christian, Klawohn, Julia, Riesel, Anja, Meyhoefer, Inga, Ettinger, Ulrich, Kathmann, Norbert, Wagner, Michael
Show less - Abstract/Description
-
Increasing evidence indicates that patients with obsessive-compulsive disorder (OCD) exhibit alterations in fronto-striatal circuitry. Performance deficits in the antisaccade task would support this model, but results from previous small-scale studies have been inconclusive as either increased error rates, prolonged antisaccade latencies, both or neither have been reported in OCD patients. In order to address this issue, we investigated antisaccade performance in a large sample of OCD...
Show moreIncreasing evidence indicates that patients with obsessive-compulsive disorder (OCD) exhibit alterations in fronto-striatal circuitry. Performance deficits in the antisaccade task would support this model, but results from previous small-scale studies have been inconclusive as either increased error rates, prolonged antisaccade latencies, both or neither have been reported in OCD patients. In order to address this issue, we investigated antisaccade performance in a large sample of OCD patients (n = 169) and matched control subjects (n = 183). As impaired antisaccade performance constitutes a potential endophenotype of OCD, unaffected first-degree relatives of OCD patients (n = 100) were assessed, as well. Furthermore, we conducted a quantitative meta-analysis to integrate our data with previous findings. In the empirical study, OCD patients exhibited significantly increased antisaccade latencies, intra-subject variability (ISV) of antisaccade latencies, and antisaccade error rates. The latter effect was driven by errors with express latency (80-130 ms), as patients did not differ significantly from controls with regards to regular errors (>130 ms). Notably, unaffected relatives of OCD patients showed elevated antisaccade express error rates and increased ISV of antisaccade latencies, as well. Antisaccade performance was not associated with state anxiety within groups. Among relatives, however, we observed a significant correlation between antisaccade error rate and harm avoidance. Medication status of OCD patients, symptom severity, depressive comorbidity, comorbid anxiety disorders and OCD symptom dimensions did not significantly affect antisaccade performance. Meta-analysis of 10 previous and the present empirical study yielded a medium-sized effect (SMD = 0.48, p < 0.001) for higher error rates in OCD patients, while the effect for latencies did not reach significance owing to strong heterogeneity (SMD = 0.51, p = 0.069). Our results support the assumption of impaired antisaccade performance in OCD, although effects sizes were only moderately large. Furthermore, we provide the first evidence that increased antisaccade express error rates and ISV of antisaccade latencies may constitute endophenotypes of OCD. Findings regarding these more detailed antisaccade parameters point to potentially underlying mechanisms, such as early pre-stimulus inhibition of the superior colliculus.
Show less - Date Issued
- 2018-06-29
- Identifier
- FSU_libsubv1_wos_000436854900001, 10.3389/fpsyt.2018.00284
- Format
- Citation
- Title
- Expanded Coverage Of The 26s Proteasome Conformational Landscape Reveals Mechanisms Of Peptidase Gating.
- Creator
-
Eisele, Markus R., Reed, Randi G., Rudack, Till, Schweitzer, Andreas, Beck, Florian, Nagy, Istvan, Pfeifer, Guenter, Plitzko, Juergen M., Baumeister, Wolfgang, Tomko, Robert J.,...
Show moreEisele, Markus R., Reed, Randi G., Rudack, Till, Schweitzer, Andreas, Beck, Florian, Nagy, Istvan, Pfeifer, Guenter, Plitzko, Juergen M., Baumeister, Wolfgang, Tomko, Robert J., Sakata, Eri
Show less - Abstract/Description
-
The proteasome is the central protease for intracellular protein breakdown. Coordinated binding and hydrolysis of ATP by the six proteasomal ATPase subunits induces conformational changes that drive the unfolding and translocation of substrates into the proteolytic 20S core particle for degradation. Here, we combine genetic and biochemical approaches with cryo-electron microscopy and integrative modeling to dissect the relationship between individual nucleotide binding events and proteasome...
Show moreThe proteasome is the central protease for intracellular protein breakdown. Coordinated binding and hydrolysis of ATP by the six proteasomal ATPase subunits induces conformational changes that drive the unfolding and translocation of substrates into the proteolytic 20S core particle for degradation. Here, we combine genetic and biochemical approaches with cryo-electron microscopy and integrative modeling to dissect the relationship between individual nucleotide binding events and proteasome conformational dynamics. We demonstrate unique impacts of ATP binding by individual ATPases on the proteasome conformational distribution and report two conformational states of the proteasome suggestive of a rotary ATP hydrolysis mechanism. These structures, coupled with functional analyses, reveal key roles for the ATPases Rpt1 and Rpt6 in gating substrate entry into the core particle. This deepened knowledge of proteasome conformational dynamics reveals key elements of intersubunit communication within the proteasome and clarifies the regulation of substrate entry into the proteolytic chamber.
Show less - Date Issued
- 2018-07-31
- Identifier
- FSU_libsubv1_wos_000440377500019, 10.1016/j.celrep.2018.07.004
- Format
- Citation
- Title
- Integrative Analysis Of Lncrnas In Th17 Cell Lineage To Discover New Potential Biomarkers And Therapeutic Targets In Autoimmune Diseases.
- Creator
-
Teimuri, Shohreh, Hosseini, Aref, Rezaenasab, Ahmad, Ghaedi, Kamran, Ghoveud, Elahe, Etemadifar, Masoud, Nasr-Esfahani, Mohammad Hossein, Megraw, Timothy L.
- Abstract/Description
-
Th17 cells play a critical role in the pathogenesis of autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, and inflammatory bowel disease. Despite the extensive investigation into this T cell lineage, little is understood regarding the role of Th17 lineage-specific lncRNAs (long non-coding RNAs) > 200 nt. lncRNAs may influence disease through a variety of mechanisms; their expression could be regulated by SNPs. lncRNAs can...
Show moreTh17 cells play a critical role in the pathogenesis of autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, and inflammatory bowel disease. Despite the extensive investigation into this T cell lineage, little is understood regarding the role of Th17 lineage-specific lncRNAs (long non-coding RNAs) > 200 nt. lncRNAs may influence disease through a variety of mechanisms; their expression could be regulated by SNPs. lncRNAs can also affect the expression of neighboring genes or complementary miRNAs, and their expression may have lineage-specific patterns. In the system biology study presented here, the effective lncRNAs from different criteria were predicted for each autoimmune disease, and we then evaluated their expression levels in 50 MS patients compared to 25 controls using qRT-PCR. We identified changes in the expression levels of AL450992.2, AC009948.5, and RP11-98D18.3 as potential peripheral blood mononuclear cell (PBMC) biomarkers for MS among our studied lncRNAs in which co-expression analysis of AL450992.2 had the most AUCs, and the relationship to RORC was also assessed. We propose that the recurrently deregulated lncRNAs identified in this report could provide a valuable resource for studies aimed at delineating the relationship between functional lncRNAs and autoimmune disorders.
Show less - Date Issued
- 2018-09-07
- Identifier
- FSU_libsubv1_wos_000443860200034, 10.1016/j.omtn.2018.05.022
- Format
- Citation
- Title
- Troponin Through The Looking-glass: Emerging Roles Beyond Regulation Of Striated Muscle Contraction.
- Creator
-
Johnston, Jamie R., Chase, P. Bryant, Pinto, Jose Renato
- Abstract/Description
-
Troponin is a heterotrimeric Ca2+-binding protein that has a well-established role in regulating striated muscle contraction. However, mounting evidence points to novel cellular functions of troponin, with profound implications in cancer, cardiomyopathy pathogenesis and skeletal muscle aging. Here, we highlight the non-canonical roles and aberrant expression patterns of troponin beyond the sarcomeric milieu. Utilizing bioinformatics tools and online databases, we also provide pathway,...
Show moreTroponin is a heterotrimeric Ca2+-binding protein that has a well-established role in regulating striated muscle contraction. However, mounting evidence points to novel cellular functions of troponin, with profound implications in cancer, cardiomyopathy pathogenesis and skeletal muscle aging. Here, we highlight the non-canonical roles and aberrant expression patterns of troponin beyond the sarcomeric milieu. Utilizing bioinformatics tools and online databases, we also provide pathway, subcellular localization, and protein-protein/DNA interaction analyses that support a role for troponin in multiple subcellular compartments. This emerging knowledge challenges the conventional view of troponin as a sarcomere-specific protein exclusively involved in muscle contraction and may transform the way we think about sarcomeric proteins, particularly in the context of human disease and aging.
Show less - Date Issued
- 2018-01-02
- Identifier
- FSU_libsubv1_wos_000419615500116, 10.18632/oncotarget.22879
- Format
- Citation
- Title
- Attention And Working Memory Deficits In A Perinatal Nicotine Exposure Mouse Model.
- Creator
-
Zhang, Lin, Spencer, Thomas J., Biederman, Joseph, Bhide, Pradeep G.
- Abstract/Description
-
Background Cigarette smoking by pregnant women is associated with a significant increase in the risk for cognitive disorders in their children. Preclinical models confirm this risk by showing that exposure of the developing brain to nicotine produces adverse behavioral outcomes. Here we describe behavioral phenotypes resulting from perinatal nicotine exposure in a mouse model, and discuss our findings in the context of findings from previously published studies using preclinical models of...
Show moreBackground Cigarette smoking by pregnant women is associated with a significant increase in the risk for cognitive disorders in their children. Preclinical models confirm this risk by showing that exposure of the developing brain to nicotine produces adverse behavioral outcomes. Here we describe behavioral phenotypes resulting from perinatal nicotine exposure in a mouse model, and discuss our findings in the context of findings from previously published studies using preclinical models of developmental nicotine exposure. Methodology/Principal findings Female C57BI/6 mice received drinking water containing nicotine (100pg/ml) + saccharin (2%) starting 3 weeks prior to breeding and continuing throughout pregnancy, and until 3 weeks postpartum. Over the same period, female mice in two control groups received drinking water containing saccharin (2%) or plain drinking water. Offspring from each group were weaned at 3-weeks of age and subjected to behavioral analyses at 3 months of age. We examined spontaneous locomotor activity, anxiety-like behavior, spatial working memory, object based attention, recognition memory and impulsive-like behavior. We found significant deficits in attention and working memory only in male mice, and no significant changes in the other behavioral phenotypes in male or female mice. Exposure to saccharin alone did not produce significant changes in either sex. Conclusion/Significance The perinatal nicotine exposure produced significant deficits in attention and working memory in a sex-dependent manner in that the male but not female offspring displayed these behaviors. These behavioral phenotypes are associated with attention deficit hyperactivity disorder (ADHD) and have been reported in other studies that used pre-or perinatal nicotine exposure. Therefore, we suggest that preclinical models of developmental nicotine exposure could be useful tools for modeling ADHD and related disorders.
Show less - Date Issued
- 2018-05-24
- Identifier
- FSU_libsubv1_wos_000433084300123, 10.1371/journal.pone.0198064
- Format
- Citation
- Title
- Mtor Signaling Regulates Central And Peripheral Circadian Clock Function.
- Creator
-
Ramanathan, Chidambaram, Kathale, Nimish D., Liu, Dong, Lee, Choogon, Freeman, David A., Hogenesch, John B., Cao, Ruifeng, Liu, Andrew C.
- Abstract/Description
-
The circadian clock coordinates physiology and metabolism. mTOR (mammalianmechanistic target of rapamycin) is a major intracellular sensor that integrates nutrient and energy status to regulate protein synthesis, metabolism, and cell growth. Previous studies have identified a key role for mTOR in regulating photic entrainment and synchrony of the central circadian clock in the suprachiasmatic nucleus (SCN). Given that mTOR activities exhibit robust circadian oscillations in a variety of...
Show moreThe circadian clock coordinates physiology and metabolism. mTOR (mammalianmechanistic target of rapamycin) is a major intracellular sensor that integrates nutrient and energy status to regulate protein synthesis, metabolism, and cell growth. Previous studies have identified a key role for mTOR in regulating photic entrainment and synchrony of the central circadian clock in the suprachiasmatic nucleus (SCN). Given that mTOR activities exhibit robust circadian oscillations in a variety of tissues and cells including the SCN, here we continued to investigate the role of mTOR in orchestrating autonomous clock functions in central and peripheral circadian oscillators. Using a combination of genetic and pharmacological approaches we show that mTOR regulates intrinsic clock properties including period and amplitude. In peripheral clock models of hepatocytes and adipocytes, mTOR inhibition lengthens period and dampens amplitude, whereas mTOR activation shortens period and augments amplitude. Constitutive activation of mTOR in Tsc2(-/-)fibroblasts elevates levels of core clock proteins, including CRY1, BMAL1 and CLOCK. Serum stimulation induces CRY1 upregulation in fibroblasts in an mTOR-dependent but Bmal1- and Period-independent manner. Consistent with results from cellular clock models, mTOR perturbation also regulates period and amplitude in the ex vivo SCN and liver clocks. Further, mTOR heterozygous mice show lengthened circadian period of locomotor activity in both constant darkness and constant light. Together, these results support a significant role for mTOR in circadian timekeeping and in linking metabolic states to circadian clock functions.
