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ABSTRACT

The advent of ensembles permits forecasters to have an implied level deogcefbased
upon the level of (diglgreement among those ensembles. However, there are occasionally
situations where the samble members may agree batinlarge error. Such events not only
mislead forecasters but also may undermine public confidence in the foreeadiwi occur
more than rarely, or even during a single impacting event. Accordihglgutpose of this
research isfirst, to identify and quantifyanyrelationshipsetweerNCEP (National Center for
Environmental PredictionpFS (Global Forecast Systesr)sembldrackspread and errdor
tropical cyclones (TCs)Secondit seeks tdactorsthat can lead to unique combinations of
ensemlespread and errotOf particular interest in this study are @ferementionedases for
which there is low spread among the ensemltask forecas, yet high error results.

The GFSwas usedto analyze2004-2011Atlantic TCs. Forecastrackensemble spread and
errorwereanalyzedhrough forecat hour 120.Normalizederrorandspreadvalueswere
calculatedirst asasinglelifetime valuefor eachTC; secondasa function offorecasthour for
each TC and third for each six-hourly forecasgmenfor each stormFor each of the three
analyses,drciles (high, medium, and low) of both spread and error were deterrgiaed) nine
error/spreacdombinations.Climatological,synoptic, and physicatharacteristisare examined
for four of the nine combinations: high spread/hegfor,low spreadow error, high spread/low
error,andlow spread/higlerror.

A statistically significant relationshiwas observed between GH$emble spread and
resulting track error nenanalyzingthe TC's lifetime-total spread and errdr=0.78; p<0.01).
Track forecasts with low spread among ensemble members, yet higmgestribrwere rare,

however threeof 81 TCs). Whenobservinghe storm spread anérrorasa function offorecast

Xi



hourit wasfoundthatthereis astatisticallysignificantrelationshipbetweertrackforecasterror
andstandardleviationamong all feecast hours (8 —0.79, p <0.01) Expectedly this
relationship is stronger f@arlyforecasthourscomparedo later ones In the third analysis,
where forecasts of the same forecast hour were not avesageayasconditioned orensemble
spread The error distributions of each spread group (low, medium, and high) for eaclstforeca
hour (12, 24, 36, 48, 72, 96, and 12@re analyzed It wasfoundthatmeantrack forecasterror
increasedrom low to mediumto high ensemblé&ackforecastspreadgroupsfor all forecast
hours. These error distributions were fit to a gamma distribugiod randomly sampldd test

for significance in the differences among high, medium, and low ensemble spyapsd. g
Differenceswere statistically significarfor all comparisons among forecast hours through 48,
but not for all comparisons amofayecast hour32 — 120. These results suggest that (known)
ensemble spread can be a useful predictor for (as yet unknown) ensemble meandomaa
short to medium term forecasts, although the direction of that error cannot be known.

A low spread/high error forecast was observed at least once in 61.8% of all storms
analyzed. There were three regions where this combinaticurred more frequently: 1)estern
Gulf of Mexico, 2) western Caribbearand 3) vestern Atlantic near the Bahamddoteworthy
differencesexisted in the mean 300Paheight and wind fields among certain spread/error
groupswhen analyzingertain regions. For example, the mean I3@atroughpasition
distinguished low spread/low errfmrecasts fromow/spreachigh error forecasts iRegion 3.
However there wadittle distinction in the mean 308Pasynoptic setup among spread/error
groups in other regions, such as along the United States E. coast abov®BgSNal factors
such as topography and interaction amonitiple TCs also maylay a role in the resulting

spread/error combination.

Xii



CHAPTER ONE

INTRODUCTION

1.1 Motivation

The National Hurricane CentéMHC) has made notable improvements in hurricane track
forecasts since the 1960s, especiallgjnedium tolong+ange forecasting. For example, a 72
hour forecast in the 197@seragedabout 400 nautical miles (n. mi.) of error, whereas a 72 hour
forecast in 201Averagedbout 100 n. miof error(NHC 2013c) Despite thesaotable
improvements,herearedocumentedhstancesvhereseverahumericalmodeltropicalcyclone
(TC) trackforecastsagree yet theactualtrackthat resultss quitedifferentfrom all of them(e.g.
tropicalstormErin, 2007; Fig. 1.1 A trackforecastwith low spread among forecast models
yet eventuahigh errorhashigh potentialto hinderhurricanepreparednesactionsthrough
excessiveevacuatiorordersandincreasedailure to ordernecessargvacuatns. Furthermore,
this may influence the public’s probability of following thoseacuatiororders for future
storms

Accordingly, understandinthe relationship between ensemble track spread and error and
guantifying the occurrence of these low sprhagl error forecastsiaylead to better TC track
forecasts. More importantlydéntifyingcommonalitiesn the synopticsetup amongdr Cswith
low spread in the track forecagdt high error couldpotentiallyalertforecastersvhenforecast
guidancemaybemisleading. It would also benefit a forecaster to be able to identify other
scenarios such as high ensemble track forecast spread, yet lowlegrothe ensemble is

available, but before the verification is known.



1.2 The GFS and Ensemble Forecasin
The Global Ensembl&orecast System E+S)is a synopticscale spectrahumerical

weatherforecastingensemblanodel. Theensemblanodel computeforecastdour timeseach
day —initialized everysix hoursstartingwith 0000 UTC. The GFSGlobal Foreast Systemis
the basigin terms of physicsyf theGEFS Eachof the 20 GESensemblenembergepreserg
anindividualforecastthat has unique initial conditions from a method that began using breeding
(Toth and Kalnay 1993) before the period examimeakbut has evolved since into the
Ensemble Transform Bred Vector (ETB{Buizza et al. 2005)Thevertical resolutionof each
ensemble membés 28 verticalsigmalevels. A spectrakriangularhorizontal resolution divides
the Earths surfaceinto 190triangularwavesthroughforecasthour 180, which provides a grid
point spacing of ~80 km (NCEP 2013).

