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1 Review of Screening Methods

In this section we give an overview of some of the existing screening (filter) methods for
classification and regression, which will be evaluated in our experiments.

1.1 List of Symbols

The following short list of symbols are used throughout the document.

n the number of observations
p the number of variables
k the number of true features
S = {(xi, yi) ∈ Rp × R, i = 1, ..., n} the data space
X the n× p data matrix
Xj , j = 1, ..., p the j-th column/feature of X
xi, i = 1, ..., n the i-th observation of X
xij , i = 1, ..., nj = 1, ..., p the j-th column/feature of the i-th observation of X
y the n× 1 target vector
yi, i = 1, ..., n the j-th target value

1.2 Screening Methods for Classification

1.2.1 Mutual Information

The mutual information (a.k.a. information gain) method measures the information
shared by two variables of interest, in this case, a feature Xj and the class label y. The
mutual information between variable A, where SA = {A ∈ R} and variable Y , where
SY = {Y ∈ R} can be described as:

I(A, Y ) =

∫
SA

∫
SY

p(A, Y ) log
p(A, Y )

p(A)p(Y )
dAdY (1)

where p(A, Y ) is the joint probability density of A and Y , while p(A) and p(Y ) are the
marginal p.d.f.s of A and Y .

In practice, given a sample dataset, each feature can be discretized into bins based
on the value range. Here, b = 1, 2, ..., B indicates bin number, c = 1, 2, ..., C indicates
class number. Therefore mutual information between label vector y and feature vector
Xj can also be described as:

I(Xj ,y) =

B∑
b=1

C∑
c=1

p(Xjb,yc) log
p(Xjb,yc)

p(Xjb)p(yc)
(2)

where p(Xjb,yc) is the joint probability of bin Xjb and label vector yc, while p(Xjb)
and p(yc) are the marginal probabilities. Features that are more related to the
classification label tend to have higher mutual information.
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1.2.2 Relief and ReliefF

The idea of the Relief algorithm is to measure how well a feature’s values can distinguish
instances that are near each other. For the i-th instance-label pair (xi, yi), denote its
nearest instance neighbor from the same class as the nearest hit (xhiti , yi), and its
nearest instance neighbor from a different class as the nearest miss (xmissi , ymissi ). The
distance between two instances xi,xj is calculated using the Euclidean norm ‖xi − xj‖.
Then the Relief measure for a certain feature F can be computed as:

Reliefj =
1

n

n∑
i=1

[diff(F : xi, x
miss
i )− diff(F : xi, x

hit
i )] (3)

where the function diff(F : x, y) calculates the difference between the values of feature
F for two instances. For discrete features diff(F : x, y) is defined as:

diff(F : x, y) =

{
0; if x = y

1; otherwise
(4)

and for a continuous feature Xj as:

diff(F : x, y) =
|x− y|

max(F )−min(F )
(5)

The Relief measure can also be extended to a multi-class version ReliefF, but we are
only interested in binary classification in this paper. In summary, higher Relief values
indicate better discrimination power of the label by the feature values.

1.2.3 Minimum Redundancy Maximum Relevance

The minimum redundancy maximum relevance (MRMR) method is set to choose the
feature that has the highest mutual information difference (MID) or mutual information
quotient (MIQ). The MID and MIQ are calculated as :

MIDj = I(Xj ,y)−
1

|Q|
∑
q∈Q

I(Xj , Xq) (6)

MIQj =
I(Xj ,y)

1
|Q|
∑
q∈Q I(Xj , Xq)

(7)

where Q is the set of features already selected, I(Xj ,y) is the mutual information for
j-th feature and the label vector y, and I(Xj , Xq) denotes the mutual information
between features j and q.

In the case where the features take continuous values, MIQ and MID can be
modified as the F-test correlation difference (FCD) and F-test correlation quotient
(FCQ). FCD and FCQ are computed as:

FCDj = F (Xj ,y)−
1

|Q|
∑
q∈Q
|c(Xj , Xq)| (8)
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FCQj =
F (Xj ,y)

1
|Q|
∑
q∈Q |c(Xj , Xq)|

(9)

where F (Xj ,y) is the F-statistic for j-th feature and label vector y, and |c(Xj , Xq)|
denotes the absolute correlation coefficient between features j and q. In the case of
binary labels the F-statistic can be replaced by the T-statistic.

1.2.4 T-Score

The T-score method is a feature screening method applied on datasets with binary
labels. The method is based on the calculation of the t-statistic. The basic idea is to
divide each feature’s values into two sample groups based on their labels. Then the
t-statistic is calculated to examine if the two sample groups have statistically significant
differences in their means. For each feature Xj , the values of Xj are divided into two
groups based on their labels. Then the means µ1 and µ2 are calculated as the means of
the two groups and σ1 and σ2 are standard deviations of these two groups respectively.
Let n1 and n2 be the number of instances of the two groups. Then the t-statistic for
feature i can be calculated as:

Tj =
|µ1 − µ2|√
σ2
1

n1
+

σ2
2

n2

(10)

Generally speaking, the higher the t-statistic, the more separated the two labels are by
values of that feature and therefore the more relevant that feature is for classification.