Show less - Date Issued
- 2018-05-01
- Identifier
- FSU_libsubv1_wos_000434016500019, 10.1371/journal.pgen.1007369
- Format
- Citation
- Title
- Diverse Intrinsic Properties Shape Functional Phenotype Of Low-frequency Neurons In The Auditory Brainstem.
- Creator
-
Hong, Hui, Wang, Xiaoyu, Lu, Ting, Zorio, Diego A. R., Wang, Yuan, Sanchez, Jason Tait
- Abstract/Description
-
In the auditory system, tonotopy is the spatial arrangement of where sounds of different frequencies are processed. Defined by the organization of neurons and their inputs, tonotopy emphasizes distinctions in neuronal structure and function across topographic gradients and is a common feature shared among vertebrates. In this study we characterized action potential firing patterns and ion channel properties from neurons located in the extremely low-frequency region of the chicken nucleus...
Show moreIn the auditory system, tonotopy is the spatial arrangement of where sounds of different frequencies are processed. Defined by the organization of neurons and their inputs, tonotopy emphasizes distinctions in neuronal structure and function across topographic gradients and is a common feature shared among vertebrates. In this study we characterized action potential firing patterns and ion channel properties from neurons located in the extremely low-frequency region of the chicken nucleus magnocellularis (NM), an auditory brainstem structure. We found that NM neurons responsible for encoding the lowest sound frequencies (termed NMc neurons) have enhanced excitability and fired bursts of action potentials to sinusoidal inputs <= 10 Hz; a distinct firing pattern compared to higher-frequency neurons. This response property was due to lower amounts of voltage dependent potassium (K-v) conductances, unique combination of K-v subunits and specialized sodium (Na-v) channel properties. Particularly, NMc neurons had significantly lower K(v)1 and K(v)3 currents, but higher K(v)2current. NMc neurons also showed larger and faster transient Nav current (I-NaT) with different voltage dependence of inactivation from higher-frequency neurons. In contrast, significantly smaller resurgent sodium current (I-NaR) was present in NMc with kinetics and voltage dependence that differed from higher-frequency neurons. Immunohistochemistry showed expression of Na(v)1.6 channel subtypes across the tonotopic axis. However, various immunoreactive patterns were observed between regions, likely underlying some tonotopic differences in I-N(aT) and I-NaR. Finally, using pharmacology and computational modeling, we concluded that K(v)3, K(v)2 channels and I-NaR work synergistically to regulate burst firing in NMc.
Show less - Date Issued
- 2018-06-26
- Identifier
- FSU_libsubv1_wos_000436338700001, 10.3389/fncel.2018.00175
- Format
- Citation
- Title
- Identification Of Anti-gram-negative Bacteria Agents Targeting The Interaction Between Ribosomal Proteins L12 And L10.
- Creator
-
Wang, Weiwei, Liu, Chao, Zhu, Ningyu, Lin, Yuan, Jiang, Jiandong, Wang, Yanchang, Li, Yan, Si, Shuyi
- Abstract/Description
-
Gram-negative bacteria have become the main pathogens and cause serious clinical problems with increased morbidity and mortality. However, the slow discovery of new antimicrobial agents is unable to meet the need for the treatment of bacterial infections caused by drug-resistant strains. The interaction of L12 and L10 is essential for ribosomal function and protein synthesis. In this study, a yeast two-hybrid system was established to successfully detect the interaction between L12 and L10...
Show moreGram-negative bacteria have become the main pathogens and cause serious clinical problems with increased morbidity and mortality. However, the slow discovery of new antimicrobial agents is unable to meet the need for the treatment of bacterial infections caused by drug-resistant strains. The interaction of L12 and L10 is essential for ribosomal function and protein synthesis. In this study, a yeast two-hybrid system was established to successfully detect the interaction between L12 and L10 proteins from gram-negative bacteria Escherichia coli, which allows us to screen compounds that specifically disrupt this interaction. With this system, we identified two compounds IMB-84 and IMB-87 that block L12-L10 interaction and show bactericidal activity against E. coli. We used glutathione-S-transferase (GST) pull-down and surface plasmon resonance (SPR) assays to demonstrate that these compounds disrupt L12-L10 interaction in vitro and the target of compounds was further confirmed by the overexpression of target proteins. Moreover, protein synthesis and elongation factor G-dependent GTPase activities are inhibited by two compounds. Therefore, we have identified two antibacterial agents that disrupt L12-L10 interaction by using yeast two-hybrid system. (C) 2018 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
Show less - Date Issued
- 2018-09-01
- Identifier
- FSU_libsubv1_wos_000445032400007, 10.1016/j.apsb.2018.07.006
- Format
- Citation
- Title
- An Hpsc-derived Tissue-resident Macrophage Model Reveals Differential Responses Of Macrophages To Zikv And Deny Infection.
- Creator
-
Lang, Jianshe, Cheng, Yichen, Rolfe, Alyssa, Hammack, Christy, Vera, Daniel, Kyle, Kathleen, Wang, Jingying, Meissner, Torsten B., Ren, Yi, Cowan, Chad, Tang, Hengli
- Abstract/Description
-
Zika virus (ZIKV) and dengue virus (DENV) are two closely related flaviviruses that lead to different clinical outcomes. The mechanism for the distinct pathogenesis of ZIKV and DENV is poorly understood. Here, we investigate ZIKV and DENV infection of macrophages using a human pluripotent stem cell (hPSC)-derived macrophage model and discover key virus-specific responses. ZIKV and DENV productively infect hPSC-derived macrophages. DENV, but not ZIKV, infection of macrophages strongly...
Show moreZika virus (ZIKV) and dengue virus (DENV) are two closely related flaviviruses that lead to different clinical outcomes. The mechanism for the distinct pathogenesis of ZIKV and DENV is poorly understood. Here, we investigate ZIKV and DENV infection of macrophages using a human pluripotent stem cell (hPSC)-derived macrophage model and discover key virus-specific responses. ZIKV and DENV productively infect hPSC-derived macrophages. DENV, but not ZIKV, infection of macrophages strongly activates macrophage migration inhibitory factor (MIF) secretion and decreases macrophage migration. Neutralization of MIF leads to improved migratory ability of DENV-infected macrophages. In contrast, ZIKV-infected macrophages exhibit prolonged migration and express low levels of pro-inflammatory cytokines and chemokines. Mechanistically, ZIKV disrupts the nuclear factor kappa B (NF-kappa B)-MIF positive feedback loop by inhibiting the NF-kappa B signaling pathway. Our results demonstrate the utility of hPSC-derived macrophages in infectious disease modeling and suggest that the distinct impact of ZIKV and DENV on macrophage immune response may underlie different pathogenesis of Zika and dengue diseases.
Show less - Date Issued
- 2018-08-14
- Identifier
- FSU_libsubv1_wos_000441583100006, 10.1016/j.stemcr.2018.06.006
- Format
- Citation
- Title
- The Absence Of Specific Yeast Heat-shock Proteins Leads To Abnormal Aggregation And Compromised Autophagic Clearance Of Mutant Huntingtin Proteins.
- Creator
-
Higgins, Ryan, Kabbaj, Marie-Helene, Hatcher, Alexa, Wang, Yanchang
- Abstract/Description
-
The functionality of a protein depends on its correct folding, but newly synthesized proteins are susceptible to aberrant folding and aggregation. Heat shock proteins (HSPs) function as molecular chaperones that aid in protein folding and the degradation of misfolded proteins. Trinucleotide (CAG) repeat expansion in the Huntingtin gene (HTT) results in the expression of misfolded Huntingtin protein (Htt), which contributes to the development of Huntington's disease. We previously found that...
Show moreThe functionality of a protein depends on its correct folding, but newly synthesized proteins are susceptible to aberrant folding and aggregation. Heat shock proteins (HSPs) function as molecular chaperones that aid in protein folding and the degradation of misfolded proteins. Trinucleotide (CAG) repeat expansion in the Huntingtin gene (HTT) results in the expression of misfolded Huntingtin protein (Htt), which contributes to the development of Huntington's disease. We previously found that the degradation of mutated Htt with polyQ expansion (Htt103QP) depends on both ubiquitin proteasome system and autophagy. However, the role of heat shock proteins in the clearance of mutated Htt remains poorly understood. Here, we report that cytosolic Hsp70 (Ssa family), its nucleotide exchange factors (Sse1 and Fes1), and a Hsp40 co-chaperone (Ydj1) are required for inclusion body formation of Htt103QP proteins and their clearance via autophagy. Extended induction of Htt103QPGFP leads to the formation of a single inclusion body in wild-type yeast cells, but mutant cells lacking these HSPs exhibit increased number of Htt103QP aggregates. Most notably, we detected more aggregated forms of Htt103QP in sse1 Delta. mutant cells using an agarose gel assay. Increased protein aggregates are also observed in these HSP mutants even in the absence Htt103QP overexpression. Importantly, these HSPs are required for autophagy- mediated Htt103QP clearance, but are less critical for proteasome-dependent degradation. These findings suggest a chaperone network that facilitates inclusion body formation of misfolded proteins and the subsequent autophagic clearance.
Show less - Date Issued
- 2018-01-18
- Identifier
- FSU_libsubv1_wos_000422749500056, 10.1371/journal.pone.0191490
- Format
- Citation
- Title
- Low dose pramipexole is neuroprotective in the MPTP mouse model of Parkinson's disease, and downregulates the dopamine transporter via the D3 receptor.
- Creator
-
Joyce, Jeffery N., Woolsey, Cheryl, Ryoo, Han, Borwege, Sabine, Hagner, Diane
- Abstract/Description
-
Background Our aim was to determine if pramipexole, a D3 preferring agonist, effectively reduced dopamine neuron and fiber loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model when given at intraperitoneal doses corresponding to clinical doses. We also determined whether subchronic treatment with pramipexole regulates dopamine transporter function, thereby reducing intracellular transport of the active metabolite of MPTP, 1-methyl-4-phenylpyridinium (MPP+). Methods Ten...
Show moreBackground Our aim was to determine if pramipexole, a D3 preferring agonist, effectively reduced dopamine neuron and fiber loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model when given at intraperitoneal doses corresponding to clinical doses. We also determined whether subchronic treatment with pramipexole regulates dopamine transporter function, thereby reducing intracellular transport of the active metabolite of MPTP, 1-methyl-4-phenylpyridinium (MPP+). Methods Ten 12-month old C57BL/6 mice were treated with MPTP (or saline) twice per day at 20 mg/kg s.c. (4 injections over 48 h). Mice were pretreated for 3 days and during the 2-day MPTP regimen with pramipexole (0.1 mg/kg/day) or saline. Stereological quantification of dopamine neuron number and optical density measurement of dopamine fiber loss were carried out at 1 week after treatment, using immunostaining for dopamine transporter (DAT) and tyrosine hydroxylase (TH). Additional wild-type (WT) and D3 receptor knockout (KO) mice were treated for 5 days with pramipexole (0.1 mg/kg/day) or vehicle. The kinetics of [3H]MPP+ and [3H]DA uptake (V max and K m) were determined 24 h later; and at 24 h and 14 days dopamine transporter density was measured by quantitative autoradiography. Results Pramipexole treatment completely antagonized the neurotoxic effects of MPTP, as measured by substantia nigra and ventral tegmental area TH-immunoreactive cell counts. MPTP- induced loss of striatal innervation, as measured by DAT-immunoreactivity, was partially prevented by pramipexole, but not with regard to TH-IR. Pramipexole also reduced DAT- immunoreactivity in non-MPTP treated mice. Subchronic treatment with pramipexole lowered the V max for [3H]DA and [3H]MPP+ uptake into striatal synaptosomes of WT mice. Pramipexole treatment lowered V max in WT but not D3 KO mice; however, D3 KO mice had lower V max for [3H]DA uptake. There was no change in DAT number in WT with pramipexole treatment or D3 KO mice at 24 h post-treatment, but there was a reduction in WT-pramipexole treated and not in D3 KO mice at 14 days post-treatment. Conclusion These results suggest that protection occurs at clinically suitable doses of pramipexole. Protection could be due to a reduced amount of MPP+ taken up into DA terminals via DAT. D3 receptor plays an important role in this regulation of transporter uptake and availability.