Forecastnodelupgradesretypically implementednce ortwice ayear. Changes in the
model physics occurred throughout the data set analyzed studig resulting in potential shifts
in spread/error relationships, and shoulddsaembered when the results to follow are examined

or applied to future forecasts. Changes relevant to this study are outlinddieii Ta

1.3 Previous Work
1.3.1 Previows StatisticalWork

Previous workhas examined the relationship between hurricane track forecast spread and
error, but did so using much earlier versions of ensemble syst@wesrsg2000)usedvariance
amongmultiple deterministic (norensemblepumericalprediction modelas a measure of the
spreadTCs from thel995-96Atlantic seasorandthe 1997 nortlPacific season were included
in thatstudy. Goersq2000) found that “The spread of the ensemble forecast was found to

possess some potential for usefdmgcasters as a measure of confidence in the ensemble



forecast.” He goes on to explain that although small ensemble spread lestedmwath low

error, high ensemble spread is not necessarily correlated with high ertber,Ragh ensemble

spread gies an estimate of the upper bound of track forecast df@iconcluded that ensemble

spread may be useful to forecasters in some instancese flitdingsagree withthose of other

past studiesFor example, ecording to Buizza and Palmer (1998), @a@ expect small spread

to be correlated with small error, whereas large spread my not necessdrip having large

error. h addition, while Aberson (1998) did not find a clear relationship between ensemble

spread and error, a relationship was found between spread and the upper bound of error. The

upper bound of error was determined to be about two times the ensemble spread (NHC 2013b).
More recently, Hauk€2006) soughto definetrackforecasterror distributionsby track

forecastconfidencan anattemptto improve gorobabilisticwind speednodel. GFS ensemble

spread was used as a measure of forecast confidBistebutionsof GFSensembleneantotal

trackerrorwereconditioned upoiFSensemblepreador Atlantic TCs during the 2005

season Some differences were found among error distributions with low, medium, and high

ensemble spread; mean errors increased with increasing spt@adver, statistical tests

concludedhatthese differences in mean error were not significmbtherwords, high spread

in aforecastdoesn'necessarilymply thattheforecasterrorswill besignificantlygreatethana

forecastwith low spread Thesefindingssuggesthataforecastemightfeel “confident’ in a

forecast, given the low ensemble spreadtheforecastends up havingigh error. Hauke

(2006)will bereferencedrequently throughouhis paperasameansof comparisonand will be

referred to hereafter as HOG6.



1.3.2 Previous Synoptic Research

An additional goal of this study seeks to identify synogtiaracteristics that are
associated witlhinique combinations of spread and errarfew previousstudies have analyzed
how the synoptic environment influences a hurricane’s track forecast. iRratddl (1990)
analyzedhesteeringcurrentspresennearthe 1984 hrricaneJosephinelt wasfoundthat
hurricanesteeringcurrentsmay berepresentetdy theaveragdlow overseveralerticallevels,
or by gradients of absoluteorticity. Josephine'motionwasparallelandto theleft of that
gradient.

BrennanandMajumdar(2011)analyzed2008 hurricanelke. Thestrongsubtropicakidge
locatednorth of hurricanelke andthe mid-level shortwavdocatedwestof Ike in Californiawere
determinedo have a significanimpactin theaccuracyof thetrackforecast. Theinitial
conditionswere perturbedeforere-running theGFSmodel. Whentheridge wasweakenednd
the shortwavevasstrengthenethrough perturbations th@FStrack forecastproduced a more
accuratdarackforecast. This finding thasmall differences in the location and strength of
synoptic scale ridges and troughs can influence a hurricane’s trackstomgoaes with previous
work by Shapirand Franklin(1999).

While the above studies providesttongfoundation, the following study builds dimis
foundationandidentifiesclimatological,synopti¢ and physicatharacterististhatmaylead to
unique combinations of spread and error among TCs. No previous work has identified and
related such characteristics Wwiterciles of spread and error. Further, there are aspects of each of

the prior studies that can be improved, as also discussed next.



1.4 Differences and Contributions of this Study

While prior studies have laid a foundation of research on the relatbpniséiween track
error and spread, the models analyzed have evolved considerably since those studhesr,
the accumulation of many more years of events has lead to a much more robusszaniyaith
of the forecasts as well as the TC seasons themselves. Specifically, @0@@3snethodology
differs from that of this studybecause¢he spreadof multiple differentnumericalprediction
models—asopposedo thespreadf asinglemodel'sensembles-is analyzed.Goersg2000)
examineghe 1995-9@\tlantic seasorandthe 1997 nortliracificseasonwhereas this study
examines th2004-2011Atlantic seasos.

Both this study and that of HO6ompareGFSensembleneantotaktrackerrorwith
correspondin@gsFSensemblespread. HO6 examinestie 2005Atlantic hurricaneseason,
whereaghis studyincludesyears2004-2011.Additionally, this study does not include 2005
stormsl — 7because¢heywerenotavailablein the GFSdatasetfor undetermined reasons.
Restrictingthedatasetto oneseasommay notaccuratelydepictthe longterm relationship
betweentrackforecasterrorandspread For instanceizl Nino-Southern OscillatiogENSO)
results in yearly variations in TC activityfthe2005TC seasotis notrepresentativef all
hurricaneseasonslt was a reord breaking and unusually active season with&®edstorms
(22is normal) 15 hurricans (sixis normal) andfour majorhurricanegthree is normal)

Furthermoretherewerechangesnadeto the GFSforecastimodel both duringndafter
the 2005season.Someof themoresignificantchangegook placein 2010with themajor model
upgrade, most notably, the hurricaeéocationchange.Thesemodelchangeswill likely cause
differencedn thetrackforecastandultimatelyresultin differencedn thereldaionshipbetween

trackspreadanderror(Table 1.1).



Past studies analyzed the relationship between forecast track spread awitlexaried
methodologies, and varied data sets. For example, some analyzed a consensus ¢b finadiel
that spread malge somewhat useful in determining the resulting error (Goerss 2000; Aberson
1998; Buizza and Palmer 1998)06 concluded that GFS ensemble spread is not a useful
predictor of the resulting totatack error. In HO6, meantrackerror (E) wascomputed using
individual errorcomponents dftitude(A,) andlongitude(B,). He usedthePythagorean
equationto compute the positioarror, which is reasonable for small distances but at long
distances (likely at longer forecast lengtth® curvature of the Edr becomes more important:

E=(Ag+BgI®

To overcome this limitation, ithis study,thegreatcircle distancebetweertheforecastand
verified positionwascalculated as defined later

HO6 used a-Test statisti€T) and Fstatistic(F) to determine significance in differences
in the error distributions conditioned on ensemble spread.
S8S8
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In the above equationgpand [pUHSUHV HQ W; I Q BthR stdddand delviations,

F

and n and n the sample size of the two distributions. The hypothesized differencedretie
two means iso. These statistics assume normally distributed data; howevshown latethe
error distributions in both studi@sesignificantlynon-normal. Thuddifferent statistical tests
were performed in this study to accounttfoe nonGaussian nature of the error distributions.
The aboveeasonglistinguish this studfrom the prior ones, but alsnay explain potential

differencedn results.