1.2.5 Chi-square Score

The chi-square score method is based on the chi-square statistic. It can test the
independence between two variables, therefore it can also test the relevance of a variable
Xj for the label vector y. If feature Xj has L levels (discretized if necessary) and y has
C = 2 levels (label categories), let nlc denote the number of instances with label c and
level l for feature j. Let n̂lc denote the estimated number of instances with label c and
having level l, n̂lc =

nlnc

n , where n is the total number of instances, nl is the number of
instances having level l, and nc is the number of instances with label c. The chi-square
statistic is then computed as:

χ2
j =

L∑
l=1

C∑
c=1

(nlc − n̂lc)2

n̂lc
(11)

Usually, a higher chi-square statistic indicates low independence, in other word, a higher
relevance between that feature and label.

1.2.6 Gini Index

The Gini index method is based on the Gini impurity after splitting a sample set. For a
given feature Xj , let Ah = {i, xij ≤ h} denote the instances whose values of the j−th
feature is smaller than or equal to h and Bh = {i, xij > h}. The Gini impurity for
subset Ah or Bh can be expressed as:

Gini(Ah) = 1−
C∑
c=1

P (Cc|Ah)2 (12)
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where C is the number of labels and c ∈ {1, 2, ..., C} are the label categories. P (Cc|Ah)
is the conditional probability of instances having label c given that they are in subset
Ah. Let ac denote the number of instances in Ah with label c. Let ah denote the
number of instances in Ah. Then P (Cc|Ah) can be calculated as ac/ah.

Based on these notations, the Gini index after splitting is:

Ginisplit = P (Ah)Gini(Ah) + P (Bh)Gini(Bh) (13)

where P(Ah) is the number of instances in subset Ah divided by the number of total
instances. Therefore for each feature, the Gini index can be calculated as:

Ginij = P (Ah)(1−
C∑
c=1

P (Cc|Ah)2) + P (Bh)(1−
C∑
c=1

P (Cc|Bh)2) (14)

Basically, the Gini index measures the frequency that a randomly chosen instance from
the sample set would be incorrectly labeled. So for all possible thresholds h of one
feature, select the minimum Gini index as this feature’s Gini index. Features with
smaller Gini index are preferred.

1.2.7 Fisher Score

The idea of the Fisher score is to choose the feature subset, for which the observations
have the largest possible between class distances and the smallest possible within class
distances. This would be the feature subset that has the largest Fisher score. The
Fisher score for any feature set is computed as:

Fisher = Tr(Db)(Dt + γI)−1 (15)

where γ is a regularization term, Db is called between-class scatter matrix, Dt is called
total scatter matrix. Since for a certain feature subset with size d, there are

(
m
d

)
combinations of Fisher scores to be calculated, this is too computationally expensive.
For this reason, a heuristic is to compute the scores for each feature with respect to the
Fisher score criterion. The individual Fisher score is computed as:

Fisherj =

∑C
c=1 nc(µc − µ)2∑C

c=1 ncσ
2
c

(16)

where µ and σ are mean and standard deviation of that feature, and µc is the mean of
the feature values for observations with label c and nc is the number of instances with
label c. Features with larger Fisher scores are preferred.

1.3 Screening Methods for Regression

1.3.1 Correlation

The correlation feature screening method is based on the calculation of correlation
coefficient between response and features. It is evaluated as following:

ρj =
cov(Xj ,y)

σyσXj

(17)
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where Xj is j−th feature, y is response. Features with larger correlation coefficient are
preferred.

1.3.2 Mutual Information

To apply mutual information for regression data, we discretize both the feature and the
response into a numbers of bins. For feature Xj and response y, let xjb and yl indicate
values falling in b-th and l-th bins respectively. The mutual information for the j-th
feature is computed as:

I(Xj , Y ) =

B∑
b=1

L∑
l=1

P (xjb, yl) log
P (xjb, yl)

P (xjb)P (yl)
(18)

Let n denote the number of instances. Then P (xjb, yl) can be estimated by Njbl/n,
where Njkl is the number of instances falling into feature bin b and response bin l. Also,
P (xjb) can be estimated by Njb/n, where Njb is the number of instances lay in feature
bin b, and P (yl) can be estimated by Nl/n, where Nl is the number of instances lay in
response bin l. Features with larger mutual information have more influence on the
response.

1.3.3 RReliefF

RReliefF is a regression version of Relief. It starts from the original weight function.
For feature A the function can be expressed as:

W (A) = P (different value of A|nearest instance from different class)

−P (different value of A|nearest instance from the same class)
(19)

Denote

PdiffA = P (different value of A|nearest instances)
PdiffP = P (different response|nearest instances)

PdiffP |diffA = P (different response|different value of A and nearest instances).