Show less - Date Issued
- 2004-10-11
- Identifier
- FSU_libsubv1_scholarship_submission_1542402256_a8dcf884, 10.1186/1741-7007-2-22
- Format
- Citation
- Title
- Microrna-22 Inhibits The Proliferation And Migration, And Increases The Cisplatin Sensitivity, Of Osteosarcoma Cells.
- Creator
-
Zhou, Xiang, Natino, Dimple, Zhai, Xu, Gao, Zhongyang, He, Xijing
- Abstract/Description
-
Osteosarcoma (OS) is the major type of primary bone tumor and is associated with a poor prognosis due to chemotherapy resistance. Accumulating evidence indicates that microRNAs (miRNAs/miRs) may influence the tumor progression of OS and cell sensitivity to chemotherapy. In the present study, a total of 7 patients with OS and 7 healthy volunteers were recruited. Reverse transcription-quantitative polymerase chain reaction and ELISA were performed to determine the expression of miRNAs and mRNAs...
Show moreOsteosarcoma (OS) is the major type of primary bone tumor and is associated with a poor prognosis due to chemotherapy resistance. Accumulating evidence indicates that microRNAs (miRNAs/miRs) may influence the tumor progression of OS and cell sensitivity to chemotherapy. In the present study, a total of 7 patients with OS and 7 healthy volunteers were recruited. Reverse transcription-quantitative polymerase chain reaction and ELISA were performed to determine the expression of miRNAs and mRNAs in the serum of participants. Furthermore, the biological function of miR-22 and S100A11 was examined in MG-63 cells using Cell Counting Kit-8 assays, Transwell migration assays and western blot analysis to determine the effects on cell proliferation, migration and protein expression, respectively, while MG-63 cell sensitivity to cisplatin was assessed by measuring cell viability following cisplatin treatment and calculating the half maximal inhibitory concentration (IC50). Additionally, the association between miR-22 and S100 calcium-binding protein A11 (S100A11) was validated using a luciferase reporter assay. The results demonstrated that miR-22 expression was significantly reduced in patients with OS and the MG-63 OS cell line, compared with healthy volunteers and the normal osteoblast hFOB 1.19 cell line, respectively, while the expression of S100A11 was negatively associated with miR-22 levels in the MG-63 cell line. Furthermore, overexpression of miR-22 inhibited the proliferation and migratory ability of MG-63 cells, and increased the sensitivity of MG-63 cells to cisplatin treatment; however, overexpression of S100A11 partially attenuated the alterations in proliferation, migratory ability and chemosensitivity that were induced by miR-22 overexpression. In addition, it was confirmed that S100A11 is a direct target gene of miR-22 in MG-63 cells. In conclusion, to the best of our knowledge, the present study is the first to demonstrate that miR-22 may be a promising therapeutic target and may have potential as part of a combination treatment alongside chemotherapeutic agents for OS.
Show less - Date Issued
- 2018-05-01
- Identifier
- FSU_libsubv1_wos_000430556800125, 10.3892/mmr.2018.8790
- Format
- Citation
- Title
- PIB is a non-specific imaging marker of amyloid-beta (A beta) peptide-related cerebral amyloidosis.
- Creator
-
Lockhart, A., Lamb, J. R., Osredkar, T., Sue, L. I., Joyce, J. N., Ye, L., Libri, V., Leppert, D., Beach, T. G.
- Abstract/Description
-
The in vivo imaging probe [11C]-PIB (Pittsburgh Compound B, N-methyl[11C]2-(4'-methylaminophenyl-6-hydroxybenzathiazole) is under evaluation as a key imaging tool in Alzheimer's disease (AD) and to date has been assumed to bind with high affinity and specificity to the amyloid structures associated with classical plaques (CPs), one of the pathological hallmarks of the disease. However, no studies have systematically investigated PIB binding to human neuropathological brain specimens at the...
Show moreThe in vivo imaging probe [11C]-PIB (Pittsburgh Compound B, N-methyl[11C]2-(4'-methylaminophenyl-6-hydroxybenzathiazole) is under evaluation as a key imaging tool in Alzheimer's disease (AD) and to date has been assumed to bind with high affinity and specificity to the amyloid structures associated with classical plaques (CPs), one of the pathological hallmarks of the disease. However, no studies have systematically investigated PIB binding to human neuropathological brain specimens at the tracer concentrations achieved during in vivo imaging scans. Using a combination of autoradiography and histochemical techniques, we demonstrate that PIB, in addition to binding CPs clearly delineates diffuse plaques and cerebrovascular amyloid angiopathy (CAA). The interaction of PIB with CAA was not fully displaceable and this may be linked to the apolipoprotein E-epsilon4 allele. PIB was also found to label neurofibrillary tangles, although the overall intensity of this binding was markedly lower than that associated with the amyloid-beta (Abeta) pathology. The data provide a molecular explanation for PIB's limited specificity in diagnosing and monitoring disease progression in AD and instead indicate that the ligand is primarily a non-specific marker of Abeta-peptide related cerebral amyloidosis.
Show less - Date Issued
- 2007
- Identifier
- FSU_libsubv1_scholarship_submission_1541626890_c5ba9397, 10.1093/brain/awm191
- Format
- Citation
- Title
- Transmissible Tumors: Breaking the Cancer Paradigm..
- Creator
-
Ostrander, Elaine A, Davis, Brian W, Ostrander, Gary K
- Abstract/Description
-
Transmissible tumors are those that have transcended the bounds of their incipient hosts by evolving the ability to infect another individual through direct transfer of cancer cells, thus becoming parasitic cancer clones. Coitus, biting, and scratching are transfer mechanisms for the two primary species studied, the domestic dog (Canis lupus familiaris) and the Tasmanian devil (Sarcophilus harrisii). Canine transmissible venereal tumors (CTVT) are likely thousands of years old, and have...
Show moreTransmissible tumors are those that have transcended the bounds of their incipient hosts by evolving the ability to infect another individual through direct transfer of cancer cells, thus becoming parasitic cancer clones. Coitus, biting, and scratching are transfer mechanisms for the two primary species studied, the domestic dog (Canis lupus familiaris) and the Tasmanian devil (Sarcophilus harrisii). Canine transmissible venereal tumors (CTVT) are likely thousands of years old, and have successfully travelled from host to host around the world, while the Tasmanian devil facial tumor disease (DFTD) is much younger and geographically localized. The dog tumor is not necessarily lethal, while the devil tumor has driven the population to near extinction. Transmissible tumors are uniform in that they have complex immunologic profiles, which allow them to escape immune detection by their hosts, sometimes for long periods of time. In this review, we explore how transmissible tumors in CTVT, DFTD, and as well as the soft-shell clam and Syrian hamster, can advance studies of tumor biology.
Show less - Date Issued
- 2016-01-01
- Identifier
- FSU_pmch_26686413, 10.1016/j.tig.2015.10.001, PMC4698198, 26686413, 26686413, S0168-9525(15)00187-0
- Format
- Citation
- Title
- Sex Differences in Effects of Ketamine on Behavior, Spine Density, and Synaptic Proteins in Socially Isolated Rats.
- Creator
-
Sarkar, Ambalika, Kabbaj, Mohamed
- Abstract/Description
-
The mechanistic underpinnings of sex differences in occurrence of depression and efficacy of antidepressant treatments are poorly understood. We examined the effects of isolation stress (IS) and the fast-acting antidepressant ketamine on anhedonia and depression-like behavior, spine density, and synaptic proteins in male and female rats. We used a chronic social IS paradigm to test the effects of ketamine (0, 2.5 mg/kg, and 5 mg/kg) on behavior and levels of synaptic proteins synapsin-1,...
Show moreThe mechanistic underpinnings of sex differences in occurrence of depression and efficacy of antidepressant treatments are poorly understood. We examined the effects of isolation stress (IS) and the fast-acting antidepressant ketamine on anhedonia and depression-like behavior, spine density, and synaptic proteins in male and female rats. We used a chronic social IS paradigm to test the effects of ketamine (0, 2.5 mg/kg, and 5 mg/kg) on behavior and levels of synaptic proteins synapsin-1, postsynaptic density protein 95, and glutamate receptor 1 in male rats and female rats in diestrus. Medial prefrontal cortex spine density was also examined in male rats and female rats that received ketamine during either the diestrus or the proestrus phase of their estrous cycle. Male rats showed anhedonia and depression-like behavior after 8 weeks of IS, concomitant with decreases in spine density and levels of synapsin-1, postsynaptic density protein 95, and glutamate receptor 1 in the medial prefrontal cortex; these changes were reversed by a single injection of ketamine (5 mg/kg). After 11 weeks of IS, female rats showed depression-like behavior but no signs of anhedonia. Although both doses of ketamine rescued depression-like behavior in female rats, the decline observed in synaptic proteins and spine density in IS and in diestrus female rats could not be reversed by ketamine. Spine density was higher in female rats during proestrus than in diestrus. Our findings implicate a role for synaptic proteins synapsin-1, postsynaptic density protein 95, and glutamate receptor 1 and medial prefrontal cortex spine density in the antidepressant effects of ketamine in male rats subjected to IS but not in female rats subjected to IS, suggesting dissimilar underlying mechanisms for efficacy of ketamine in the two sexes.
Show less - Date Issued
- 2016-09-15
- Identifier
- FSU_pmch_26957131, 10.1016/j.biopsych.2015.12.025, PMC4940294, 26957131, 26957131, S0006-3223(16)00010-X
- Format
- Citation
- Title
- High dietary fructose does not exacerbate the detrimental consequences of high fat diet on basilar artery function.
- Creator
-
Toklu, H Z, Muller-Delp, J, Sakaraya, Y, Oktay, S, Kirichenko, N, Matheny, M, Carter, C S, Morgan, D, Strehler, K Y E, Tumer, N, Scarpace, P J
- Abstract/Description
-
The objective of the study was to determine the effects of a high fat (HF) diet alone or with high fructose (HF/F) on functional and structural changes in the basilar arteries and cardiovascular health parameters in rats. Male Sprague Dawley rats were fed either a HF (30%) or HF/F (30/40%) diet for 12 weeks. The basilar artery was cannulated in a pressurized system (90 cm H2O) and vascular responses to KCl (30 - 120 mM), endothelin (10(-11) - 10(-7) M), acetylcholine (ACh) (10(-10) - 10(-4) M...
Show moreThe objective of the study was to determine the effects of a high fat (HF) diet alone or with high fructose (HF/F) on functional and structural changes in the basilar arteries and cardiovascular health parameters in rats. Male Sprague Dawley rats were fed either a HF (30%) or HF/F (30/40%) diet for 12 weeks. The basilar artery was cannulated in a pressurized system (90 cm H2O) and vascular responses to KCl (30 - 120 mM), endothelin (10(-11) - 10(-7) M), acetylcholine (ACh) (10(-10) - 10(-4) M), diethylamine (DEA)-NONO-ate (10(-10) - 10(-4) M), and papaverine (10(-10) - 10(-4) M) were evaluated. Rats were also monitored for food intake, body weight, blood lipids, blood pressure, and heart rate. At death, asymmetrical dimethyl arginine level (ADMA) and leptin were assayed in serum. Although there was no significant difference in weight gain and food intake, HF and HF/F diets increased body fat composition and decreased the lean mass. HF/F diet accelerated the development of dyslipidemia. Although resting blood pressure remained unchanged, stress caused a significant elevation in blood pressure and a modest increase in heart rate in HF fed rats. Both HF and HF/F diet resulted in decreased response to endothelium-dependent and -independent relaxation, whereas increased basilar artery wall thickness was observed only in HF group. Serum leptin levels positively correlated with wall thickness. Moreover serum ADMA was increased and eNOS immunofluorescence was significantly decreased with both diets. These data suggest that the presence of high fructose in a HF diet does not exacerbate the detrimental consequences of a HF diet on basilar artery function.
Show less - Date Issued
- 2016-04-01
- Identifier
- FSU_pmch_27226180, PMC5572808, 27226180, 27226180
- Format
- Citation
- Title
- Cocaine-induced neurodevelopmental deficits and underlying mechanisms.