Table 1.1:Outline of GEFS upgrades that took place during the data analysis timeframe of this
study (Environmental Modeling Center 2013).

Date Upgrade

August 2005 1) Increased resolution of all members
T126 between 180 hrs af8&4 hrs (16
days)

2) Changed initiagperturbationgrom 24
hr breeding cycle to 6 hr cycle
3) Added perturbettopical stormvortex

relocation

May 2006 1) increasing ensemble size from 10 to
members

2) adding ensemble control for 0600
GMT, 1200 GMT and 1800 GMT

3) introducing ET to breeding method

March 2007 1) Ensemble size increased from 14 to
members
February 2010 1) Change horizontal resolution from

T126 to T190 out to 384hrs

2) Use 8th order horizontal diffusion for
all forecast resolutios

3) Introduce ESMF (Earth System
Modeling Framework}- Version 3.1.0rp2
4) Add stochastic perturbation scheme to
account for random model errors
5) Add new variables (28 more) to pgrba
files for NAEFS data exchange




GFS Ensemble Track Forecasts (Black) vs.
Best Track (Red)for T.S. Erin (2007)
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Figure 1.1: GFS ensemble forecast track forecasts (black lines) vs. best track (rédrline)
tropical stormErin (2007). Ensemble forecast track is much different than the actual track (bes
track).



CHAPTER TWO

STATISTICAL ANALYSIS OF GEFS TRACK SPREAD AND
ERROR

2.1Introduction

Forecastertend to bdessconfidentin their forecastwhenpresenteavith aforecast
model whosensembleshowgreatlyvariedsolutions. Likewise,whenall of theensemblesre
relativelyclosein their predictionof an atmospheriwariableof interest, the forecastetends to
bemoreconfidentin providing aforecast. This study seeks to address if confidence can indeed
be used as a proxy for ensemble spread by analyzing the relationship bek#eensemble
track forecast spread and err@pecifically,do significantdifferencesexistin thetrackerrors
among forecasts witlow, medium, and high ensemble spread?

2.2 Data

TheNCEPGEFSis usedto analyzel31 Atlantic TCs from 2004 — 20listed in Table

2.1. Some storms are exclud&dm the analysis for reasons discussert The GFSA-Decks

(text files available ditp://ftp.nhc.noaa.gov/atcf/archiyeontainall of theensembleguidance

forecastsavailableto theNHC. Theyinclude thestormnumber nitialization time, forecast
hour,intensity,andforecastpositionin latitudeandlongitude. The B-Deckscontainthebest

track positions ofall Atlantic storms. The best track position is determined in a Ebstm
assessment which all available storm dafacluding some that may not have been available in
reattime) is used to form a smooth trajecto-Decks alsancludethe stormnumber dateand
time, intensity,andverifying positionin degreedatitudeandlongitude. The ABecks and B

Deckswereusedto find thetrack forecast spread amtrorfor eachof the stormsof interest.


ftp://ftp.nhc.noaa.gov/atcf/archive�

Thetropicalwave,low pressureandextratropicalphasess defined by the best track
record areexcludedfrom all calculations.For anygivenforecastime, notall ensemble
membergrovide aforecastposition of astorm,especiallyif thestormis weak. In this case the
latitudesandlongitudes of thavailableensemblesvereaveraged.If the model produced a
forecastbut thebesttrackrecorddid nothaveatropicalsystemdevelopedatthattime, orif the
modeldecayedhesystemprematurelythe spread anerrorwerenotcalculated.This was the
case for all forecast times for storms 12 in 2004, 21 in 2005, 2 in 2006, and 4 in 2010. Thus,
they are excluded from the analys&dditionally, 2orm 10in 2004,andstorms1-7in 2005are
excludedbecausehe GEFS forecast output were not avaddblr them. Regardless of these
excluded storms, the database used here is several timerstheng that of prior studies.

2.3 Methodology

2.3.1 Calculating Error and Spread

Trackforecasterrorandspreadvereanalyzedrom forecasthourssix through120in six-
hourlyincrements.For any given forecast hour of any given initialization timensemble
members each provide a forecast storm latituglg)(&nd longitude (fon). This number, n,
changes depending on how many ensembles forecast the existence of a TCeiottiangivthe
maximum value of n i&0, but n can be less if not ahgemble memberaintain the TC in
their forecasts Theaverageensembldorecastatitudes(Fa;) andlongitudes(Fon) were

calculatedandusedto representheensemble mean forecatbrmposition §).

Rl
e My
i_r n

Xl
E. = Ag @gimi
jml n
(=( (rséq(rsa)é
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Ensemble trackpread (S) is representieg calculating the average separation distance
usingthe great circle distance formula (GCIb)km —betweerthei™ ensemble forecast position
and the mean ensemble position, amongraémble members.

)% & 6371 ® ?
?2=2 &P 20Y5 X1 F 3)

At A3
- oéu7'p+ 2 KOL) @ K @2) ®DI§D?6|})

_ A as% &L ()
J

Trackforecasterror (E) wascalculated by calculating the great circle distance between

ensemblaneantrack position and the observed best track pos{tin
"= )%&L (), for 1=( lgodlrak

Spread anérrorvalues foreachindividual six-hourly forecastsegmen{(from hourssix —
120) were calculatedbr all initialization timedor each storm in the data séhree different
methods of analyses were performed, each outlined below.

Analysis land 2 methods both began by averagimgead and error values among forecasts
of the same forecast hour for each of the 131 storms individually. In Analysis 1 metiesds, t
values were averagemd normalized among forecast hours to produce a single vaipeeaid
anderrorfor each TC In Analysis 2methodsthese values weseparated by forecast hour to
allow for an analysis of spread and emsa function offorecasthour.