(20)

Then from (19), using Bayes’ rule:

W (A) =
PdiffP |diffAPdiffA

PdiffP
−

(1− PdiffP |diffA)PdiffA
1− PdiffP

, (21)

which can be further modified as:

W (A) =
NdP&dA

NdP
− (NdA −NdP&dA)

m−NdP
(22)

where NdA, NdP and NdP&dA denote different feature value, different response value
and different feature & response value respectively. Denote for instance xi its k-nearest
instances as uij , j ∈ {1, ..., k}. Then the expressions for NdA, NdP and NdP&dA are:

NdA =

n∑
i=1

k∑
j=1

diff(A : xi,uij)d(i, j)

NdP =

n∑
i=1

k∑
j=1

diff(y : xi,uij)d(i, j)

NdP&dA =

n∑
i=1

k∑
j=1

diff(y : xi,uij) diff(A : xi,uij)d(i, j)

(23)
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Where diff(F, x, y) is defined in Eq. (4) and (5) and d(i, j) is used to take account the
distance between xi and uj :

d(i, j) =
d1(i, j)∑k
l=1 d1(i, l)

(24)

and
d1(i, j) = exp(−rank2(xi,uij)/σ2) (25)

where rank(xi,uij) is the rank of the instance uij in a sequence of instances ordered by
the distance from xi, and σ is a user defined parameter. d1(i, j) is calculated in an
exponentially decreasing fashion with the idea that further instances should have lesser
influence. Usually, d1(i, j) takes value 1/k. Features with larger W (·) are preferred.

1.4 Feature Selection With Annealing (FSA)

Feature Selection With Annealing (a.k.a. FSA) is a recent embedded method for feature
selection that can handle high dimensional data. FSA can bring the relevant feature
space down to an acceptable level using an variable removal schedule and obtain a
rather accurate and stable model. The basic algorithm of FSA is:

Algorithm 1 Feature Selection with Annealing (FSA)

Input: Training samples (xi, yi)∈Rp × R, i=1, 2, ..., N .
Output: Trained model parameter vector β.

1: Initialize β.
2: for e=1 to N iter do
3: Update β ← β − η ∂L(β)

∂β

4: Keep the Me features with highest |βj | and renumber them 1, ..., Me.
5: end for

The value of N iter in step 2 is the total number of iterations. The formula in step 3
uses a typical gradient descent or an epoch of stochastic gradient descent with
momentum and minibatch towards minimizing the loss L(β). The Me in step 4 is the
annealing schedule which gradually decreases with the iteration number e. It decides
how many features to keep in each iteration. Let k be a user defined parameter
controlling how many features to keep in the end. The Me can be computed as:

Me = k + (p− k)max(0,
N iter − 2e

2eµ+N iter
), e = 1, ..., N iter (26)

where p is the feature dimension of the original input data and µ is the annealing
parameter which can be tuned using cross validation. FSA has good computational
efficiency and theoretical guarantees of consistency. The user defined parameter k
denoting how many features to select is more intuitive than the penalty parameter in
the penalized methods (e.g. L1 penalized regression) and makes the procedure more
controllable.

2 Learning algorithm hyper-parameters

Some learning algorithms such as FSA and boosted trees have their performance highly
dependent on the values of the hyper-parameters. To avoid any confounding effect of
the method for selecting these parameters (e.g. by cross-validation or AIC/BIC), these
learning algorithms were run on a discrete set of combinations on a single
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training/validation split of the data, and the parameter combination that obtained the
best validation result was used in the entire experiment. The values that were used are
given in Tables 1 and 2. The other learning algorithms were built-in Matlab and we
used the default values for all parameters.

Table 1. Selected parameter values for FSA.

Parameters BMI Tumor CoEPrA2006 Indoorloc Wikiface

learning rate η 0.00001 0.000003 0.0001 0.00001 0.00005
number of epochs N iter 150 50 100 250 450
annealing parameter µ 800 30 650 200 250
minibatch size 285 250 15 30 150
shrinkage parameter 0.0001 0.001 0.9 0.0001 0.001

Parameters Gisette Dexter Madelon SMK CAN 187 GLI 85

learning rate η 0.0001 0.000001 0.0005 0.01 0.1
number of epochs N iter 60 300 10 500 800
annealing parameter µ 600 100 40 280 100
minibatch size 20 30 145 145 100
shrinkage parameter 0 0 0.00001 0.001 0.005

Table 2. Selected parameter values for boosted trees.

Parameters BMI Tumor CoEPrA2006 Indoorloc Wikiface

max number of splits 1 1 1 8 1
boosting iterations 100 10 10 500 400

Parameters Gisette Dexter Madelon SMK CAN 187 GLI 85

max number of splits 4 4 26 1 2
boosting iterations 400 400 1900 500 200

3 Table of groups

In this section we present the summary of the performance of each screening
method-learning algorithm combination and their division into groups such that the
difference between the best method and the worst method in each group is not
significant at the 0.05 level.

