Current Search: Citation (x) » Pramudya, Yohanes (x)
Search results
- Title
- Design Principles for High H2 Storage Using Chelation of Abundant Transition Metals in Covalent Organic Frameworks for 0-700 bar at 298 K.
- Creator
-
Mendoza-Cortes, Jose L, Pramudya, Yohanes
- Abstract/Description
-
Physisorption is an effective route to meet hydrogen gas (H2) storage and delivery requirements for transportation because it is fast and fully reversible under mild conditions. However, most current candidates have too small binding enthalpies to H2 which leads to volumetric capacity less than 10 g/L compared to that of the system target of 40 g/L at 298 K. Accurate quantum mechanical (QM) methods were used to determine the H2 binding enthalpy of 5 linkers which were chelated with 11...
Show morePhysisorption is an effective route to meet hydrogen gas (H2) storage and delivery requirements for transportation because it is fast and fully reversible under mild conditions. However, most current candidates have too small binding enthalpies to H2 which leads to volumetric capacity less than 10 g/L compared to that of the system target of 40 g/L at 298 K. Accurate quantum mechanical (QM) methods were used to determine the H2 binding enthalpy of 5 linkers which were chelated with 11 different transition metals (Tm), including abundant first-row Tm (Sc through Cu), totaling 60 molecular compounds with more than 4 configurations related to the different number of H2 that interact with the molecular compound. It was found that first-row Tm gave similar and sometimes superior van der Waals interactions with H2 than precious Tm. Based on these linkers, 30 new covalent organic frameworks (COFs) were constructed. The H2 uptakes of these new COFs were determined using quantum mechanics (QM)-based force fields and grand canonical Monte Carlo (GCMC) simulations. For the first time, the range for the adsorption pressure was explored for 0–700 bar and 298 K. It was determined that Co-, Ni-, and Fe-based COFs can give high H2 uptake and delivery when compared to bulk H2 on this unexplored range of pressure.
Show less - Date Issued
- 2016-10-28
- Identifier
- FSU_libsubv1_scholarship_submission_1480625626-p, 10.1021/jacs.6b08803
- Format
- Citation
- Title
- Design Principles for High H2 Storage Using Chelation of Abundant Transition Metals in Covalent Organic Frameworks for 0-700 bar at 298 K (Supplemental Information).
- Creator
-
Mendoza-Cortez, Jose L, Pramudya, Yohanes
- Abstract/Description
-
Physisorption is an effective route to meet hydrogen gas (H2) storage and delivery requirements for transportation because it is fast and fully reversible under mild conditions. However, most current candidates have too small binding enthalpies to H2 which leads to volumetric capacity less than 10 g/L compared to that of the system target of 40 g/L at 298 K. Accurate quantum mechanical (QM) methods were used to determine the H2 binding enthalpy of 5 linkers which were chelated with 11...
Show morePhysisorption is an effective route to meet hydrogen gas (H2) storage and delivery requirements for transportation because it is fast and fully reversible under mild conditions. However, most current candidates have too small binding enthalpies to H2 which leads to volumetric capacity less than 10 g/L compared to that of the system target of 40 g/L at 298 K. Accurate quantum mechanical (QM) methods were used to determine the H2 binding enthalpy of 5 linkers which were chelated with 11 different transition metals (Tm), including abundant first-row Tm (Sc through Cu), totaling 60 molecular compounds with more than 4 configurations related to the different number of H2 that interact with the molecular compound. It was found that first-row Tm gave similar and sometimes superior van der Waals interactions with H2 than precious Tm. Based on these linkers, 30 new covalent organic frameworks (COFs) were constructed. The H2 uptakes of these new COFs were determined using quantum mechanics (QM)-based force fields and grand canonical Monte Carlo (GCMC) simulations. For the first time, the range for the adsorption pressure was explored for 0–700 bar and 298 K. It was determined that Co-, Ni-, and Fe-based COFs can give high H2 uptake and delivery when compared to bulk H2 on this unexplored range of pressure.
Show less - Date Issued
- 2016-10-28
- Identifier
- FSU_libsubv1_scholarship_submission_1480625626-1, 10.1021/jacs.6b08803
- Format
- Citation
- Title
- Design Principles for High H2 Storage Using Chelation of Abundant Transition Metals in Covalent Organic Frameworks for 0-700 bar at 298K.
- Creator
-
Mendoza-Cortes, Jose, Pramudya, Yohanes
- Abstract/Description
-
Physisorption is an effective route to meet hydrogen gas (H2) storage and delivery requirements for transportation because it is fast and fully reversible under mild conditions. However, most current candidates have too small binding enthalpies to H2 which leads to volumetric capacity less than 10 g/L compared to that of the system target of 40 g/L at 298 K. Accurate quantum mechanical (QM) methods were used to determine the H2 binding enthalpy of 5 linkers which were chelated with 11...
Show morePhysisorption is an effective route to meet hydrogen gas (H2) storage and delivery requirements for transportation because it is fast and fully reversible under mild conditions. However, most current candidates have too small binding enthalpies to H2 which leads to volumetric capacity less than 10 g/L compared to that of the system target of 40 g/L at 298 K. Accurate quantum mechanical (QM) methods were used to determine the H2 binding enthalpy of 5 linkers which were chelated with 11 different transition metals (Tm), including abundant first-row Tm (Sc through Cu), totaling 60 molecular compounds with more than 4 configurations related to the different number of H2 that interact with the molecular compound. It was found that first-row Tm gave similar and sometimes superior van der Waals interactions with H2 than precious Tm. Based on these linkers, 30 new covalent organic frameworks (COFs) were constructed. The H2 uptakes of these new COFs were determined using quantum mechanics (QM)-based force fields and grand canonical Monte Carlo (GCMC) simulations. For the first time, the range for the adsorption pressure was explored for 0–700 bar and 298 K. It was determined that Co-, Ni-, and Fe-based COFs can give high H2 uptake and delivery when compared to bulk H2 on this unexplored range of pressure.
Show less - Date Issued
- 2016-10-28
- Identifier
- FSU_libsubv1_scholarship_submission_1481210857, 10.1021/jacs.6b08803
- Format
- Citation
- Title
- Charge avalanches and depinning in the Coulomb glass: The role of long-range interactions.
- Creator
-
Andresen, Juan Carlos, Pramudya, Yohanes, Katzgraber, Helmut G., Thomas, Creighton K., Zimanyi, Gergely T., Dobrosavljevic, V.
- Abstract/Description
-
We explore the stability of far-from-equilibrium metastable states of a three-dimensional Coulomb glass at zero temperature by studying charge avalanches triggered by a slowly varying external electric field. Surprisingly, we identify a sharply defined dynamical ("depinning") phase transition from stationary to nonstationary charge displacement at a critical value of the external electric field. Using particle-conserving dynamics, scale-free system-spanning avalanches are observed only at the...
Show moreWe explore the stability of far-from-equilibrium metastable states of a three-dimensional Coulomb glass at zero temperature by studying charge avalanches triggered by a slowly varying external electric field. Surprisingly, we identify a sharply defined dynamical ("depinning") phase transition from stationary to nonstationary charge displacement at a critical value of the external electric field. Using particle-conserving dynamics, scale-free system-spanning avalanches are observed only at the critical field. We show that the qualitative features of this depinning transition are completely different for an equivalent short-range model, highlighting the key importance of long-range interactions for nonequilibrium dynamics of Coulomb glasses.
Show less - Date Issued
- 2016-03-24
- Identifier
- FSU_libsubv1_wos_000372712000002, 10.1103/PhysRevB.93.094429
- Format
- Citation