While insightful, aikinglifetime-average values of spread and error reduces the usefulness in
findings as it relates to improving track forecasting. For example, storemsafty interact with
land for a short period of their lifespan. This is the time forecasters atemeossted in as this

is when the storm poses the greatest threat to lives and profigmgy.can also imagine a classic
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Cape Verde hurricane that spends 10 days moving across the Atlantic, and then spends 1 day
impacting the U.S. East Coast. The most likely scenario is that the 10 day®batrass the
Atlantic were far more predictable than the day of recurvature up the coastedqDently,
lifetime measures of spref@dror would mitigate rather than help understanding of the
relationship leading up to landfalAccordingly, n Analysis 3 methods, each individual six-
hourly forecast segment for eactodel rurfor each stormwvas considered separately other
words, \alues of error and spread are not averaged among forecasts of the same forerast hou
orderto allow for an analysis of the spread/error combination at points of interaststorm’s
life.

For all three analyses, terciles (high, medium, and low) of spread and térigjles
medium, and low) of error were determined. This led to spread/errocombinations.For
Analysis 1, the 131 values of spread and 131 values of error were divided into thirds. For
Analyses 2 and 3, terciles were formed sejefyrdor each forecast hour analyzed (12, 24, 36,
48, 72, 96, and 12@p account for the increasing spread and error that occurs with increasing
forecast time.

2.3.2 Statistical Analysis Methods
It must bedeterminedf arelationshipexistsbetween track forecast ensemble speaadi

errorand, if so, the significance of that relationsHip.do soJinearregressiorandthe
associated correlatioare first used followed by random sampling from gamma distributions
once the histograms were found to be significantly Ganssian

A linearregressiorstatisticalfit wasusedto quantify therelationshipbetweerforecast
trackerrorandensemble spread #nalysesl and 2. Ther? valuesdepictthevariancein

forecasterrorthatcanbeattributedto theamount of ensemblgpread irthetrackforecast. This
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is usedasameasuref thecorrelationbetweernthetwo variables Statistical significance of
correlations will be given using p valugwo-tailed)throughout this paper.

Histograms of error disbutions conditioned on low, medium, and high ensemble spread
wereconstructedor forecasthours 12, 24, 36, 48, 72, 4d120 for Analysis 3. Toreatea
histogramfirst, for a given forecast houeyror valueswereseparatedhto tercilesof low,
medium, and high spread. Théor, eachtercile,eacherrorvaluewasseparatedhto a bin
definedby arangeof errorvalues. Thesebinsareplottedon theabscissa The number oferror
valuesthatfell within a given bindetermine thatbin'sfrequeng—which was plottedon the
ordinateaxis—therebydeterminingthedistributionof the histogramA total of 21 separate
histogramavere formedone for each of the spread groups (low, medium, and highpaad
forecasthours (12, 24, 36, 48, 72, 9 120). Themeanerror( [pandstandard deviation 1 of
theerror valuesvasdeterminedor each of the 21 histograms.

The histograms are characterizednoynnegative and asymmetric data that is skewed to
the right (positively skewed)-€haracteristic of a gamma distributiodsing at-teststatistic and
F-statistic to test for significance would reduce the reliability of resslthese tests assume
normally distributed data. Thus, the followialjernate statistical analysis was performed. Each
of the 21 spread/error histograms were standardized and made into probabilityfdecsins
(PDFs). Next, each of the 21 histograms (Figs. 2.3 ~wA8jit to a gamma distributigri(x).

Our null hypothesiss that the data can be represented ggmma distribution. Thequation

defining the PDF of a gamma-distributed random variable x is given by:

( TV@( ’?5)exp( F TV@
B U U

The shape of the histogram is defined byshape parameter, $ \becomes small .

BT BKNU U>0

<< 1) the distribution becomes skewed further toridjlet. As alpha becomes large !! WKH
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distribution approaches tlsdape of &aussian distribution. The plots that follow are indicative

of intermediate valuesof ZLWK YDOXHV RI . JUHDWHU WKDQ 7KH VK

1+ §1+4—&

“ 3
U= 48
The sample statistic, D, is given by the difference between theahbog of the given

distributioris mean error and the mean of the logs ofahier values:
a

&= In('I)§:%I' In (T

U@s
The distribution is stretched or squeezedW\KH VFDOH SDUDPHWHU JLYHC
. T8
1

A givengamma distribution’s unique characteristics, includingiésn and standard
deviation, determine the aboparameters-D, . D Q-@nd thus the PDF (Wilks 2005T.he
PDFs of thegammadistributed error values were calculated for each of the 21 histogiémas.
PDF that resulted from the error distribution of 12 hour forecasts with high spiaaing as an
example (Fig2.10). The original error distribution of 12 hour forecasts with high spread is also
shown in this figure (see green histogram) for comparison. Througxtmsple it is apparent
that the gamma distribution is an accurate representation of the data.

For each of the 21 histograms, a random gamma number generator was used to
subsample from the distribution and the corresponding mean error and standard deviagion of t
errorwere calculated This was donenultiple times (200 timesh order to obtain a list of 200
different values of mean errand 200 different values of standard deviation of mean €efie.
highest and lowest five valu€s% two tailed)of mean and standard deviation were removed

from the list. The range of these 190 values (out of the initial 200) was used torrefirese
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95%confidence intervals of mean and standardat®n. Differences among error distributions
with low, medium, and high spread were determined tddisscaly significant if there was no
overlap in values among adjacent 96éfifidence intervals.

2.3.3Determining True Sample Sizeand Sourcesof Error

Therearecaveatsn determining the sample size, N, in the statistical analysihere
representshetotal number offorecastf aspecificforecasthourfor all initialization timesof
all staomsconsideredn this study. N; decreasewith increasingorecasthourbecausehereare
instancegor which a stormis forecasto dissipateprior to,for example the 128 forecasthour.
N, is usedto calculatethe standardieviationandmeanerror. The number ofstorms,N, is used
asanothemwayto define thesamplesizewhenanalyzingdifferencesn themeanandvariance. It
should be notethatN; wasusedto calculatethe meanerrorandstandardieviation of theerror
for eachconfidencdevel,andthenN, (the more conservative M)asusedto obtain the 95%
confidencanterval in the calculations for statistical significance.