In Table 3 are shown the groups, the mean R2 of test data and standard error of
mean estimation obtained over all the runs for the BMI dataset. Also shown are the
number of features ω selected by the screening method and the number of features κ
selected by the learning algorithm where the average R2 is maximum. From Table 3 we
see that the best learner is FSA and that the FSA results with and without screening
methods belong to the same group indicating that the screening methods don’t improve
the performance of FSA significantly. For ridge regression, the performance of RReliefF
and Mutual information belongs to a group higher than ridge regression without
screening. For boosted regression trees, the screening methods do provide a significant
improvement. We can also see that the number of features selected by FSA is smaller
than the number of features selected by the screening methods. So for FSA, the features
selected by screening methods can still be reduced in order to get the best result.

The same types of results are shown in Table 4 for the tumor dataset. Again, the
best results are obtained with FSA and the FSA results without screening methods
belong to the first group. So screening methods do not improve the performance of FSA
in this case either. For ridge regression and boosted regression trees, the results with
screening methods belong to higher tier groups than results without screening method,
which means the screening methods help those two learners. Also for FSA, the number
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Table 3. Table of groups, BMI dataset. SE is the standard error of mean estimation, ω
is the number of features selected by the screening method, κ is the number of features
selected by FSA.

Group Screening Methods Learner Mean SE ω κ

A RReliefF FSA 0.7632 0.0006 1758 692
A — FSA 0.7607 0.0005 — 839
A Mutual Information FSA 0.7606 0.0006 3537 1550
A Correlation FSA 0.7590 0.0006 5856 1354
B Correlation Ridge 0.7238 0.0008 5140 —
B C RReliefF Ridge 0.7172 0.0005 6230 —
D C Mutual Information Ridge 0.7078 0.0009 6230 —
D — Ridge 0.7073 0.0004 — —
E Mutual Information Boosted Reg. Trees 0.5198 0.0020 13 —
E RReliefF Boosted Reg. Trees 0.5157 0.0027 13 —
E Correlation Boosted Reg. Trees 0.4932 0.0018 13 —
F — Boosted Reg. Trees 0.2520 0.0043 — —

Table 4. Table of groups, Tumor dataset. SE is the standard error of mean estimation,
ω is the number of features selected by the screening method, κ is the number of
features selected by FSA.

Group Screening Methods Learner Mean SE ω κ

A — FSA 0.3473 0.0001 — 558
A B RReliefF FSA 0.3472 0.0001 6230 2210
C B Correlation FSA 0.3427 0.0001 6230 1550
C Mutual Information FSA 0.3404 0.0001 6230 1758
D Mutual Information Ridge 0.2949 0.0001 13 —
D Correlation Ridge 0.2925 < 0.0001 13 —
D E Correlation Boosted Reg. Trees 0.2855 0.0004 13 —
D E Mutual Information Boosted Reg. Trees 0.2840 0.0005 13 —

E RReliefF Ridge 0.2831 0.0001 13 —
E RReliefF Boosted Reg. Trees 0.2738 0.0003 93 —

F — Boosted Reg. Trees 0.2272 0.0003 — —
F — Ridge 0.2153 0.0003 — —

features selected by screening methods is further reduced in order to get the maximum
result.

In Table 5 are shown the results for the CoEPrA2006 3 dataset. Again the FSA
without screening is in the top group. The results with screening methods for Ridge
regression belong to higher tier groups than without screening. The results of boosted
regression trees with or without screening belong to the same group. So in this case, the
screening methods only improve the performance of ridge regression.

In Table 6 are shown the results for the Indoorloc dataset. Here we see that two
results with screening methods for Boosted Trees belong to higher tier group than
without screening. There are no screening methods that give higher tier results than no
screening for FSA and ridge regression.

In Table 7 are shown the results for the Wikiface dataset. All screening methods
applied to ridge regression belong to higher tier groups than ridge regression without
screening, whereas only the correlation method on boosted trees shows improvement for
the other two learners.

In Table 8 are shown the results for Dexter, a classification dataset. We see that for
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Table 5. Table of groups, CoEPrA2006 3 dataset. SE is the standard error of mean
estimation, ω is the number of features selected by the screening method, κ is the
number of features selected by FSA.

Group Screening Methods Learner Mean SE ω κ

A Correlation Ridge 0.2858 0.0046 208 —
A B — FSA 0.2844 0.0049 — 65
A B RReliefF FSA 0.2815 0.0061 2940 65
A B Correlation FSA 0.2747 0.0044 971 412
C B RReliefF Ridge 0.2482 0.0052 971 —
C Mutual Information FSA 0.2227 0.0049 3112 65
D Mutual Information Ridge 0.0763 0.0053 412 —
D E RReliefF Boosted Reg. Trees 0.0746 0.0064 491 —
D E F Correlation Boosted Reg. Trees 0.0661 0.0064 668 —
D E F — Boosted Reg. Trees 0.0362 0.0049 — —

E F Mutual Information Boosted Reg. Trees 0.0082 0.0019 65 —
F — Ridge 0 0 — —

Table 6. Table of groups, Indoorloc dataset. SE is the standard error of mean
estimation, ω is the number of features selected by the screening method, κ is the
number of features selected by FSA.