- Creator
-
Martin, Melissa M, Graham, Devon L, McCarthy, Deirdre M, Bhide, Pradeep G, Stanwood, Gregg D
- Abstract/Description
-
Exposure to drugs early in life has complex and long-lasting implications for brain structure and function. This review summarizes work to date on the immediate and long-term effects of prenatal exposure to cocaine. In utero cocaine exposure produces disruptions in brain monoamines, particularly dopamine, during sensitive periods of brain development, and leads to permanent changes in specific brain circuits, molecules, and behavior. Here, we integrate clinical studies and significance with...
Show moreExposure to drugs early in life has complex and long-lasting implications for brain structure and function. This review summarizes work to date on the immediate and long-term effects of prenatal exposure to cocaine. In utero cocaine exposure produces disruptions in brain monoamines, particularly dopamine, during sensitive periods of brain development, and leads to permanent changes in specific brain circuits, molecules, and behavior. Here, we integrate clinical studies and significance with mechanistic preclinical studies, to define our current knowledge base and identify gaps for future investigation. Birth Defects Research (Part C) 108:147-173, 2016. © 2016 Wiley Periodicals, Inc.
Show less - Date Issued
- 2016-06-01
- Identifier
- FSU_pmch_27345015, 10.1002/bdrc.21132, PMC5538582, 27345015, 27345015
- Format
- Citation
- Title
- Prediction of individual differences in fear response by novelty seeking, and disruption of contextual fear memory reconsolidation by ketamine.
- Creator
-
Duclot, Florian, Perez-Taboada, Iara, Wright, Katherine N, Kabbaj, Mohamed
- Abstract/Description
-
Only a portion of the population exposed to trauma will develop persistent emotional alterations characteristic of posttraumatic stress disorder (PTSD), which illustrates the necessity for identifying vulnerability factors and novel pharmacotherapeutic alternatives. Interestingly, clinical evidence suggests that novelty seeking is a good predictor for vulnerability to the development of excessive and persistent fear. Here, we first tested this hypothesis by analyzing contextual and cued fear...
Show moreOnly a portion of the population exposed to trauma will develop persistent emotional alterations characteristic of posttraumatic stress disorder (PTSD), which illustrates the necessity for identifying vulnerability factors and novel pharmacotherapeutic alternatives. Interestingly, clinical evidence suggests that novelty seeking is a good predictor for vulnerability to the development of excessive and persistent fear. Here, we first tested this hypothesis by analyzing contextual and cued fear responses of rats selected for their high (high responders, HR) or low (low responders, LR) exploration of a novel environment, indicator of novelty seeking. While HR and LR rats exhibited similar sensitivity to the shock and cued fear memory retention, fewer extinction sessions were required in HR than LR animals to reach extinction, indicating faster contextual and cued memory extinction. In a second part, we found an effective disruption of contextual fear reconsolidation by the N-methyl-d-aspartate receptor antagonist ketamine, associated with a down-regulation of early growth response 1 (Egr1) in the hippocampal CA1 area, and up-regulation of brain-derived neurotrophic factor (Bdnf) mRNA levels in the prelimbic and infralimbic cortices. Altogether, these data demonstrate a link between novelty seeking and conditioned fear extinction, and highlight a promising novel role of ketamine in affecting established fear memory.
Show less - Date Issued
- 2016-10-01
- Identifier
- FSU_pmch_27343386, 10.1016/j.neuropharm.2016.06.022, PMC5017153, 27343386, 27343386, S0028-3908(16)30275-1
- Format
- Citation
- Title
- An insight into the thermodynamic characteristics of human thrombopoietin complexation with TN1 antibody.
- Creator
-
Arai, Shigeki, Shibazaki, Chie, Adachi, Motoyasu, Honjo, Eijiro, Tamada, Taro, Maeda, Yoshitake, Tahara, Tomoyuki, Kato, Takashi, Miyazaki, Hiroshi, Blaber, Michael, Kuroki, Ryota
- Abstract/Description
-
Human thrombopoietin (hTPO) primarily stimulates megakaryocytopoiesis and platelet production and is neutralized by the mouse TN1 antibody. The thermodynamic characteristics of TN1 antibody-hTPO complexation were analyzed by isothermal titration calorimetry (ITC) using an antigen-binding fragment (Fab) derived from the TN1 antibody (TN1-Fab). To clarify the mechanism by which hTPO is recognized by TN1-Fab the conformation of free TN1-Fab was determined to a resolution of 2.0 Å using X-ray...
Show moreHuman thrombopoietin (hTPO) primarily stimulates megakaryocytopoiesis and platelet production and is neutralized by the mouse TN1 antibody. The thermodynamic characteristics of TN1 antibody-hTPO complexation were analyzed by isothermal titration calorimetry (ITC) using an antigen-binding fragment (Fab) derived from the TN1 antibody (TN1-Fab). To clarify the mechanism by which hTPO is recognized by TN1-Fab the conformation of free TN1-Fab was determined to a resolution of 2.0 Å using X-ray crystallography and compared with the hTPO-bound form of TN1-Fab determined by a previous study. This structural comparison revealed that the conformation of TN1-Fab does not substantially change after hTPO binding and a set of 15 water molecules is released from the antigen-binding site (paratope) of TN1-Fab upon hTPO complexation. Interestingly, the heat capacity change (ΔCp) measured by ITC (-1.52 ± 0.05 kJ mol(-1) K(-1) ) differed significantly from calculations based upon the X-ray structure data of the hTPO-bound and unbound forms of TN1-Fab (-1.02 ∼ 0.25 kJ mol(-1) K(-1) ) suggesting that hTPO undergoes an induced-fit conformational change combined with significant desolvation upon TN1-Fab binding. The results shed light on the structural biology associated with neutralizing antibody recognition.
Show less - Date Issued
- 2016-10-01
- Identifier
- FSU_pmch_27419667, 10.1002/pro.2985, PMC5029525, 27419667, 27419667
- Format
- Citation
- Title
- An Mcm10 Mutant Defective in ssDNA Binding Shows Defects in DNA Replication Initiation.
- Creator
-
Perez-Arnaiz, Patricia, Kaplan, Daniel L
- Abstract/Description
-
Mcm10 is an essential protein that functions to initiate DNA replication after the formation of the replication fork helicase. In this manuscript, we identified a budding yeast Mcm10 mutant (Mcm10-m2,3,4) that is defective in DNA binding in vitro. Moreover, this Mcm10-m2,3,4 mutant does not stimulate the phosphorylation of Mcm2 by Dbf4-dependent kinase (DDK) in vitro. When we expressed wild-type levels of mcm10-m2,3,4 in budding yeast cells, we observed a severe growth defect and a...
Show moreMcm10 is an essential protein that functions to initiate DNA replication after the formation of the replication fork helicase. In this manuscript, we identified a budding yeast Mcm10 mutant (Mcm10-m2,3,4) that is defective in DNA binding in vitro. Moreover, this Mcm10-m2,3,4 mutant does not stimulate the phosphorylation of Mcm2 by Dbf4-dependent kinase (DDK) in vitro. When we expressed wild-type levels of mcm10-m2,3,4 in budding yeast cells, we observed a severe growth defect and a substantially decreased DNA replication. We also observed a substantially reduced replication protein A- chromatin immunoprecipitation signal at origins of replication, reduced levels of DDK-phosphorylated Mcm2, and diminished Go, Ichi, Ni, and San (GINS) association with Mcm2-7 in vivo. mcm5-bob1 bypasses the growth defect conferred by DDK-phosphodead Mcm2 in budding yeast. However, the growth defect observed by expressing mcm10-m2,3,4 is not bypassed by the mcm5-bob1 mutation. Furthermore, origin melting and GINS association with Mcm2-7 are substantially decreased for cells expressing mcm10-m2,3,4 in the mcm5-bob1 background. Thus, the origin melting and GINS-Mcm2-7 interaction defects we observed for mcm10-m2,3,4 are not explained by decreased Mcm2 phosphorylation by DDK, since the defects persist in an mcm5-bob1 background. These data suggest that DNA binding by Mcm10 is essential for the initiation of DNA replication.
Show less - Date Issued
- 2016-11-20
- Identifier
- FSU_pmch_27751725, 10.1016/j.jmb.2016.10.014, PMC5115986, 27751725, 27751725, S0022-2836(16)30429-6
- Format
- Citation
- Title
- 14-3-3τ promotes surface expression of Cav2.2 (α1B) Ca2+ channels.
- Creator
-
Liu, Feng, Zhou, Qin, Zhou, Jie, Sun, Hao, Wang, Yan, Zou, Xiuqun, Feng, Lingling, Hou, Zhaoyuan, Zhou, Aiwu, Zhou, Yi, Li, Yong
- Abstract/Description
-
Surface expression of voltage-gated Ca(2+) (Cav) channels is important for their function in calcium homeostasis in the physiology of excitable cells, but whether or not and how the α1 pore-forming subunits of Cav channels are trafficked to plasma membrane in the absence of the known Cav auxiliary subunits, β and α2δ, remains mysterious. Here we showed that 14-3-3 proteins promoted functional surface expression of the Cav2.2 α1B channel in transfected tsA-201 cells in the absence of any known...
Show moreSurface expression of voltage-gated Ca(2+) (Cav) channels is important for their function in calcium homeostasis in the physiology of excitable cells, but whether or not and how the α1 pore-forming subunits of Cav channels are trafficked to plasma membrane in the absence of the known Cav auxiliary subunits, β and α2δ, remains mysterious. Here we showed that 14-3-3 proteins promoted functional surface expression of the Cav2.2 α1B channel in transfected tsA-201 cells in the absence of any known Cav auxiliary subunit. Both the surface to total ratio of the expressed α1B protein and the current density of voltage step-evoked Ba(2+) current were markedly suppressed by the coexpression of a 14-3-3 antagonist construct, pSCM138, but not its inactive control, pSCM174, as determined by immunofluorescence assay and whole cell voltage clamp recording, respectively. By contrast, coexpression with 14-3-3τ significantly enhanced the surface expression and current density of the Cav2.2 α1B channel. Importantly, we found that between the two previously identified 14-3-3 binding regions at the α1B C terminus, only the proximal region (amino acids 1706-1940), closer to the end of the last transmembrane domain, was retained by the endoplasmic reticulum and facilitated by 14-3-3 to traffic to plasma membrane. Additionally, we showed that the 14-3-3/Cav β subunit coregulated the surface expression of Cav2.2 channels in transfected tsA-201 cells and neurons. Altogether, our findings reveal a previously unidentified regulatory function of 14-3-3 proteins in promoting the surface expression of Cav2.2 α1B channels.
Show less - Date Issued
- 2015-01-30
- Identifier
- FSU_pmch_25516596, 10.1074/jbc.M114.567800, PMC4317001, 25516596, 25516596, M114.567800
- Format
- Citation
- Title
- 14-3-3 protein targets misfolded chaperone-associated proteins to aggresomes.
- Creator
-
Xu, Zhe, Graham, Kourtney, Foote, Molly, Liang, Fengshan, Rizkallah, Raed, Hurt, Myra, Wang, Yanchang, Wu, Yuying, Zhou, Yi
- Abstract/Description
-
The aggresome is a key cytoplasmic organelle for sequestration and clearance of toxic protein aggregates. Although loading misfolded proteins cargos to dynein motors has been recognized as an important step in the aggresome formation process, the molecular machinery that mediates the association of cargos with the dynein motor is poorly understood. Here, we report a new aggresome-targeting pathway that involves isoforms of 14-3-3, a family of conserved regulatory proteins. 14-3-3 interacts...
Show moreThe aggresome is a key cytoplasmic organelle for sequestration and clearance of toxic protein aggregates. Although loading misfolded proteins cargos to dynein motors has been recognized as an important step in the aggresome formation process, the molecular machinery that mediates the association of cargos with the dynein motor is poorly understood. Here, we report a new aggresome-targeting pathway that involves isoforms of 14-3-3, a family of conserved regulatory proteins. 14-3-3 interacts with both the dynein-intermediate chain (DIC) and an Hsp70 co-chaperone Bcl-2-associated athanogene 3 (BAG3), thereby recruiting chaperone-associated protein cargos to dynein motors for their transport to aggresomes. This molecular cascade entails functional dimerization of 14-3-3, which we show to be crucial for the formation of aggresomes in both yeast and mammalian cells. These results suggest that 14-3-3 functions as a molecular adaptor to promote aggresomal targeting of misfolded protein aggregates and may link such complexes to inclusion bodies observed in various neurodegenerative diseases.
Show less - Date Issued
- 2013-09-15
- Identifier
- FSU_pmch_23843611, 10.1242/jcs.126102, PMC3772389, 23843611, 23843611, jcs.126102
- Format
- Citation
- Title
- 14-3-3 proteins in neurological disorders.
