Current Search: Department of Mathematics (x) » Theses and Dissertations (x) » Peterson, Janet (x) » Wang, Xiaoqiang (x)
Search results
- Title
- Analysis of Two Partial Differential Equation Models in Fluid Mechanics: Nonlinear Spectral Eddy-Viscosity Model of Turbulence and Infinite-Prandtl-Number Model of Mantle Convection.
- Creator
-
Saka, Yuki, Gunzburger, Max D., Wang, Xiaoming, El-Azab, Anter, Peterson, Janet, Wang, Xiaoqiang, Department of Mathematics, Florida State University
- Abstract/Description
-
This thesis presents two problems in the mathematical and numerical analysis of partial differential equations modeling fluids. The first is related to modeling of turbulence phenomena. One of the objectives in simulating turbulence is to capture the large scale structures in the flow without explicitly resolving the small scales numerically. This is generally accomplished by adding regularization terms to the Navier-Stokes equations. In this thesis, we examine the spectral viscosity models...
Show moreThis thesis presents two problems in the mathematical and numerical analysis of partial differential equations modeling fluids. The first is related to modeling of turbulence phenomena. One of the objectives in simulating turbulence is to capture the large scale structures in the flow without explicitly resolving the small scales numerically. This is generally accomplished by adding regularization terms to the Navier-Stokes equations. In this thesis, we examine the spectral viscosity models in which only the high-frequency spectral modes are regularized. The objective is to retain the large-scale dynamics while modeling the turbulent fluctuations accurately. The spectral regularization introduces a host of parameters to the model. In this thesis, we rigorously justify effective choices of parameters. The other problem is related to modeling of the mantle flow in the Earth's interior. We study a model equation derived from the Boussinesq equation where the Prandtl number is taken to infinity. This essentially models the flow under the assumption of a large viscosity limit. The novelty in our problem formulation is that the viscosity depends on the temperature field, which makes the mathematical analysis non-trivial. Compared to the constant viscosity case, variable viscosity introduces a second-order nonlinearity which makes the mathematical question of well-posedness more challenging. Here, we prove this using tools from the regularity theory of parabolic partial differential equations.
Show less - Date Issued
- 2007
- Identifier
- FSU_migr_etd-2108
- Format
- Thesis
- Title
- Anova for Parameter Dependent Nonlinear PDEs and Numerical Methods for the Stochastic Stokes Equations.
- Creator
-
Chen, Zheng, Gunzburger, Max, Huffer, Fred, Peterson, Janet, Wang, Xiaoqiang, Department of Mathematics, Florida State University
- Abstract/Description
-
This dissertation includes the application of analysis-of-variance (ANOVA) expansions to analyze solutions of parameter dependent partial differential equations and the analysis and finite element approximations of the Stokes equations with stochastic forcing terms. In the first part of the dissertation, the impact of parameter dependent boundary conditions on the solutions of a class of nonlinear PDEs is considered. Based on the ANOVA expansions of functionals of the solutions, the effects...
Show moreThis dissertation includes the application of analysis-of-variance (ANOVA) expansions to analyze solutions of parameter dependent partial differential equations and the analysis and finite element approximations of the Stokes equations with stochastic forcing terms. In the first part of the dissertation, the impact of parameter dependent boundary conditions on the solutions of a class of nonlinear PDEs is considered. Based on the ANOVA expansions of functionals of the solutions, the effects of different parameter sampling methods on the accuracy of surrogate optimization approaches to PDE constrained optimization is considered. The effects of the smoothness of the functional and the nonlinearity in the PDE on the decay of the higher-order ANOVA terms are studied. The concept of effective dimensions is used to determine the accuracy of the ANOVA expansions. Demonstrations are given to show that whenever truncated ANOVA expansions of functionals provide accurate approximations, optimizers found through a simple surrogate optimization strategy are also relatively accurate. The effects of several parameter sampling strategies on the accuracy of the surrogate optimization method are also considered; it is found that for this sparse sampling application, the Latin hypercube sampling method has advantages over other well-known sampling methods. Although most of the results are presented and discussed in the context of surrogate optimization problems, they also apply to other settings such as stochastic ensemble methods and reduced-order modeling for nonlinear PDEs. In the second part of the dissertation, we study the numerical analysis of the Stokes equations driven by a stochastic process. The random processes we use are white noise, colored noise and the homogeneous Gaussian process. When the process is white noise, we deal with the singularity of matrix Green's functions in the form of mild solutions with the aid of the theory of distributions. We develop finite element methods to solve the stochastic Stokes equations. In the 2D and 3D cases, we derive error estimates for the approximate solutions. The results of numerical experiments are provided in the 2D case that demonstrate the algorithm and convergence rates. On the other hand, the singularity of the matrix Green's functions necessitates the use of the homogeneous Gaussian process. In the framework of theory of abstract Wiener spaces, the stochastic integrals with respect to the homogeneous Gaussian process can be defined on a larger space than L2 . With some conditions on the density function in the definition of the homogeneous Gaussian process, the matrix Green's functions have well defined integrals. We have studied the probability properties of this kind of integral and simulated discretized colored noise.