Group Screening Methods Learner Mean SE ω κ

A Mutual Information Boosted Reg. Trees 0.9703 < 0.0001 254 —
A RReliefF Boosted Reg. Trees 0.9698 < 0.0001 285 —
B — Boosted Reg. Trees 0.9685 < 0.0001 — —
B Correlation Boosted Reg. Trees 0.9681 < 0.0001 381 —
C Mutual Information Ridge 0.9198 < 0.0001 397 —
C — Ridge 0.9198 < 0.0001 — —
D Correlation Ridge 0.9188 < 0.0001 397 —
E — FSA 0.9182 < 0.0001 — 397
F Mutual Information FSA 0.9177 < 0.0001 397 285
G Correlation FSA 0.9167 < 0.0001 397 300
H RReliefF Ridge 0.9158 < 0.0001 397 —
I RReliefF FSA 0.9139 < 0.0001 397 300

SVM, FSA and boosted trees the results of the learners with screening belong to either
the same group or lower groups than learners without screening. Most of the screening
methods did a great job in improving the performance of Logistic Regression for this
dataset, and all methods improved the performance Naive Bayes. The Relief method
didn’t work on this data as all of the Relief based combinations are ranked at the end of
table. For some of the FSA combinations, the number of selected features by screening
methods and number of selected features by FSA are the same, meaning the screening
methods already selected the features that can give the best result.

In Table 9 are shown the results for Gisette. Clearly screening methods work on
boosted trees by giving results that belong to higher tier groups than the learner alone.
Naive Bayes and logistic regression have a similar conclusion as boosted trees. Beside
the Relief-FSA combination, the other screening methods applied to FSA and SVM
show improvement. For some of the FSA combinations, the number of selected features
by screening methods and number of selected features by FSA are the same, meaning
the screening methods already selected the features that can give the best result.

In Table 10 are shown the results for the SMK CAN 187 dataset. The results with
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Table 7. Table of groups, Wikiface dataset. SE is the standard error of mean
estimation, ω is the number of features selected by the screening method, κ is the
number of features selected by FSA.

Group Screening Methods Learner Mean SE ω κ

A Mutual Information Ridge 0.3490 < 0.0001 1739 —
B RReliefF Ridge 0.3482 < 0.0001 1739 —
C Correlation Ridge 0.3478 < 0.0001 1739 —
D — Ridge 0.3468 < 0.0001 — —
E Mutual Information FSA 0.3426 < 0.0001 1739 370
E — FSA 0.3424 < 0.0001 — 440
E RReliefF FSA 0.3424 < 0.0001 1739 440
F Correlation FSA 0.3419 < 0.0001 1381 370
F Correlation Boosted Reg. Trees 0.2981 < 0.0001 31 —
G RReliefF Boosted Reg. Trees 0.2546 < 0.0001 10 —
G Mutual Information Boosted Reg. Trees 0.2517 0.0003 955 —
G — Boosted Reg. Trees 0.2156 0.0003 — —

screening for Naive Bayes and Logistic Regression belong to higher tier groups than
those without screening. For the other learning algorithms, screening methods give
results belonging to the same group or lower groups as learners without screening. This
indicates no improvement from using screening for those learners.

In Table 11 are shown the results for Madelon. The results with screening for Naive
Bayes, SVM, Boosted Decision Trees and Logistic Regression belong to higher tier
groups than those without screening. For FSA, only the result of Relief/FSA belongs to
higher tier group than FSA without screening.

In Table 12 are shown the results for the GLI 85 dataset. The results with screening
belong to the same group or lower groups than the learner alone for FSA. SVM, Logistic
Regression and boosted trees each have a few screening methods that give higher tier
results. All screening methods give results belonging to higher groups than learner
without screening for Naive Bayes.
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Table 8. Table of groups, Dexter dataset. SE is the standard error of mean estimation,
ω is the number of features selected by the screening method, κ is the number of
features selected by FSA.

Group Screening Methods Learner Mean SE ω κ

A Mutual Information Logistic Reg. 0.9854 < 0.0001 1463 —
A Chi-square Score Boosted Decision Trees 0.9852 < 0.0001 2662 —
A B Chi-square Score Logistic Reg. 0.9851 < 0.0001 1828 —
A B C Gini Index Logistic Reg. 0.9850 < 0.0001 1828 —
A B C D Gini Index Boosted Decision Trees 0.9848 < 0.0001 1828 —
A B C D Mutual Information Boosted Decision Trees 0.9844 < 0.0001 2892 —
A B C D — Boosted Decision Trees 0.9841 < 0.0001 — —
E B C D Fisher Score Logistic Reg. 0.9839 < 0.0001 2441 —
E B C D F Mutual Information SVM 0.9838 < 0.0001 3893 —
E C D F T-score Logistic Reg. 0.9838 < 0.0001 2441 —
E C D F MRMR Logistic Reg. 0.9837 < 0.0001 2441 —
E C D F MRMR SVM 0.9835 < 0.0001 4164 —
E G C D F T-score Boosted Decision Trees 0.9835 < 0.0001 2892 —
E G C D F Fisher Score Boosted Decision Trees 0.9835 < 0.0001 2892 —
E G C D F H MRMR Boosted Decision Trees 0.9835 < 0.0001 3130 —
E G D F H — SVM 0.9834 < 0.0001 — —
E G D F H T-score SVM 0.9831 < 0.0001 5023 —
E G I F H Mutual Information FSA 0.9830 < 0.0001 1828 1828