- Creator
-
Foote, Molly, Zhou, Yi
- Abstract/Description
-
14-3-3 proteins were originally discovered as a family of proteins that are highly expressed in the brain. Through interactions with a multitude of binding partners, 14-3-3 proteins impact many aspects of brain function including neural signaling, neuronal development and neuroprotection. Although much remains to be learned and understood, 14-3-3 proteins have been implicated in a variety of neurological disorders based on evidence from both clinical and laboratory studies. Here we will...
Show more14-3-3 proteins were originally discovered as a family of proteins that are highly expressed in the brain. Through interactions with a multitude of binding partners, 14-3-3 proteins impact many aspects of brain function including neural signaling, neuronal development and neuroprotection. Although much remains to be learned and understood, 14-3-3 proteins have been implicated in a variety of neurological disorders based on evidence from both clinical and laboratory studies. Here we will review previous and more recent research that has helped us understand the roles of 14-3-3 proteins in both neurodegenerative and neuropsychiatric diseases.
Show less - Date Issued
- 2012-01-01
- Identifier
- FSU_pmch_22773956, PMC3388734, 22773956, 22773956
- Format
- Citation
- Title
- 14-3-3 proteins are required for hippocampal long-term potentiation and associative learning and memory.
- Creator
-
Qiao, Haifa, Foote, Molly, Graham, Kourtney, Wu, Yuying, Zhou, Yi
- Abstract/Description
-
14-3-3 is a family of regulatory proteins highly expressed in the brain. Previous invertebrate studies have demonstrated the importance of 14-3-3 in the regulation of synaptic functions and learning and memory. However, the in vivo role of 14-3-3 in these processes has not been determined using mammalian animal models. Here, we report the behavioral and electrophysiological characterization of a new animal model of 14-3-3 proteins. These transgenic mice, considered to be a 14-3-3 functional...
Show more14-3-3 is a family of regulatory proteins highly expressed in the brain. Previous invertebrate studies have demonstrated the importance of 14-3-3 in the regulation of synaptic functions and learning and memory. However, the in vivo role of 14-3-3 in these processes has not been determined using mammalian animal models. Here, we report the behavioral and electrophysiological characterization of a new animal model of 14-3-3 proteins. These transgenic mice, considered to be a 14-3-3 functional knock-out, express a known 14-3-3 inhibitor in various brain regions of different founder lines. We identify a founder-specific impairment in hippocampal-dependent learning and memory tasks, as well as a correlated suppression in long-term synaptic plasticity of the hippocampal synapses. Moreover, hippocampal synaptic NMDA receptor levels are selectively reduced in the transgenic founder line that exhibits both behavioral and synaptic plasticity deficits. Collectively, our findings provide evidence that 14-3-3 is a positive regulator of associative learning and memory at both the behavioral and cellular level.
Show less - Date Issued
- 2014-04-02
- Identifier
- FSU_pmch_24695700, 10.1523/JNEUROSCI.4393-13.2014, PMC3972712, 24695700, 24695700, 34/14/4801
- Format
- Citation
- Title
- 14-3-3 and aggresome formation: implications in neurodegenerative diseases..
- Creator
-
Jia, Baohui, Wu, Yuying, Zhou, Yi
- Abstract/Description
-
Protein misfolding and aggregation underlie the pathogenesis of many neurodegenerative diseases. In addition to chaperone-mediated refolding and proteasomal degradation, the aggresome-macroautophagy pathway has emerged as another defense mechanism for sequestration and clearance of toxic protein aggregates in cells. Previously, the 14-3-3 proteins were shown to be indispensable for the formation of aggresomes induced by mutant huntingtin proteins. In a recent study, we have determined that 14...
Show moreProtein misfolding and aggregation underlie the pathogenesis of many neurodegenerative diseases. In addition to chaperone-mediated refolding and proteasomal degradation, the aggresome-macroautophagy pathway has emerged as another defense mechanism for sequestration and clearance of toxic protein aggregates in cells. Previously, the 14-3-3 proteins were shown to be indispensable for the formation of aggresomes induced by mutant huntingtin proteins. In a recent study, we have determined that 14-3-3 functions as a molecular adaptor to recruit chaperone-associated misfolded proteins to dynein motors for transport to aggresomes. This molecular complex involves a dimeric binding of 14-3-3 to both the dynein-intermediate chain (DIC) and an Hsp70 co-chaperone Bcl-2-associated athanogene 3 (BAG3). As 14-3-3 has been implicated in various neurodegenerative diseases, our findings may provide mechanistic insights into its role in managing misfolded protein stress during the process of neurodegeneration.
Show less - Date Issued
- 2014-03-01
- Identifier
- FSU_pmch_24549097, PMC4189886, 24549097, 24549097, 28123
- Format
- Citation
- Title
- Amide Hydrogens Reveal A Temperature-dependent Structural Transition That Enhances Site-ii Ca2+ -binding Affinity In A C-domain Mutant Of Cardiac Troponin C.
- Creator
-
Veltri, Tiago, de Oliveira, Guilherme A. P., Bienkiewicz, Ewa A., Palhano, Fernando L., Marques, Mayra de A., Moraes, Adolfo H., Silva, Jerson L., Sorenson, Martha M., Pinto,...
Show moreVeltri, Tiago, de Oliveira, Guilherme A. P., Bienkiewicz, Ewa A., Palhano, Fernando L., Marques, Mayra de A., Moraes, Adolfo H., Silva, Jerson L., Sorenson, Martha M., Pinto, Jose R.
Show less - Abstract/Description
-
The hypertrophic cardiomyopathy-associated mutant D145E, in cardiac troponin C (cTnC) C-domain, causes generalised instability at multiple sites in the isolated protein. As a result, structure and function of the mutant are more susceptible to higher temperatures. Above 25 degrees C there are large, progressive increases in N-domain Ca2+-binding affinity for D145E but only small changes for the wild-type protein. NMR-derived backbone amide temperature coefficients for many residues show a...
Show moreThe hypertrophic cardiomyopathy-associated mutant D145E, in cardiac troponin C (cTnC) C-domain, causes generalised instability at multiple sites in the isolated protein. As a result, structure and function of the mutant are more susceptible to higher temperatures. Above 25 degrees C there are large, progressive increases in N-domain Ca2+-binding affinity for D145E but only small changes for the wild-type protein. NMR-derived backbone amide temperature coefficients for many residues show a sharp transition above 30-40 degrees C, indicating a temperature-dependent conformational change that is most prominent around the mutated EF-hand IV, as well as throughout the C-domain. Smaller, isolated changes occur in the N-domain. Cardiac skinned fibres reconstituted with D145E are more sensitive to Ca2+ than fibres reconstituted with wild-type, and this defect is amplified near body-temperature. We speculate that the D145E mutation destabilises the native conformation of EF-hand IV, leading to a transient unfolding and dissociation of helix H that becomes more prominent at higher temperatures. This creates exposed hydrophobic surfaces that may be capable of binding unnaturally to a variety of targets, possibly including the N-domain of cTnC when it is in its open Ca2+-saturated state. This would constitute a potential route for propagating signals from one end of TnC to the other.
Show less - Date Issued
- 2017-04-06
- Identifier
- FSU_libsubv1_wos_000398545900010, 10.1038/s41598-017-00777-6
- Format
- Citation
- Title
- Amide hydrogens reveal a temperature-dependent structural transition that enhances site-II Ca(2+)-binding affinity in a C-domain mutant of cardiac troponin C.
- Creator
-
Veltri, Tiago, de Oliveira, Guilherme A P, Bienkiewicz, Ewa A, Palhano, Fernando L, Marques, Mayra de A, Moraes, Adolfo H, Silva, Jerson L, Sorenson, Martha M, Pinto, Jose R
- Abstract/Description
-
The hypertrophic cardiomyopathy-associated mutant D145E, in cardiac troponin C (cTnC) C-domain, causes generalised instability at multiple sites in the isolated protein. As a result, structure and function of the mutant are more susceptible to higher temperatures. Above 25 °C there are large, progressive increases in N-domain Ca(2+)-binding affinity for D145E but only small changes for the wild-type protein. NMR-derived backbone amide temperature coefficients for many residues show a sharp...
Show moreThe hypertrophic cardiomyopathy-associated mutant D145E, in cardiac troponin C (cTnC) C-domain, causes generalised instability at multiple sites in the isolated protein. As a result, structure and function of the mutant are more susceptible to higher temperatures. Above 25 °C there are large, progressive increases in N-domain Ca(2+)-binding affinity for D145E but only small changes for the wild-type protein. NMR-derived backbone amide temperature coefficients for many residues show a sharp transition above 30-40 °C, indicating a temperature-dependent conformational change that is most prominent around the mutated EF-hand IV, as well as throughout the C-domain. Smaller, isolated changes occur in the N-domain. Cardiac skinned fibres reconstituted with D145E are more sensitive to Ca(2+) than fibres reconstituted with wild-type, and this defect is amplified near body-temperature. We speculate that the D145E mutation destabilises the native conformation of EF-hand IV, leading to a transient unfolding and dissociation of helix H that becomes more prominent at higher temperatures. This creates exposed hydrophobic surfaces that may be capable of binding unnaturally to a variety of targets, possibly including the N-domain of cTnC when it is in its open Ca(2+)-saturated state. This would constitute a potential route for propagating signals from one end of TnC to the other.
Show less - Date Issued
- 2017-04-06
- Identifier
- FSU_pmch_28386062, 10.1038/s41598-017-00777-6, PMC5429600, 28386062, 28386062, 10.1038/s41598-017-00777-6
- Format
- Citation
- Title
- Alternative Folding Nuclei Definitions Facilitate the Evolution of a Symmetric Protein Fold from a Smaller Peptide Motif.
- Creator
-
Longo, Liam, Lee, Jihun, Tenorio, Connie, Blaber, Michael
- Abstract/Description
-
Protein 3° structure symmetry is a defining feature of nearly a third of protein folds and is generally thought to result from a combination of gene duplication, fusion, and truncation events. Such events represent major replication errors, involving substantial alteration of protein 3° structure as well as causing regions of exact repeating 1° structure, both of which are generally considered deleterious to protein folding. Thus, the prevalence of symmetric protein folds is counterintuitive...
Show moreProtein 3° structure symmetry is a defining feature of nearly a third of protein folds and is generally thought to result from a combination of gene duplication, fusion, and truncation events. Such events represent major replication errors, involving substantial alteration of protein 3° structure as well as causing regions of exact repeating 1° structure, both of which are generally considered deleterious to protein folding. Thus, the prevalence of symmetric protein folds is counterintuitive and suggests a specific, yet unexplained, robustness. Using a designed β-trefoil protein, we show that purely symmetric 1° structure enables utilization of alternative definitions of the critical folding nucleus in response to gross structural rearrangement. Thus, major replication errors producing 1° structure symmetry can conserve foldability. The results provide an explanation for the prevalence of symmetric protein folds, and highlight a critical role for 1° structure symmetry in protein evolution.
Show less - Date Issued
- 2013-10-17
- Identifier
- FSU_libsubv1_scholarship_submission_1456501539, 10.1016/j.str.2013.09.003
- Format
- Citation
- Title
- Acupoint Sensitization, Acupuncture Analgesia, Acupuncture on Visceral Functional Disorders, and Its Mechanism.
- Creator
-
Yu, Xiaochun, Zhu, Bing, Lin, Zhixiu, Qiao, Haifa, Kong, Jian, Gao, Xinyan
- Date Issued
- 2015-01-01
- Identifier
- FSU_pmch_26300944, 10.1155/2015/171759, PMC4537726, 26300944, 26300944
- Format
- Citation
- Title
- Acute BDNF treatment upregulates GluR1-SAP97 and GluR2-GRIP1 interactions: implications for sustained AMPA receptor expression..
- Creator
-
Jourdi, Hussam, Kabbaj, Mohamed
- Abstract/Description
-
Brain-derived neurotrophic factor (BDNF) plays several prominent roles in synaptic plasticity and in learning and memory formation. Reduced BDNF levels and altered BDNF signaling have been reported in several brain diseases and behavioral disorders, which also exhibit reduced levels of AMPAr subunits. BDNF treatment acutely regulates AMPA receptor expression and function, including synaptic AMPAr subunit trafficking, and implicates several well defined signaling molecules that are required to...