Show less - Date Issued
- 2007
- Identifier
- FSU_migr_etd-3851
- Format
- Thesis
- Title
- Centroidal Voronoi Tessellations for Mesh Generation: from Uniform to Anisotropic Adaptive Triangulations.
- Creator
-
Nguyen, Hoa V., Gunzburger, Max D., El-Azab, Anter, Peterson, Janet, Wang, Xiaoming, Wang, Xiaoqiang, Department of Mathematics, Florida State University
- Abstract/Description
-
Mesh generation in regions in Euclidean space is a central task in computational science, especially for commonly used numerical methods for the solution of partial differential equations (PDEs), e.g., finite element and finite volume methods. Mesh generation can be classified into several categories depending on the element sizes (uniform or non-uniform) and shapes (isotropic or anisotropic). Uniform meshes have been well studied and still find application in a wide variety of problems....
Show moreMesh generation in regions in Euclidean space is a central task in computational science, especially for commonly used numerical methods for the solution of partial differential equations (PDEs), e.g., finite element and finite volume methods. Mesh generation can be classified into several categories depending on the element sizes (uniform or non-uniform) and shapes (isotropic or anisotropic). Uniform meshes have been well studied and still find application in a wide variety of problems. However, when solving certain types of partial differential equations for which the solution variations are large in some regions of the domain, non-uniform meshes result in more efficient calculations. If the solution changes more rapidly in one direction than in others, non-uniform anisotropic meshes are preferred. In this work, first we present an algorithm to construct uniform isotropic meshes and discuss several mesh quality measures. Secondly we construct an adaptive method which produces non-uniform anisotropic meshes that are well suited for numerically solving PDEs such as the convection diffusion equation. For the uniform Delaunay triangulation of planar regions, we focus on how one selects the positions of the vertices of the triangulation. We discuss a recently developed method, based on the centroidal Voronoi tessellation (CVT) concept, for effecting such triangulations and present two algorithms, including one new one, for CVT-based grid generation. We also compare several methods, including CVT-based methods, for triangulating planar domains. Furthermore, we define several quantitative measures of the quality of uniform grids. We then generate triangulations of several planar regions, including some having complexities that are representative of what one may encounter in practice. We subject the resulting grids to visual and quantitative comparisons and conclude that all the methods considered produce high-quality uniform isotropic grids and that the CVT-based grids are at least as good as any of the others. For more general grid generation settings, e.g., non-uniform and/or anistropic grids, such quantitative comparisons are much more difficult, if not impossible, to either make or interpret. This motivates us to develop CVT-based adaptive non-uniform anisotropic mesh refinement in the context of solving the convection-diffusion equation with emphasis on convection-dominated problems. The challenge in the numerical approximation of this equation is due to large variations in the solution over small regions of the physical domain. Our method not only refines the underlying grid at these regions but also stretches the elements according to the solution variation. Three main ingredients are incorporated to improve the accuracy of numerical solutions and increase the algorithm's robustness and efficiency. First, a streamline upwind Petrov Galerkin method is used to produce a stabilized solution. Second, an adapted metric tensor is computed from the approximate solution. Third, optimized anisotropic meshes are generated from the computed metric tensor. Our algorithm has been tested on a variety of 2-dimensional examples. It is robust in detecting layers and efficient in resolving non-physical oscillations in the numerical approximation.
Show less - Date Issued
- 2008
- Identifier
- FSU_migr_etd-2616
- Format
- Thesis