G I J F H Chi-square Score FSA 0.9827 < 0.0001 1828 1828
G I J F H Gini Index FSA 0.9827 < 0.0001 1828 1828
G I J H T-score FSA 0.9824 < 0.0001 5023 5023

I J H MRMR FSA 0.9824 < 0.0001 2662 2441
I J H Fisher Score FSA 0.9823 < 0.0001 2662 2441
I J H Chi-square Score SVM 0.9822 < 0.0001 3893 —
I J H Gini Index SVM 0.9822 < 0.0001 3893 —
I J H — Logistic Reg. 0.9820 < 0.0001 — —
I J — FSA 0.9819 < 0.0001 — 2662

K J Fisher Score SVM 0.9809 < 0.0001 3130 —
K L Relief Boosted Decision Trees 0.9790 < 0.0001 5023 —

L Relief FSA 0.9780 < 0.0001 3130 377
L Relief Logistic Reg. 0.9761 0.0001 1463 —

M Mutual Information Naive Bayes 0.9157 0.0004 83 —
N MRMR Naive Bayes 0.9005 0.0002 83 —
N Chi-square Score Naive Bayes 0.9002 0.0003 41 —
N Gini Index Naive Bayes 0.9002 0.0003 41 —
N T-score Naive Bayes 0.8993 0.0001 83 —
N Fisher Score Naive Bayes 0.8991 0.0002 83 —
O Relief Naive Bayes 0.8005 0.0004 12 —
P Relief SVM 0.6628 0.0014 41 —
P — Naive Bayes 0.6520 0.0006 — —
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Table 9. Table of groups, Gisette dataset. SE is the standard error of mean estimation,
ω is the number of features selected by the screening method, κ is the number of
features selected by FSA.

Group Screening Methods Learner Mean SE ω κ

A MRMR Boosted Decision Trees 0.9978 < 0.0001 2133 —
A T-score Boosted Decision Trees 0.9978 < 0.0001 1634 —
A Fisher Score Boosted Decision Trees 0.9978 < 0.0001 1634 —
A Mutual Information Boosted Decision Trees 0.9977 < 0.0001 1333 —
A Gini Index Boosted Decision Trees 0.9977 < 0.0001 2884 —
A B Chi-square Score Boosted Decision Trees 0.9977 < 0.0001 2312 —
A B Chi-square Score FSA 0.9977 < 0.0001 1634 1634
A B Gini Index FSA 0.9977 < 0.0001 1960 1960
A B Mutual Information FSA 0.9976 < 0.0001 1480 1480
A B T-score FSA 0.9976 < 0.0001 1794 1794
A B Fisher Score FSA 0.9976 < 0.0001 1960 1960
A B MRMR FSA 0.9976 < 0.0001 3954 1058
C B Relief Boosted Decision Trees 0.9975 < 0.0001 1058 —
C Relief FSA 0.9974 < 0.0001 2687 1480
C D — FSA 0.9973 < 0.0001 — 1058
E D T-score SVM 0.9973 < 0.0001 1480 —
E D Fisher Score SVM 0.9973 < 0.0001 1634 —
E Gini Index SVM 0.9972 < 0.0001 1634 —
E MRMR SVM 0.9972 < 0.0001 1960 —
E F Chi-square Score SVM 0.9972 < 0.0001 1634 —
E F G Mutual Information SVM 0.9971 < 0.0001 1480 —
H F G Mutual Information Logistic Reg. 0.9970 < 0.0001 2133 —
H F G — Boosted Decision Trees 0.9970 < 0.0001 — —
H F G Fisher Score Logistic Reg. 0.9969 < 0.0001 1960 —
H G Chi-square Score Logistic Reg. 0.9969 < 0.0001 1794 —
H Gini Index Logistic Reg. 0.9969 < 0.0001 1960 —
H I MRMR Logistic Reg. 0.9968 < 0.0001 1794 —
H I T-score Logistic Reg. 0.9968 < 0.0001 1794 —