Thesestatisticaltestsassumeaacheventis independent of the other§heforecastsn
thedatasetof this experimentarenotentirelyindependent of one anotheFherefore thevalue
of N usedto representhetotal number of independestventsin thedistributionis not
completelyreliable. The use of N(thetotal number offorecastsnadefor agivenforecasthour
for all storms)in the statistical calculations asliberalapproach, for which there is high
interdependence amorayents. Fomstancethesix hourforecastof oneinitializationtime is the
first guesof theinitialization time for the next model runThe use oN, (thetotal number of
stormsfor which atleastoneforecastwasmadefor thatgivenforecasthour)in the statistical
calculationgs the mostonservativepproach, as theremsinimal dependence among events
However, thigs still notcompletelyreliableas a true measure of independent sample size
becausé¢hereis some dependene@enongthedifferentevents—or in this case—storms. For
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examplejf therearetwo stormssimultaneouslyn theAtlantic in closeproximity, theycan
influence each other'smotion—or may simply have similar steering patterighen all aspects
are considered, the “true” value of N most likely lies betwdeand N, but perhapsloser to
Ny, but is regardless unknowable.

Anothercaveatwith these analysas thatthe physicsof theGFSmodelchangedver
time. Somechanges that are timeost relevant to this study inclutlee following:increasing the
model resolution in 2004 aratjain in2010, incorporating a perturbed tropical storm vortex
relocation in 2005, and increasing the number of ensemble members from 14 to 20 itt 2006.
can be safely assumed that such changes to the model causesahahg resulting spread/error
relationshipamong forecast Track forecast error has reduced oer past yes, which
impacts the resulting error tercki@lues calculatkin this study. Te range of error values
forming the high error tercile would likely be lower if calculated separ&bellater years
compared to early years. In this study, the tercilgearare not distinguished among early or
late years.This would make it more likely for forecasts from earlier years in thee skt
analyzed to be categorized as having high error, and later years to beizadeg®having low
error. Additionally, it is possible that an even stronger relationship between spread and error
exists in the most updated version of the GEFS compared to earlier versions.

2.4 Results
2.4.1 Analysis 1:Storm Average Relationship

Table 22 shows the number of storms that fell into each spread/error category for when a
single, normalized average value of error and spread was assigned to eaclt.ctor
spread/low erromnedum spread/meidm error, and high spread/high error storms are the most
common. Track forecasts with lowpread among ensemble members, yet high resulting error

were rargthreeof 81 TCs). The population among the bins implteat an overallrelationship
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exists between GFS ensemble track spread and droaguantify anddetermine if this
relationship is statistically significanbe results werdisplayed graphically(Fig. 2.1) and then
analyzed A statistically significant positive correlation was observed betwasamble spread
and resulting track errpwith an f value of 0.61 (r=0.78; N=131; p<0.01).

2.4.2 Analysis 2:Storm AverageRelationship as a Function oforecast Hour

To determine if the above relationship holds true at short and long forecalss)engt
graphs of spread versus error were created for individual forecast hours (12 throughhkz).
values of each were determinaad plotted as a function of forecast hour (Fig. ZI2)e sample
size, N, is given by the total number of storms that contained at least one forecast from that
forecast hour Statistical significance between GFS ensemble track sprehérror is observed
for all forecast hours analyzed'he relationship is strongest forecast howr12 through 48. For
example, forecast hour 12 has amalueof 0.62 (r=0.79; N=131; p<0.01 In other words, the
spreadof the GFSensemblesccountdor 62% of thevariationin forecastirackerrors.

Although the relationshiptill shows significance to the §9ercentile for forecastours 72

through 120it is worth noting that the correlation becomes weaken. exampleforecast hour

120 has an‘rvalue of 0.31 (r=0.58Y=64; p<0.01), indicatinghatthespreadaccountgor 31%

of theerrorvariance As mentioned earlier, however, the forecaster applicability of thesesresult
are limited as there is considerable variamo®ng TC lifespan and the percentage of the time
TCs interact with land is small. Accordingly, we next examine the above relaponhen it is
broken down into individual 6hr forecast segments.

2.4.3 Analysis 3: Relationship as a Function of Forecastddr Considering Individual
Forecast Segments

The following analysis is summarized in TaBld. Whenforecasterrorwasconditioned

onensemble spread wasfoundthatmeantrackforecasterrorsincreasedrom low to medium
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to high ensemblé&ackforecat spreador all seven times analyzedhis is displayed
graphically in the histograms in Figures 2.3.9. Differencesn meanforecasterrorsare
statisticallysignificantto the 95% confidence levélthe confidence intervals (shown in Table
2.4) from adjacenspreadcategoriesio not overlap Differences in mean errors were statistically
significant among all three spregrbups for early foecast hours (12, 24, 36, and 48pr
forecast hours 72, 96, and 12@fatences in mean errors were satally significant between
medium and high spread groups and between low and high spread groups, but not between low
and medium spread groups.
Thefinding thatmeanerrorsincreaseas ensemble spread increasaonsistentvith that
of HO6. However,whereaghis study found 18 out of 2dasego bestatisticallysignificant,HO6
foundthatthedifferencesn themeanwereonly statisticallysignificantfor 11 of 21cases. Refer
to Section 1.4 for a discussionpdtentialreasons for these differerszencluding significantly
increased sample size here as well as a much more advanced version of the ensezhble mod
Higher values of standard deviationméanerror (shown infable 24) indicate a larger
range of error values exigiong forecasts in avgn spred groupfor a given forecast hour, and
vice versa It follows that statistically significant differences in values of standarchtiem of
error among spread groups imply significant differences in the rargyeonfvalues among
spread groupsBased orfindings from previous studies, ongghtexpecta larger range ierror
valueswhentrackforecastensemble spread is higRecall fromSection 1.3.1 that past research
concluded that high spread does not necessarily imply high error, bert ratfives an estimate
of the upper bound of error that one can exf@okerss 2000; AbersdtP98; Buizza and Palmer
1998) Thisargumentis partiallysupported by findings in this research, as high spread forecasts

had larger standard deviations of error values than both medium and low spreadsféoeedist
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forecast hours analyzed. Howeusgcause statistical tests showed thaan error values for

high spread forecasts were significantly larger than those of both low and nsmtesd

forecastdor all forecasthoursthis studystill conclude that there is atatistically significant
correlation between GFS ensemble spread and error. Howasvierecast time increases
differences in mean error amg spread groups become less significant, and standard deviations
of mean errommong spread groupgcome largerAll things considered, the amount of spread
for early forecast hours (through forecast hour 48), as opposed to later fomaasiserves as a
better predictoof the error that will radt.