Show moreBrain-derived neurotrophic factor (BDNF) plays several prominent roles in synaptic plasticity and in learning and memory formation. Reduced BDNF levels and altered BDNF signaling have been reported in several brain diseases and behavioral disorders, which also exhibit reduced levels of AMPAr subunits. BDNF treatment acutely regulates AMPA receptor expression and function, including synaptic AMPAr subunit trafficking, and implicates several well defined signaling molecules that are required to elicit long term potentiation and depression (LTP and LTD, respectively). Long term encoding of synaptic events, as in long term memory formation, requires AMPAr stabilization and maintenance. However, factors regulating AMPAr stabilization in neuronal cell membranes and synaptic sites are not well characterized. In this study, we examine the effects of acute BDNF treatment on levels of AMPAr-associated scaffolding proteins and on AMPAr subunit-scaffolding protein interactions. We also examine the effects of BDNF-dependent enhanced interactions between AMPAr subunits with their specific scaffolding proteins on the accumulation of both types of proteins. Our results show that acute BDNF treatment upregulates the interactions between AMPAr subunits (GluR1 and GluR2) with their scaffold proteins SAP97 and GRIP1, respectively, leading to prolonged increased accumulation of both categories of proteins, albeit with distinct mechanisms for GluR1 and GluR2. Our findings reveal a new role for BDNF in the long term maintenance of AMPA receptor subunits and associated scaffolding proteins at synapses and further support the role of BDNF as a key regulator of synaptic consolidation. These results have potential implications for recent findings implicating BDNF and AMPAr subunits in various brain diseases and behavioral disorders.
Show less - Date Issued
- 2013-01-01
- Identifier
- FSU_pmch_23460828, 10.1371/journal.pone.0057124, PMC3584105, 23460828, 23460828, PONE-D-12-38051
- Format
- Citation
- Title
- An S116R Phosphorylation Site Mutation in Human Fibroblast Growth Factor-1 Differentially Affects Mitogenic and Glucose-Lowering Activities.
- Creator
-
Xia, Xue, Kumru, Ozan S, Blaber, Sachiko I, Middaugh, C Russell, Li, Ling, Ornitz, David M, Suh, Jae Myoung, Atkins, Annette R, Downes, Michael, Evans, Ronald M, Tenorio, Connie...
Show moreXia, Xue, Kumru, Ozan S, Blaber, Sachiko I, Middaugh, C Russell, Li, Ling, Ornitz, David M, Suh, Jae Myoung, Atkins, Annette R, Downes, Michael, Evans, Ronald M, Tenorio, Connie A, Bienkiewicz, Ewa, Blaber, Michael
Show less - Abstract/Description
-
Fibroblast growth factor-1 (FGF-1), a potent human mitogen and insulin sensitizer, signals through both tyrosine kinase receptor-mediated autocrine/paracrine pathways as well as a nuclear intracrine pathway. Phosphorylation of FGF-1 at serine 116 (S116) has been proposed to regulate intracrine signaling. Position S116 is located within a ∼17 amino acid C-terminal loop that contains a rich set of functional determinants including heparin∖heparan sulfate affinity, thiol reactivity, nuclear...
Show moreFibroblast growth factor-1 (FGF-1), a potent human mitogen and insulin sensitizer, signals through both tyrosine kinase receptor-mediated autocrine/paracrine pathways as well as a nuclear intracrine pathway. Phosphorylation of FGF-1 at serine 116 (S116) has been proposed to regulate intracrine signaling. Position S116 is located within a ∼17 amino acid C-terminal loop that contains a rich set of functional determinants including heparin∖heparan sulfate affinity, thiol reactivity, nuclear localization, pharmacokinetics, functional half-life, nuclear ligand affinity, stability, and structural dynamics. Mutational targeting of specific functionality in this region without perturbing other functional determinants is a design challenge. S116R is a non-phosphorylatable variant present in bovine FGF-1 and other members of the human FGF family. We show that the S116R mutation in human FGF-1 is accommodated with no perturbation of biophysical or structural properties, and is therefore an attractive mutation with which to elucidate the functional role of phosphorylation. Characterization of S116R shows reduction in NIH 3T3 fibroblast mitogenic stimulation, increase in fibroblast growth factor receptor-1c activation, and prolonged duration of glucose lowering in ob/ob hyperglycemic mice. A novel FGF-1/fibroblast growth factor receptor-1c dimerization interaction combined with non-phosphorylatable intracrine signaling is hypothesized to be responsible for these observed functional effects.
Show less - Date Issued
- 2016-12-01
- Identifier
- FSU_pmch_27773526, 10.1016/j.xphs.2016.09.005, PMC5310217, 27773526, 27773526, S0022-3549(16)41698-9
- Format
- Citation
- Title
- Analysis of the Molecular Pathogenesis of Cardiomyopathy-Causing cTnT Mutants I79N, ΔE96, and ΔK210.
- Creator
-
Bai, Fan, Caster, Hannah, Pinto, Jose, Kawai, Masataka
- Abstract/Description
-
Three troponin T (TnT) mutants that cause hypertrophic, restrictive, and dilated cardiomyopathy (I79N, ΔE96, and ΔK210, respectively), were examined using the thin-filament extraction/reconstitution technique. Effects of Ca(2+), ATP, phosphate, and ADP concentrations on force and its transients were studied at 25°C. Maximal Ca(2+) tension (THC) and Ca(2+)-activatable tension (Tact), respectively, were similar among I79N, ΔE96, and WT, whereas ΔK210 led to a significantly lower THC (∼20% less)...
Show moreThree troponin T (TnT) mutants that cause hypertrophic, restrictive, and dilated cardiomyopathy (I79N, ΔE96, and ΔK210, respectively), were examined using the thin-filament extraction/reconstitution technique. Effects of Ca(2+), ATP, phosphate, and ADP concentrations on force and its transients were studied at 25°C. Maximal Ca(2+) tension (THC) and Ca(2+)-activatable tension (Tact), respectively, were similar among I79N, ΔE96, and WT, whereas ΔK210 led to a significantly lower THC (∼20% less) and Tact (∼25% less) than did WT. In pCa solution containing 8 mM Pi and ionic strength adjusted to 200 mM, the Ca(2+) sensitivity (pCa50) of I79N (5.63 ± 0.02) and ΔE96 (5.60 ± 0.03) was significantly greater than that of WT (5.45 ± 0.04), but the pCa50 of ΔK210 (5.54 ± 0.04) remained similar to that of WT. Five equilibrium constants were deduced using sinusoidal analysis. All three mutants showed significantly lower K0 (ADP association constant) and larger K4 (equilibrium constant of force generation step) relative to the corresponding values for WT. I79N and ΔK210 were associated with a K2 (equilibrium constant of cross-bridge detachment step) significantly lower than that of ΔE96 and WT. These results demonstrated that at pCa 4.66, the force/cross-bridge is ∼18% less in I79N and ∼41% less in ΔK210 than that in WT. These results indicate that the molecular pathogenesis of the cardiac TnT mutation-related cardiomyopathies is different for each mutation.
Show less - Date Issued
- 2013
- Identifier
- FSU_migr_biomed_faculty_publications-0051, 10.1016/j.bpj.2013.04.001
- Format
- Citation
- Title
- Accelerated healing in NONcNZO10/LtJ type 2 diabetic mice by FGF 1.
- Creator
-
Blaber, Sachiko, Diaz, Jose, Blaber, Michael
- Abstract/Description
-
The development of novel therapies to treat chronic diabetic ulcers depends upon appropriate animal models for early stage investigation. The NONcNZO10/LtJ mouse is a new polygenic strain developed to more realistically model human metabolic syndrome and obesity-induced Type 2 diabetes; however, detailed wound healing properties have not been reported. In this report we describe a quantitative wound healing study in the NONcNZO10/LtJ mouse using a splinted excisional wound. The rate of wound...
Show moreThe development of novel therapies to treat chronic diabetic ulcers depends upon appropriate animal models for early stage investigation. The NONcNZO10/LtJ mouse is a new polygenic strain developed to more realistically model human metabolic syndrome and obesity-induced Type 2 diabetes; however, detailed wound healing properties have not been reported. In this report we describe a quantitative wound healing study in the NONcNZO10/LtJ mouse using a splinted excisional wound. The rate of wound healing is compared to various controls, and is also quantified in response to topical administration of normal and mutant fibroblast growth factor-1 (FGF-1). Quantitation of re-epithelialization shows that the diabetic condition in the NONcNZO10/LtJ mouse is concomitant with a decreased rate of dermal healing. Furthermore, topical administration of a FGF-1/heparin formulation effectively accelerates re-epithelialization. A similar acceleration can also be achieved by a stabilized mutant form of FGF-1 formulated in the absence of heparin. Such accelerated rates of healing are not associated with any abnormal histology in the healed wounds. The results identify the NONcNZO10/LtJ mouse as a useful model of impaired wound healing in type II diabetes, and further, identify engineered forms of FGF-1 as a potential “second-generation” therapeutic to promote diabetic dermal wound healing.
Show less - Date Issued
- 2015-06-19
- Identifier
- FSU_libsubv1_scholarship_submission_1456505007, 10.1111/wrr.12305
- Format
- Citation
- Title
- Akt mediated phosphorylation of LARP6; critical step in biosynthesis of type I collagen.
- Creator
-
Zhang, Yujie, Stefanovic, Branko
- Abstract/Description
-
La ribonucleoprotein domain family, member 6 (LARP6) is the RNA binding protein, which regulates translation of collagen mRNAs and synthesis of type I collagen. Posttranslational modifications of LARP6 and how they affect type I collagen synthesis have not been studied. We show that in lung fibroblasts LARP6 is phosphorylated at 8 serines, 6 of which are located within C-terminal domain. Phosphorylation of LARP6 follows a hierarchical order; S451 phosphorylation being a prerequisite for...
Show moreLa ribonucleoprotein domain family, member 6 (LARP6) is the RNA binding protein, which regulates translation of collagen mRNAs and synthesis of type I collagen. Posttranslational modifications of LARP6 and how they affect type I collagen synthesis have not been studied. We show that in lung fibroblasts LARP6 is phosphorylated at 8 serines, 6 of which are located within C-terminal domain. Phosphorylation of LARP6 follows a hierarchical order; S451 phosphorylation being a prerequisite for phosphorylations of other serines. Inhibition of PI3K/Akt pathway reduced the phosphorylation of LARP6, but had no effect on the S451A mutant, suggesting that PI3K/Akt pathway targets S451 and we have identified Akt as the responsible kinase. Overexpression of S451A mutant had dominant negative effect on collagen biosynthesis; drastically reduced secretion of collagen and induced hyper-modifications of collagen α2 (I) polypeptides. This indicates that LARP6 phosphorylation at S451 is critical for regulating translation and folding of collagen polypeptides. Akt inhibitor, GSK-2141795, which is in clinical trials for treatment of solid tumors, reduced collagen production by human lung fibroblasts with EC50 of 150 nM. This effect can be explained by inhibition of LARP6 phosphorylation and suggests that Akt inhibitors may be effective in treatment of various forms of fibrosis.
Show less - Date Issued
- 2016-03-02
- Identifier
- FSU_pmch_26932461, 10.1038/srep22597, PMC4773855, 26932461, 26932461, srep22597
- Format
- Citation
- Title
- Akt mediated phosphorylation of LARP6; critical step in biosynthesis of type I collagen.
- Creator
-
Zhang, Yujie, Stefanovic, Branko
- Abstract/Description
-
La ribonucleoprotein domain family, member 6 (LARP6) is the RNA binding protein, which regulates translation of collagen mRNAs and synthesis of type I collagen. Posttranslational modifications of LARP6 and how they affect type I collagen synthesis have not been studied. We show that in lung fibroblasts LARP6 is phosphorylated at 8 serines, 6 of which are located within C-terminal domain. Phosphorylation of LARP6 follows a hierarchical order; S451 phosphorylation being a prerequisite for...
Show moreLa ribonucleoprotein domain family, member 6 (LARP6) is the RNA binding protein, which regulates translation of collagen mRNAs and synthesis of type I collagen. Posttranslational modifications of LARP6 and how they affect type I collagen synthesis have not been studied. We show that in lung fibroblasts LARP6 is phosphorylated at 8 serines, 6 of which are located within C-terminal domain. Phosphorylation of LARP6 follows a hierarchical order; S451 phosphorylation being a prerequisite for phosphorylations of other serines. Inhibition of PI3K/Akt pathway reduced the phosphorylation of LARP6, but had no effect on the S451A mutant, suggesting that PI3K/Akt pathway targets S451 and we have identified Akt as the responsible kinase. Overexpression of S451A mutant had dominant negative effect on collagen biosynthesis; drastically reduced secretion of collagen and induced hyper-modifications of collagen alpha 2 (I) polypeptides. This indicates that LARP6 phosphorylation at S451 is critical for regulating translation and folding of collagen polypeptides. Akt inhibitor, GSK-2141795, which is in clinical trials for treatment of solid tumors, reduced collagen production by human lung fibroblasts with EC50 of 150 nM. This effect can be explained by inhibition of LARP6 phosphorylation and suggests that Akt inhibitors may be effective in treatment of various forms of fibrosis.