I Relief Logistic Reg. 0.9967 < 0.0001 2497 —
J — SVM 0.9963 < 0.0001 — —
K — Logistic Reg. 0.9962 < 0.0001 — —
L Mutual Information Naive Bayes 0.9583 < 0.0001 2312 —
L MRMR Naive Bayes 0.9582 < 0.0001 178 —
L T-score Naive Bayes 0.9582 < 0.0001 1634 —
L Fisher Score Naive Bayes 0.9582 < 0.0001 2687 —
L Gini Index Naive Bayes 0.9579 < 0.0001 1794 —
L Chi-square Score Naive Bayes 0.9579 < 0.0001 1794 —
M Relief Naive Bayes 0.9474 < 0.0001 2687 —
N — Naive Bayes 0.9326 < 0.0001 — —
O Relief SVM 0.8914 < 0.0001 1333 —
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Table 10. Table of groups, SMK CAN 187 dataset. SE is the standard error of mean
estimation, ω is the number of features selected by the screening method, κ is the
number of features selected by FSA.

Group Screening Methods Learner Mean SE ω κ

A Relief FSA 0.8107 0.0008 4729 139
A Mutual Information SVM 0.81013 0.0009 5023 —
A B Mutual Information FSA 0.8072 0.0013 4729 207
A B Gini Index SVM 0.8039 0.0009 5023 —
A B MRMR SVM 0.8032 0.0006 5023 —
A B C Chi-square Score FSA 0.8023 0.0010 1463 83
A B C D Relief Boosted Decision Trees 0.8019 0.0008 5023 —
A B C D E — SVM 0.8015 0.0009 — —
A B C D E T-score SVM 0.8012 0.0010 5023 —

B C D E Fisher Score SVM 0.8002 0.0008 5023 —
B C D E Chi-square Score SVM 0.7996 0.0016 5023 —

F B C D E Gini Index FSA 0.7991 0.0018 4442 83
F B C D E T-score Boosted Decision Trees 0.7950 0.0006 2441 —
F B C D E MRMR Boosted Decision Trees 0.7940 0.0010 4442 —
F B C D E G — FSA 0.7932 0.0013 — 83
F B C D E G — Boosted Decision Trees 0.7926 0.0007 — —
F C D E G Fisher Score Boosted Decision Trees 0.7912 0.0012 711 —
F D E G Gini Index Boosted Decision Trees 0.7899 0.0010 2023 —
F E G Fisher Score FSA 0.7895 0.0012 139 12
F E G T-score FSA 0.7878 0.0009 139 12
F H G MRMR FSA 0.7871 0.0014 3130 139
F H G Mutual Information Boosted Decision Trees 0.7818 0.0013 4442 –
F H G Chi-square Score Boosted Decision Trees 0.7812 0.0008 5023 —
F H G Relief Logistic Reg. 0.7804 0.0013 2023 —

H I G Gini Index Logistic Reg. 0.7706 0.0010 377 —
H I Chi-square Score Logistic Reg. 0.7689 0.0013 286 —

I Fisher Score Logistic Reg. 0.7646 0.0012 589 —
I T-score Logistic Reg. 0.7642 0.0018 842 —
I MRMR Logistic Reg. 0.7628 0.0011 711 —
I Mutual Information Logistic Reg. 0.7567 0.0017 589 —

J MRMR Naive Bayes 0.7409 0.0010 12 —
J K Fisher Score Naive Bayes 0.7312 0.0008 41 —

K L T-score Naive Bayes 0.7291 0.0008 41 —
K L M Chi-square Score Naive Bayes 0.7279 0.0009 41 —
K L M Gini Index Naive Bayes 0.7249 0.0005 41 —

L M Mutual Information Naive Bayes 0.7238 0.0008 41 —
L M — Logistic Reg. 0.7174 0.0015 — —

M Relief Naive Bayes 0.7133 0.0009 12 —
N — Naive Bayes 0.6599 0.0005 — —
O Relief SVM 0.4730 0.0006 12 —
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Table 11. Table of groups, Madelon dataset. SE is the standard error of mean
estimation, ω is the number of features selected by the screening method, κ is the
number of features selected by FSA.

Group Screening Methods Learner Mean SE ω κ

A Relief Boosted Decision Trees 0.9554 < 0.0001 22 —
B T-score Boosted Decision Trees 0.9476 < 0.0001 13 —
B Fisher Score Boosted Decision Trees 0.9476 < 0.0001 13 —
C MRMR Boosted Decision Trees 0.9460 < 0.0001 13 —
D Gini Index Boosted Decision Trees 0.9398 < 0.0001 13 —
E Chi-square Score Boosted Decision Trees 0.9376 < 0.0001 13 —
F Mutual Information Boosted Decision Trees 0.9232 < 0.0001 13 —
G — Boosted Decision Trees 0.8679 < 0.0001 — —
H Relief Naive Bayes 0.6884 < 0.0001 13 —
I T-score Naive Bayes 0.6832 < 0.0001 13 —
I Fisher Score Naive Bayes 0.6832 < 0.0001 13 —
I J Gini Index Naive Bayes 0.6821 < 0.0001 22 —