From the above analysis, as ensemble forecast track spread increases, traskeomc
also tends to increase. Based on this, one would expect low spread/low error and high
spread/high error forecasts to be more common than low spread/high error and higffosprea
error forecasts. To quantify thisiet percentage of total forecasts that occurred in each of the
spread/error groups was calceldfTable 23). As expected, igh spread/high error and low
spread low/errowere two of the most commg@containing 23.2% and 16.8% of the forecasts,
respectively. Likewise, low spread/high error and high spread/low errortheeteo least
common, containing 4.4% and 1.4% of the total forecesspectively. The remaining 54.2% of
the forecasts contaad medium spread and/or medium error.

In summary, dspite thegenerakelationshipof decreasing errors with decreasing spread
there are still instances in which a low spread track forecast has a highTérese less
common, but troublesome situatidmghlight theneed to analyze why this occurs, and to
examine thelimatological, physical, anslynoptic pattern common to these situatj@ss

performed next
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Table 2.1:List of storms included in the analysis of this study. There are 131 stotoisli

Year Storm Numbers Exduded | Total Number of Storms
Included

2004 10, 12 14

2005 1-7,21 23

2006 2 9

2007 17

2008 17

2009 11

2010 4 20

2011 20

Total Number: 131

Table 2.2 Total number of storms in each spread/error group for when a single, normalized

average value of error and spread was assigned to each storm.

Low Error Med. Error High Error
High Spread 2 9 32 6=43
Med. Spread 11 25 8 6= 44
Low Spread 31 10 3 6= 44
6= 44 6= 44 6=43

Table 2.3: Percentage of total forecasts that occurred for each of the four spreadreums gf

interest. Note that medium spread and medium error groups are omitted.

Spread/ Error

Percent of forecasts

High Spread/Low Errorf 1.4%

High Spread/High Erro| 23.2%

Low Spread/Low Error| 16.8%

Low Spread/High Errorl 4.4%

Remainder

54.2%
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Table 2.4:Results for the analysis of individual six-hourly forecast hour segmentsy&iaa).
Tercile comparison table for theEESmean track forecast errors conditiongauspread

FCST HOUR 12Hr 24-Hr 36-Hr

SPREAD LOW | MED. | HIGH | LOW | MED. |HIGH ]JLOW | MED. | HIGH
No. of Fcst Hrs (Y 880 880 880 847 847 847 798 799 799
No. of Storms (B 133 133 133 128 128 128 121 121 121

Mean Error(n. mi.)-[0 25.9 36.9 65.( 44.4 5814 934 60.8 78.1 1]

St. Dev. of Error

(n. mi.)-1 14.1 18.9 27.9 24.3 28.6 37.0 32.8 34.3 49.1

95% Confidence 23.4-| 33.5-| 59.7- 40.1- 53.6- 86.4- 55.8- 71.3-] 110.2-

Interval ([D 28.3 39.7 69.5 48.3 62.9 98.7 65.8 83.5| 127.5

95% Conidence 12.3-| 16.2-| 23.9- 20.7- 24.1- 32.0- 27.9- 29.5-| 42.1-

,QWHUJYDO 1 16.4 21.8 32.6 28.4 32.7 42.4 38.0 39.8 57.0
Lvs. |Lvs. Mvs. | Lvs. L vs. M vs. L vs. L vs. M vs.
M H H M H H M H H

Significance in[D YES | YES YES | YES YES YES YES YES YES

SignificDPQFH LY NO YES YES | NO YES NO NO YES YES

FCST HOUR 48-Hr 72-Hr 96-Hr

SPREAD LOW | MED. | HIGH | LOW | MED. |HIGH JLOW | MED. | HIGH
No. of Fcst Hrs (Y 741 742 741 608 608 608 479 478 478
No. of Storms (B 110 110 110 96 96 96 83 83 83

Mean Error(n. mi.)-[[} 76.4 97.1| 145.9] 115.4| 133.2] 204.0] 1494 176.8] 267.9

St. Dev. of Error

(n. mi.)-1 41.0 43.9 64.8 68.0 61.3 90.5 88.9 97.4| 118.2

95% Confidence 69.3-| 89.1-| 133.5-] 100.9-| 121.0-| 185.8-] 129.3-| 155.9-| 242.1-

Interval ([D 84.2| 104.9| 157.8] 128.9| 145.2| 221.3] 167.9 198.4| 289.1

95% Confidence 33.9-| 36.8-| 54.5- 56.6- 51.0- 76.6- 68.8- 79.6-| 95.5-

,QWHUYYDO 1 498 52.3 76.7 80.0 715 105.2] 105.8 118.1| 1425
Lvs. |Lvs. Mvs. | Lvs. L vs. M vs. L vs. L vs. M vs.
M H H M H H M H H

Significance in[D YES | YES YES | NO YES YES NO YES YES

6LIJQLILFDQH NO YES YES | NO NO YES NO NO NO

FCST HOUR 120Hr

SPREAD LOW MED. HIGH
No. of Fcst HrgN,) 354 354 354
No. of Storms (B 64 64 64
Mean Error(n. mi.)- [D 190.5 228.1| 329.0

St. Dev. of Error (n. mi.)1 129.6 123.6 140.6

158.5- 200.5-| 296.1-
95% Confidencénterval (D] 221.7 254.1| 59.3

96.0- 97.7-| 110.8-
95% Confidence QW H ) Y D (56.4 155.3 174.2

Lvs.M|Lvs.H Mvs. H

Significancein [D NO YES YES

6LIJQLILFDQFH L{NO NO NO
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Error vs. Ensemble Spread
Atlantic Storms 20042011
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Figure 2.1: GFS ensemble forecast track error versus spread (n. mi.) for 131 Atlantis stor
from years 2004-2011.