Show less - Date Issued
- 2016-03-02
- Identifier
- FSU_libsubv1_wos_000371176000001, 10.1038/srep22597
- Format
- Citation
- Title
- Absence of Myocardial Thyroid Hormone Inactivating Deiodinase Results in Restrictive Cardiomyopathy in Mice.
- Creator
-
Ueta, Cintia, Oskouei, Behzad, Olivares, Emerson, Pinto, Jose, Correa, Mayrin, Simovic, Gordana, Simonides, Warner, Hare, Joshua, Bianco, Antônio Carlos
- Abstract/Description
-
Cardiac injury induces myocardial expression of the thyroid hormone inactivating type 3 deiodinase (D3), which in turn dampens local thyroid hormone signaling. Here, we show that the D3 gene (Dio3) is a tissue-specific imprinted gene in the heart, and thus, heterozygous D3 knockout (HtzD3KO) mice constitute a model of cardiac D3 inactivation in an otherwise systemically euthyroid animal. HtzD3KO newborns have normal hearts but later develop restrictive cardiomyopathy due to cardiac-specific...
Show moreCardiac injury induces myocardial expression of the thyroid hormone inactivating type 3 deiodinase (D3), which in turn dampens local thyroid hormone signaling. Here, we show that the D3 gene (Dio3) is a tissue-specific imprinted gene in the heart, and thus, heterozygous D3 knockout (HtzD3KO) mice constitute a model of cardiac D3 inactivation in an otherwise systemically euthyroid animal. HtzD3KO newborns have normal hearts but later develop restrictive cardiomyopathy due to cardiac-specific increase in thyroid hormone signaling, including myocardial fibrosis, impaired myocardial contractility, and diastolic dysfunction. In wild-type littermates, treatment with isoproterenol-induced myocardial D3 activity and an increase in the left ventricular volumes, typical of cardiac remodeling and dilatation. Remarkably, isoproterenol-treated HtzD3KO mice experienced a further decrease in left ventricular volumes with worsening of the diastolic dysfunction and the restrictive cardiomyopathy, resulting in congestive heart failure and increased mortality. These findings reveal crucial roles for Dio3 in heart function and remodeling, which may have pathophysiologic implications for human restrictive cardiomyopathy.
Show less - Date Issued
- 2012
- Identifier
- FSU_migr_biomed_faculty_publications-0052, 10.1210/me.2011-1325
- Format
- Citation
- Title
- The Folding Nucleus Structure Persists in Thermally-Aggregated FGF-1.
- Creator
-
Longo, Liam, Gao, Yuan, Tenorio, Connie, Wang, Gan, Paravastu, Anant, Blaber, Michael
- Abstract/Description
-
An efficient protein folding pathway leading to target structure, and the avoidance of aggregation, is essential to protein evolution and de novo design; however, design details to achieve efficient folding and avoid aggregation are poorly understood. We report characterization of the thermally-induced aggregate of fibroblast growth factor-1 (FGF-1), a small globular protein, by solid-state NMR. NMR spectra are consistent with residual structure in the aggregate and provide evidence of a...
Show moreAn efficient protein folding pathway leading to target structure, and the avoidance of aggregation, is essential to protein evolution and de novo design; however, design details to achieve efficient folding and avoid aggregation are poorly understood. We report characterization of the thermally-induced aggregate of fibroblast growth factor-1 (FGF-1), a small globular protein, by solid-state NMR. NMR spectra are consistent with residual structure in the aggregate and provide evidence of a structured region that corresponds to the region of the folding nucleus. NMR data on aggregated FGF-1 also indicate the presence of unstructured regions that exhibit hydration-dependent dynamics and suggest that unstructured regions of aggregated FGF-1 lie outside the folding nucleus. Since it is known that regions outside the folding nucleus fold late in the folding pathway, we postulate that these regions unfold early in the unfolding pathway and that the partially folded state is more prone to intermolecular aggregation. This interpretation is further supported by comparison with a designed protein that shares the same FGF-1 folding nucleus sequence, but has different 1° structure outside the folding nucleus, and does not thermally aggregate. The results suggest that design of an efficient folding nucleus, and the avoidance of aggregation in the folding pathway, are potentially separable design criteria – the latter of which could principally focus upon the physicochemical properties of 1° structure outside the folding nucleus.
Show less - Date Issued
- 2017-10-23
- Identifier
- FSU_libsubv1_scholarship_submission_1509376995_85b5a7ca, 10.1002/pro.3332
- Format
- Citation
- Title
- Fluoxetine exposure during adolescence increases preference for cocaine in adulthood.
- Creator
-
Iñiguez, Sergio D, Riggs, Lace M, Nieto, Steven J, Wright, Katherine N, Zamora, Norma N, Cruz, Bryan, Zavala, Arturo R, Robison, Alfred J, Mazei-Robison, Michelle S
- Abstract/Description
-
Currently, there is a high prevalence of antidepressant prescription rates within juvenile populations, yet little is known about the potential long-lasting consequences of such treatments, particularly on subsequent responses to drugs of abuse. To address this issue at the preclinical level, we examined whether adolescent exposure to fluoxetine (FLX), a selective serotonin reuptake inhibitor, results in changes to the sensitivity of the rewarding properties of cocaine in adulthood. Separate...
Show moreCurrently, there is a high prevalence of antidepressant prescription rates within juvenile populations, yet little is known about the potential long-lasting consequences of such treatments, particularly on subsequent responses to drugs of abuse. To address this issue at the preclinical level, we examined whether adolescent exposure to fluoxetine (FLX), a selective serotonin reuptake inhibitor, results in changes to the sensitivity of the rewarding properties of cocaine in adulthood. Separate groups of male c57bl/6 mice were exposed to FLX (0 or 20 mg/kg) for 15 consecutive days either during adolescence (postnatal days [PD] 35-49) or adulthood (PD 65-79). Twenty-one days after FLX treatment, behavioral responsivity to cocaine (0, 2.5, 5, 10, or 20 mg/kg) conditioned place preference was assessed. Our data shows that mice pretreated with FLX during adolescence, but not during adulthood, display an enhanced dose-dependent preference to the environment paired with cocaine (5 or 10 mg/kg) when compared to age-matched saline pretreated controls. Taken together, our findings suggest that adolescent exposure to FLX increases sensitivity to the rewarding properties of cocaine, later in life.
Show less - Date Issued
- 2015-10-09
- Identifier
- FSU_pmch_26449406, 10.1038/srep15009, PMC4598853, 26449406, 26449406, srep15009
- Format
- Citation
- Title
- Frequency dependence of power and its implications for contractile function of muscle fibers from the digital flexors of horses.
- Creator
-
Butcher, Michael T, Bertram, John E A, Syme, Douglas A, Hermanson, John W, Chase, P Bryant
- Abstract/Description
-
The digital flexors of horses must produce high force to support the body weight during running, and a need for these muscles to generate power is likely limited during locomotion over level ground. Measurements of power output from horse muscle fibers close to physiological temperatures, and when cyclic strain is imposed, will help to better understand the in vivo performance of the muscles as power absorbers and generators. Skinned fibers from the deep (DDF) and superficial (SDF) digital...
Show moreThe digital flexors of horses must produce high force to support the body weight during running, and a need for these muscles to generate power is likely limited during locomotion over level ground. Measurements of power output from horse muscle fibers close to physiological temperatures, and when cyclic strain is imposed, will help to better understand the in vivo performance of the muscles as power absorbers and generators. Skinned fibers from the deep (DDF) and superficial (SDF) digital flexors, and the soleus (SOL) underwent sinusoidal oscillations in length over a range of frequencies (0.5-16 Hz) and strain amplitudes (0.01-0.06) under maximum activation (pCa 5) at 30°C. Results were analyzed using both workloop and Nyquist plot analyses to determine the ability of the fibers to absorb or generate power and the frequency dependence of those abilities. Power absorption was dominant at most cycling frequencies and strain amplitudes in fibers from all three muscles. However, small amounts of power were generated (0.002-0.05 Wkg(-1)) at 0.01 strain by all three muscles at relatively slow cycling frequencies: DDF (4-7 Hz), SDF (4-5 Hz) and SOL (0.5-1 Hz). Nyquist analysis, reflecting the influence of cross-bridge kinetics on power generation, corroborated these results. The similar capacity for power generation by DDF and SDF versus lower for SOL, and the faster frequency at which this power was realized in DDF and SDF fibers, are largely explained by the fast myosin heavy chain isoform content in each muscle. Contractile function of DDF and SDF as power absorbers and generators, respectively, during locomotion may therefore be more dependent on their fiber architectural arrangement than on the physiological properties of their muscle fibers.
Show less - Date Issued
- 2014-10-07
- Identifier
- FSU_pmch_25293602, 10.14814/phy2.12174, PMC4254099, 25293602, 25293602, 2/10/e12174
- Format
- Citation
- Title
- Eukaryotic Replicative Helicase Subunit Interaction with DNA and Its Role in DNA Replication.
- Creator
-
Martinez, Matthew P, Wacker, Amanda L, Bruck, Irina, Kaplan, Daniel L
- Abstract/Description
-
The replicative helicase unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. In eukaryotes, the replicative helicase is composed of the Cdc45 protein, the heterohexameric ring-shaped Mcm2-7 complex, and the tetrameric GINS complex (CMG). The CMG proteins bind directly to DNA, as demonstrated by experiments with purified proteins. The mechanism and function of these DNA-protein interactions are presently being...
Show moreThe replicative helicase unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. In eukaryotes, the replicative helicase is composed of the Cdc45 protein, the heterohexameric ring-shaped Mcm2-7 complex, and the tetrameric GINS complex (CMG). The CMG proteins bind directly to DNA, as demonstrated by experiments with purified proteins. The mechanism and function of these DNA-protein interactions are presently being investigated, and a number of important discoveries relating to how the helicase proteins interact with DNA have been reported recently. While some of the protein-DNA interactions directly relate to the unwinding function of the enzyme complex, other protein-DNA interactions may be important for minichromosome maintenance (MCM) loading, origin melting or replication stress. This review describes our current understanding of how the eukaryotic replicative helicase subunits interact with DNA structures in vitro, and proposed models for the in vivo functions of replicative helicase-DNA interactions are also described.
Show less - Date Issued
- 2017-04-06
- Identifier
- FSU_pmch_28383499, 10.3390/genes8040117, PMC5406864, 28383499, 28383499, genes8040117
- Format
- Citation
- Title
- Eukaryotic Replicative Helicase Subunit Interaction With Dna And Its Role In Dna Replication.
- Creator
-
Martinez, Matthew P., Wacker, Amanda L., Bruck, Irina, Kaplan, Daniel L.
- Abstract/Description
-
The replicative helicase unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. In eukaryotes, the replicative helicase is composed of the Cdc45 protein, the heterohexameric ring-shaped Mcm2-7 complex, and the tetrameric GINS complex (CMG). The CMG proteins bind directly to DNA, as demonstrated by experiments with purified proteins. The mechanism and function of these DNA-protein interactions are presently being...
Show moreThe replicative helicase unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. In eukaryotes, the replicative helicase is composed of the Cdc45 protein, the heterohexameric ring-shaped Mcm2-7 complex, and the tetrameric GINS complex (CMG). The CMG proteins bind directly to DNA, as demonstrated by experiments with purified proteins. The mechanism and function of these DNA-protein interactions are presently being investigated, and a number of important discoveries relating to how the helicase proteins interact with DNA have been reported recently. While some of the protein-DNA interactions directly relate to the unwinding function of the enzyme complex, other protein-DNA interactions may be important for minichromosome maintenance (MCM) loading, origin melting or replication stress. This review describes our current understanding of how the eukaryotic replicative helicase subunits interact with DNA structures in vitro, and proposed models for the in vivo functions of replicative helicase-DNA interactions are also described.
Show less - Date Issued
- 2017-04
- Identifier
- FSU_libsubv1_wos_000404391700012, 10.3390/genes8040117
- Format
- Citation
- Title
- Female mice and rats exhibit species-specific metabolic and behavioral responses to ovariectomy.