J Mutual Information Naive Bayes 0.6818 < 0.0001 13 —
J MRMR Naive Bayes 0.6817 < 0.0001 22 —
J Chi-square Score Naive Bayes 0.6815 < 0.0001 22 —

K Relief FSA 0.6394 < 0.0001 42 6
K L Relief Logistic Reg. 0.6389 < 0.0001 6 —
K L Mutual Information SVM 0.6386 < 0.0001 6 —
K L M MRMR FSA 0.6384 < 0.0001 364 6
K L M T-score FSA 0.6384 < 0.0001 364 6
K L M Fisher Score FSA 0.6384 < 0.0001 364 6
K L M Chi-square Score FSA 0.6384 < 0.0001 364 6
K L M Gini Index FSA 0.6381 < 0.0001 364 6

L M Mutual Information FSA 0.6381 < 0.0001 42 6
L M T-score SVM 0.6381 < 0.0001 6 —
L M Fisher Score SVM 0.6381 < 0.0001 6 —
L M Chi-square Score SVM 0.6380 < 0.0001 6 —

M Mutual Information Logistic Reg. 0.6379 < 0.0001 6 —
M Gini Index SVM 0.6378 < 0.0001 6 —
M — FSA 0.6377 < 0.0001 — 6
M MRMR SVM 0.6376 < 0.0001 6 —
M T-score Logistic Reg. 0.6373 < 0.0001 6 —
M Fisher Score Logistic Reg. 0.6373 < 0.0001 6 —
M Chi-square Score Logistic Reg. 0.6372 < 0.0001 6 —
M Gini Index Logistic Reg. 0.6368 < 0.0001 6 —
M MRMR Logistic Reg. 0.6366 < 0.0001 6 —
M — Naive Bayes 0.6360 < 0.0001 — —

N Relief SVM 0.6120 0.0001 6 —
O — Logistic Reg. 0.5744 0.0002 — —
P — SVM 0.5455 0.0002 — —
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Table 12. Table of groups, GLI 85 dataset. SE is the standard error of mean
estimation, ω is the number of features selected by the screening method, κ is the
number of features selected by FSA.

Group Screening Methods Learner Mean SE ω κ

A Mutual Information SVM 0.9639 0.0014 4164 —
A — FSA 0.9627 0.0006 — 842
A Relief Logistic Reg. 0.9616 0.0009 41 —
A B Relief FSA 0.9594 0.0010 41 41
A B C Fisher Score SVM 0.9587 0.0010 286 —
A B C D Gini Index FSA 0.9560 0.0014 41 12

B C D Mutual Information FSA 0.9555 0.0005 4729 711
B C D — SVM 0.9548 0.0007 — —
B C D Gini Index SVM 0.9538 0.0011 3893 —

E C D Fisher Score FSA 0.9529 0.0012 41 12
E C D Chi-square Score FSA 0.9526 0.0011 41 12
E C D Chi-square Score SVM 0.9524 0.0009 4442 —
E F C D Mutual Information Logistic Reg. 0.9519 0.0016 4729 —
E F C D Fisher Score Logistic Reg. 0.9516 0.0008 2892 —
E F D T-score SVM 0.9494 0.0008 4442 —
E F D MRMR FSA 0.9492 0.0008 5023 711
E F D MRMR SVM 0.9486 0.0011 3893 —
E F D T-score FSA 0.9482 0.0007 5023 711
E F D T-score Logistic Reg. 0.9478 0.0008 4729 —
E F G D Chi-square Score Logistic Reg. 0.9450 0.0017 4729 —
E F G Gini Index Logistic Reg. 0.9449 0.0009 2662 —

F G MRMR Logistic Reg. 0.9445 0.0006 3893 —
H F G Relief Boosted Decision Trees 0.9395 0.0027 139 —
H F G Relief Naive Bayes 0.9393 0.0007 41 —
H F G Relief SVM 0.9379 0.0013 139 —
H G Fisher Score Boosted Decision Trees 0.9357 0.0012 41 —
H I G — Logistic Reg. 0.9308 0.0023 — —
H I G Mutual Information Boosted Decision Trees 0.9285 0.0016 83 —
H I G T-score Boosted Decision Trees 0.9265 0.0024 12 —
H I G Gini Index Boosted Decision Trees 0.9249 0.0019 41 —
H I MRMR Boosted Decision Trees 0.9243 0.0016 12 —
H I Fisher Score Naive Bayes 0.9235 0.0015 12 —
H I Chi-square Score Boosted Decision Trees 0.9204 0.0024 41 —
H I J Mutual Information Naive Bayes 0.9103 0.0012 41 —

I J — Boosted Decision Trees 0.9072 0.0020 — —
K J MRMR Naive Bayes 0.8940 0.0011 83 —
K J T-score Naive Bayes 0.8936 0.0013 83 —
K Chi-square Score Naive Bayes 0.8833 0.0013 41 —
K Gini Index Naive Bayes 0.8821 0.0014 41 —
L — Naive Bayes 0.7006 0.0033 — —
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