R2 Value of Error vs. Spread for Fcst Hrs 12 - 120
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Figure 2.2: Graphs of spread versus error were created for individual forecast hours (1&throug
120). The 7 values of each were determined and plotted here as a function of forecasttmur.
sample size, B is given by the total number of storms that contained at least one forecast from
that forecast houilhe relationships statistically significant to the 99% confidence level for all
forecast hours (p<0.01).
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Figure 2.3: Histogram of 12-hr GFS ensemble mean track forecast error distributions
conditioned on low (yellow), medium (blue), and high (red) ensemble tpaekd
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Figure 2.4 As in Figure 2.3 except for 24 hours.
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Figure 2.5: As in Figure 2.3 except for 36 hours.
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Figure 2.6: As in Figure 2.3 except for 48 hours.

24



Fcst Hr 72

200
180
160 0 A
140 =
120
100
80 i OLow Spread

60

. . thth

0 0 O 90 20 20 (O fL\Q 1&0 ,7:\0 %QQ 330 360
GFS Ensemble Error (N. Mi.)

B High Spread
O Med. Spread

No. of Fcsts

Figure 2.7:As in Figure 2.3 except for 72 hours.

Fcst Hr 96
160
140
120

100 .
B High Spread

80 Tl O Med. Spread
60 OLow Spread

No. of Fcsts

40
20

_ Ml Lthth
R T S Y S NN

GFS Ensemble Mean Error (n. mi.)
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CHAPTER THREE

CLIMATOLOGICAL AND SYNOPTIC ANALYSIS OF
SPREAD/ERROR GROUPS

3.1 Introduction

In addition to the primary goal of quantifying the relationship between spreadrand e
anothergoal of this study is to identify climatological, physical, and synoptic patteatsead to
unique combinations @&&FS ensmble forecast track spread amda (Sections 2). While,
typically, a forecast with low spread among ensemitasslts in low error, the priatatistical
analysis alsehowed that this is not always the case. This is an issue from a forecast perspect
In a low spread forecastnsemble members agribat a TC will travel in a certain directio
forecaster using that model is more likely to make their official forecast follewntidel
guidance closely. If this low spread forecast ends up havghgehnror,it follows that the
forecaster whe@xcessivelytrusts” the model makes an incorrect forecast. If the TC is near
land, this scenario may cause certain communities to make unnecessary prepatate other
communities are left inadequately preparéfidhis combination occurs frequently, it can
undermine public trust in the forecast process given the forecaster mayatigdreguently
communicate undue confidence.

Four of the nine spread/error combinatians examinetierefor commonalites in the
climatological(e.g. geographicagndsynopticcharacteristis: Group 1)low spreadiigherror,
Group 2) high spread/loerror, Group 3) high spreakligh error, andGroup4) low spread/low
error. The analyses of these fogmoups have the gréest potential use to a forecastérhe
amount of spread tends to be used as a proxy for amount of confidence a forecastéehas in t

forecast guidance. This reasoning is justified bysthgéstically significant positive correlation
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observed between spread and error. The low spread/low error and high spread/hgyowsso
represent the situations when forecasters can follow this common way of thinkinger€ely,
the low spread/high error and high spread/low error graepsesent the cases thigviate from
the overall spread/error relationship, and this demands more exhaustive asaisia@a next.

3.2 Climatological Analysis
3.2.1 Geographical Location and Region Identification

Figures 3.1 — 3.4 plot the location of forecasts for a giveeaghierror group
distinguished by storm. Each storsrmarked bya unique color/shape combinatioBach

colored mark represesw different ensemble mean forecast from a different model run.

Of all forecastsn the data set, 4.4% are characterized bydpread/high errofTable
2.3). Although these forecasts are less common, their existence is troublesofoeccaster as
the guidance is most deceptivalditionally, there are 81 different storms (out of 18fal) that
appear at least once on the Ispread/high error map. In other words, 62% of the total storms
analyzed were found to have at least one low spread/high error forecast. Tleus, dhszed to

study the cause of such forecasts.

Figure3.1 plots the location of each low/spread higloreforecast.The three most
prevalent areas for a low spread/high error forecast to occur)dhe Gulf of Mexico along the
coast of Texas and Mexico (W - 100W, 2C°N - 3°N), 2) the outhwest Caribbean near the
border ¢ Nicaragua and Costa Ri¢80°W - 90°W, 10°N - 20°N), and 3 the western Atlantic
near the Bahamas and north of Cubaldispaniola(65°W - 75°W, 20°N - 30°N). These areas
will be referred to aRegions 1, 2, and 8gspectivelyin future discussion. The fact that these
misleadng forecasts are common near land is troubling. These three regions contaified 23.0

15.4%, and 11.2% of the total low spread/high error foregaspectivelyTable 3.1).Next, the
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number of different storms that fell within each of these regions was detdrn@fall of the

unique low spread/high error storms, 23.5%, 18.5%, and 21.0% fell within Regions 1, 2, and 3,
respectively. This demonstrates that a single storm was not being a reped¢iolfy populating

the box multiple timesRather, it suggesthat there nght be physical or synoptic patterns

common to these regions, driving the occurrence of these low spread/high erastirec

The high spread/low error combination is the least common forecast group. Only 1.4%
of all forecasts @ high spread/low error. There are only 61 different storms that populate the
low spread/high error forecast map, which is comprised of 455 individual forecgslsokiig
at the location map of storms distinguished by different st@Fiags 3.2)it can be seen thator a
given storm with an initial high spread/low error forecast, subsequent high spreaxtbr
forecasts are also likely to followln general, these forecastalthough sparse-are fairly
uniform in their distribution throughout the Atlantic. However, they are not observed in the
western Gulf of Mexico, and they are rare in the southwestern Caribbean. Thes ithat if a
forecast with high spread is observed in these regmedium tohigh error is likely to follow
which is usefuforecaster informatianAdditionally, high spread/low error forecasts are very
rare above 3. To focus on the mithktitude region near land, Region 4 will be identified as

the area above 38 and betweeB0°W - 75°W for future discussion.