- Creator
-
Witte, Michelina Messina, Resuehr, David, Chandler, Ashley R, Mehle, Ashlee K, Overton, J Michael
- Abstract/Description
-
Ovariectomy (OVX) leads to hyperphagia and weight gain in rats, which can be prevented by estradiol (E2) replacement; however, the role of endogenous E2 on feeding and energy homeostasis in female mice has not been well characterized. The primary goal of this study was to assess the relative contribution of increased energy intake and decreased energy expenditure to OVX-induced weight gain in female rats and mice. OVX led to hyperphagia in rats, but did not produce daily, nor cumulative,...
Show moreOvariectomy (OVX) leads to hyperphagia and weight gain in rats, which can be prevented by estradiol (E2) replacement; however, the role of endogenous E2 on feeding and energy homeostasis in female mice has not been well characterized. The primary goal of this study was to assess the relative contribution of increased energy intake and decreased energy expenditure to OVX-induced weight gain in female rats and mice. OVX led to hyperphagia in rats, but did not produce daily, nor cumulative, hyperphagia in mice. OVX decreased mass-specific metabolic rate in mice, but not in rats. OVX decreased home cage locomotor activity in both species. Pair-feeding attenuated OVX-induced weight gain in rats and produced both short- and long-term changes in expression of key hypothalamic genes involved in food intake and energy homeostasis, i.e., the anorexigenic neuropeptide pro-opiomelanocortin (POMC) and the orexigenic neuropeptides: melanin-concentrating hormone (MCH) and agouti-related peptide (AgRP). No differences in hypothalamic gene expression were observed between OVX'd and sham mice. The results suggest that OVX-induced weight gain is mediated by hyperphagia and reduced locomotor activity in rats, but that in mice, it is primarily mediated by reduced locomotor activity and metabolic rate.
Show less - Date Issued
- 2010-05-01
- Identifier
- FSU_pmch_20067798, 10.1016/j.ygcen.2010.01.006, PMC2856744, 20067798, 20067798, S0016-6480(10)00009-2
- Format
- Citation
- Title
- Global mitotic phosphorylation of C2H2 zinc finger protein linker peptides.
- Creator
-
Rizkallah, Raed, Alexander, Karen E, Hurt, Myra M
- Abstract/Description
-
Cessation of transcriptional activity is a hallmark of cell division. Many biochemical pathways have been shown and proposed over the past few decades to explain the silence of this phase. In particular, many individual transcription factors have been shown to be inactivated by phosphorylation. In this report, we show the simultaneous phosphorylation and mitotic redistribution of a whole class of modified transcription factors. C(2)H(2) zinc finger proteins (ZFPs) represent the largest group...
Show moreCessation of transcriptional activity is a hallmark of cell division. Many biochemical pathways have been shown and proposed over the past few decades to explain the silence of this phase. In particular, many individual transcription factors have been shown to be inactivated by phosphorylation. In this report, we show the simultaneous phosphorylation and mitotic redistribution of a whole class of modified transcription factors. C(2)H(2) zinc finger proteins (ZFPs) represent the largest group of gene expression regulators in the human genome. Despite their diversity, C(2)H(2) ZFPs display striking conservation of small linker peptides joining their adjacent zinc finger modules. These linkers are critical for DNA binding activity. It has been proposed that conserved phosphorylation of these linker peptides could be a common mechanism for the inactivation of the DNA binding activity of C(2)H(2) ZFPs, during mitosis. Using a novel antibody, raised against the phosphorylated form of the most conserved linker peptide sequence, we are able to visualize the massive and simultaneous mitotic phosphorylation of hundreds of these proteins. We show that this wave of phosphorylation is tightly synchronized, starting in mid-prophase right after DNA condensation and before the breakdown of the nuclear envelope. This global phosphorylation is completely reversed in telophase. In addition, the exclusion of the phospho-linker signal from condensed DNA clearly demonstrates a common mechanism for the mitotic inactivation of C(2)H(2) ZFPs.
Show less - Date Issued
- 2011-10-01
- Identifier
- FSU_pmch_21941085, 10.4161/cc.10.19.17619, PMC3233627, 21941085, 21941085, 17619
- Format
- Citation
- Title
- Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels.
- Creator
-
Reddy, I A, Pino, J A, Weikop, P, Osses, N, Sørensen, G, Bering, T, Valle, C, Bluett, R J, Erreger, K, Wortwein, G, Reyes, J G, Graham, D, Stanwood, G D, Hackett, T A, Patel, S,...
Show moreReddy, I A, Pino, J A, Weikop, P, Osses, N, Sørensen, G, Bering, T, Valle, C, Bluett, R J, Erreger, K, Wortwein, G, Reyes, J G, Graham, D, Stanwood, G D, Hackett, T A, Patel, S, Fink-Jensen, A, Torres, G E, Galli, A
Show less - Abstract/Description
-
Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine...
Show moreAgonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA.
Show less - Date Issued
- 2016-05-17
- Identifier
- FSU_pmch_27187231, 10.1038/tp.2016.86, PMC5070047, 27187231, 27187231, tp201686
- Format
- Citation
- Title
- Evolution and design of protein structure by folding nucleus symmetric expansion.
- Creator
-
Longo, Liam, Kumru, Ozan, Middaugh, Russell, Blaber, Michael
- Abstract/Description
-
Models of symmetric protein evolution typically invoke gene duplication and fusion events, in which repetition of a structural motif generates foldable, stable symmetric protein architecture. Success of such evolutionary processes suggests that the duplicated structural motif must be capable of nucleating protein folding. If correct, symmetric expansion of a folding nucleus sequence derived from an extant symmetric fold may be an elegant and computationally tractable solution to de novo...
Show moreModels of symmetric protein evolution typically invoke gene duplication and fusion events, in which repetition of a structural motif generates foldable, stable symmetric protein architecture. Success of such evolutionary processes suggests that the duplicated structural motif must be capable of nucleating protein folding. If correct, symmetric expansion of a folding nucleus sequence derived from an extant symmetric fold may be an elegant and computationally tractable solution to de novo protein design. We report the efficient de novo design of a β-trefoil protein by symmetric expansion of a β-trefoil folding nucleus, previously identified by ɸ-value analysis. The resulting protein, having exact sequence symmetry, exhibits superior folding properties compared to its naturally evolved progenitor--with the potential for redundant folding nuclei. In principle, folding nucleus symmetric expansion can be applied to any given symmetric protein fold (that is, nearly 1/3 of the known proteome) provided information of the folding nucleus is available.
Show less - Date Issued
- 2014-10-07
- Identifier
- FSU_libsubv1_scholarship_submission_1456503265, 10.1016/j.str.2014.08.008
- Format
- Citation
- Title
- Genetic Influences on Pharmacological Interventions in Psoriasis.
- Creator
-
Ahmed, Hana, Yusuf, Nabiha
- Abstract/Description
-
Psoriasis is a common chronic inflammatory disease that affects 2% of the population. Therapeutic intervention for psoriasis mainly targets inflammatory cascade through the use of topical agents, phototherapy, systemic agents and the newer biologic agents. The efficacy of many treatments used in psoriasis varies from patient to patient, and some of this variance in response can presumably be attributed to genetic differences. While current research findings are still limited, the clinical...
Show morePsoriasis is a common chronic inflammatory disease that affects 2% of the population. Therapeutic intervention for psoriasis mainly targets inflammatory cascade through the use of topical agents, phototherapy, systemic agents and the newer biologic agents. The efficacy of many treatments used in psoriasis varies from patient to patient, and some of this variance in response can presumably be attributed to genetic differences. While current research findings are still limited, the clinical utilization of pharmacogenetics allows for tailored treatment plans that have the potential for better response amongst patients as well as conserving expenditures and healthcare resources. In this review, we hope to focus and summarize the conclusions and findings of studies done on the topic of pharmacogenetics in the treatment of psoriasis.
Show less - Date Issued
- 2017-04-24
- Identifier
- FSU_libsubv1_scholarship_submission_1516305863_e8df6723, 10.4172/2155-9554.1000392
- Format
- Citation
- Title
- Enhanced troponin I binding explains the functional changes produced by the hypertrophic cardiomyopathy mutation A8V of cardiac troponin C.
- Creator
-
Zot, Henry G, Hasbun, Javier E, Michell, Clara A, Landim-Vieira, Maicon, Pinto, Jose R
- Abstract/Description
-
Higher affinity for TnI explains how troponin C (TnC) carrying a causative hypertrophic cardiomyopathy mutation, TnC(A8V), sensitizes muscle cells to Ca(2+). Muscle fibers reconstituted with TnC(A8V) require ∼2.3-fold less [Ca(2+)] to achieve 50% maximum-tension compared to fibers reconstituted with wild-type TnC (TnC(WT)). Binding measurements rule out a significant change in N-terminus Ca(2+)-affinity of isolated TnC(A8V), and TnC(A8V) binds the switch-peptide of troponin-I (TnI(sp)) ∼1.6...
Show moreHigher affinity for TnI explains how troponin C (TnC) carrying a causative hypertrophic cardiomyopathy mutation, TnC(A8V), sensitizes muscle cells to Ca(2+). Muscle fibers reconstituted with TnC(A8V) require ∼2.3-fold less [Ca(2+)] to achieve 50% maximum-tension compared to fibers reconstituted with wild-type TnC (TnC(WT)). Binding measurements rule out a significant change in N-terminus Ca(2+)-affinity of isolated TnC(A8V), and TnC(A8V) binds the switch-peptide of troponin-I (TnI(sp)) ∼1.6-fold more strongly than TnC(WT); thus we model the TnC-TnI(sp) interaction as competing with the TnI-actin interaction. Tension data are well-fit by a model constrained to conditions in which the affinity of TnC(A8V) for TnI(sp) is 1.5-1.7-fold higher than that of TnC(WT) at all [Ca(2+)]. Mean ATPase rates of reconstituted cardiac myofibrils is greater for TnC(A8V) than TnC(WT) at all [Ca(2+)], with statistically significant differences in the means at higher [Ca(2+)]. To probe TnC-TnI interaction in low Ca(2+), displacement of bis-ANS from TnI was monitored as a function of TnC. Whereas Ca(2+)-TnC(WT) displaces significantly more bis-ANS than Mg(2+)-TnC(WT), Ca(2+)-TnC(A8V) displaces probe equivalently to Mg(2+)-TnC(A8V) and Ca(2+)-TnC(WT), consistent with stronger Ca(2+)-independent TnC(A8V)-TnI(sp). A Matlab program for computing theoretical activation is reported. Our work suggests that contractility is constantly above normal in hearts made hypertrophic by TnC(A8V).
Show less - Date Issued
- 2016-07-01
- Identifier
- FSU_pmch_26976709, 10.1016/j.abb.2016.03.011, PMC4899184, 26976709, 26976709, S0003-9861(16)30063-7
- Format
- Citation
- Title
- ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles..
- Creator
-
Rider, Mark A, Hurwitz, Stephanie N, Meckes, David G
- Abstract/Description
-
Initially thought to be a means for cells to eliminate waste, secreted extracellular vesicles, known as exosomes, are now understood to mediate numerous healthy and pathological processes. Though abundant in biological fluids, purifying exosomes has been challenging because their biophysical properties overlap with other secreted cell products. Easy-to-use commercial kits for harvesting exosomes are now widely used, but the relative low-purity and high-cost of the preparations restricts their...
Show moreInitially thought to be a means for cells to eliminate waste, secreted extracellular vesicles, known as exosomes, are now understood to mediate numerous healthy and pathological processes. Though abundant in biological fluids, purifying exosomes has been challenging because their biophysical properties overlap with other secreted cell products. Easy-to-use commercial kits for harvesting exosomes are now widely used, but the relative low-purity and high-cost of the preparations restricts their utility. Here we describe a method for purifying exosomes and other extracellular vesicles by adapting methods for isolating viruses using polyethylene glycol. This technique, called ExtraPEG, enriches exosomes from large volumes of media rapidly and inexpensively using low-speed centrifugation, followed by a single small-volume ultracentrifugation purification step. Total protein and RNA harvested from vesicles is sufficient in quantity and quality for proteomics and sequencing analyses, demonstrating the utility of this method for biomarker discovery and diagnostics. Additionally, confocal microscopy studies suggest that the biological activity of vesicles is not impaired. The ExtraPEG method can be easily adapted to enrich for different vesicle populations, or as an efficient precursor to subsequent purification techniques, providing a means to harvest exosomes from many different biological fluids and for a wide variety of purposes.
Show less - Date Issued
- 2016-04-12
- Identifier
- FSU_pmch_27068479, 10.1038/srep23978, PMC4828635, 27068479, 27068479, srep23978
- Format
- Citation