High spreathigh errorforecastsareone of the most common spread/error combinations.
Of all nine spread/error groups, 23.2% of forecasts contain high spread and higFigtna.
3.3 shows the location of high spread/high error forecasts. Thesmeary denselypopulated
with these forecasts throughout the entire o@a@eptfor in and around Regionif the western

Gulf of Mexico. This Region 1 contained only 0.9% of the total high spread/high emoasts.
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This is a sharp contrast to tleaM spreadhigh error forecass which have the highest population

density in Region 1.

Low spread/lowerrorforecasts aranother likely spread/error combinati@f. all nine
spread/error groups, 16.7% of forecasts contain low spread and low error. Thesst$aaee
common throughout the Atlantic basin, in general. However, one particular area whetenthey
to be more densely populatedhisng theEastCoast of the United Stat€Big. 3.4). @all low
spread/low erroforecastsn the entire Atlantic basjré.5%areclustered in the smadlreafrom
75°W - 8C°'W, and 27N - 37°N. This area will be referred to as Region 5 in future discussion.

3.2.2 Time of Year
There is seasonal variability in the mean synoptic setup-latitude storm systems are

lessfrequent|ess amplified and typically don't dig into the subtropics or tropics during summer
months. Additionally, the polget stream is located further north in the sumnténally, TC
genesidocation varies with time ofear(Halperin et al. 2013) and genesischanisms also vary
considerably with time of year and location (McTagdaoivan et al. 208). Therefore, there is
considerable reason to suspect that there might be both spatial and temporal dgdeneech

of these spread/error combinatiori® see if these seasonal and climatological differences
contributed to the resulting spread/error group of the storm's forecastedmeJodian date was
calculated for all forecasts of each of the four spread/error groups. Nicsigndifferences

were four, as the mean Julian date among the four spread/error groups was within 12 calendar
days(Table3.2) and for 3 of the 4 combinations, there was nesstatl difference to the mean
Julian dates to 95% confidence. Thus, it is not necessary to sub&seestasonal synoptic

variations from the analysis.
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3.3 Physical Analysis
3.3.1 Topography

Regions 1 and Rave a unique featurthey border land marked by steep topography.
Rugged mountain ranges extend through Mexico, Belize, Guatemala, NicarajGasta Rica.
Mountains in Nicaragua range from 900 to 1,809 meters high, and thdexico, Belize,

Guatemala, and Costa Rica p@aer 2000 meters (CentralAmerica.com 2013; Kemper 2013).
The eastern border of these countries is adjacent to Regions 1 and 2—common locations for low

spread/high error forecasts.

Previous studies have shown that steep topography can impasttaack. As storms
approach mountains, the Idewel circuldion is blocked and deflectethe wind speeds are
increased as ais funneled between mountain ranges, and moisture convergence occurs along
the ocearfacing side of the mountain. These modifications have bleewn to impact storm
intensityand motion(Ritchie et al. 2011) Lin et al. (2005) suggests that a highesibdow
Rossby number and steeper terrain can lead to greater track deflectionsy Bysfiichng
(1982) found the mountainous terrain of Taiwan disrupted the low level circulation of an
approaching TC. The storm's direction of motion was then deterriiradrily by this modified
low-level circulation rather thramid-level steering currents. According to Yeh and Elsberry
(1993), mountain-induced disruption in the Itevel circulation can cause the winds to
decelerateand lead to southward track deflections. In other words, the presence of mountains
may lead to 8ernoulli-induced change in the pressure gradients, and thus, the steering flow
vector is changed. Jian and Wu (2088 ulaed a TC approaching Taiwan to explain how the

mountains led to a southward track deflection.
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Thus, based othesepast findings and the findings of this study, the high occurrence of
low spread/high error forecasts may be driven by the spefent of topography betwewiarm
water and terrain to the west, and thebiliy of the GEFS to account for steep terrain’s impacts
on TC motion. The low model resolution (T190) makes it difficult to resolve stroragterr
gradients. Additionally, work by Schenkel and Hart (2011) suggésitsl models with coarse
resolution may be unable to adequately resolve TCs initially near sharp tgadients.

3.3.2Intensity Change
It has been shown that intensity can impact TC motion. For instance, as TCyntensit

increases, the tropospheric depth through which its verticatsteuextends also increases
(Velden and Leslie 1991)From this, it follows that the vertical levaer which a TC is steered
varies depending on TC intensity witronger stormbeing steered by environmental winds
through a greater tropospheric depth. Goerss (2007) found that forecast intenbgyusad as

a praictor of forecast track error. When analyzing individual numerical modelasifound

that as intensity (both initial intensity and forecast intensity) incrdasssast track errors
decrease In the Gulf of Mexico, warm eddies with a high ocean heat content break offrfeom t
loop current (every six to 11 months) and propagate westward (at about three to five ky) per d
(TAMU 2013). Bender and Ginis (2000) discuss the importancecofrately representing the
ocean depth, topography, mixed layer depth, and thermocline in order to capture the agnospher
ocean interaction and mesoscale structure of the hurricihe.Caribbean Sea has a thicker
mixed layer, deeper thermocline, andgha high ocean heat cont¢®HC). It is possible that

such differences in OHC of the Caribbean Sea or Gulf of Mexico dedifficulty in predicting
intensity, and ultimatelysteering andgtorm track. An analysis was performed in this study to
deternine if intensity changes played a role in treck forecast’s resulting spread/error
classification.
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Intensity change is defined as the pressure drop (in hPa) from the previous 12 hours to the
current time. Histograms were created to show the nunilderexasts for which the intensity
change fell within a specified rang8eparate histograms were created for each of the four
spread/error groupsThis analysis was done several different ways. First, all foracast
were included in the calculatie (Intensity Analysis 1). Second, only forecasts out to 48 hours
were included in the calculations (Intensity Analysis IBjensity Analysis 3vas the same as
Intensity Analysis 2, only it was done three separate times for Regions 1, 2, and 4 ifigividua
No statisticallysignificant differences in the intensity change distributi@memoted among the
four different spread/error groups in any of the above analyses. Given this fihding, t
histograms were not included in the figures of this papes plossible that analyzing initial
intensity—not intensity change—might differentiate among the different spread/eowqpsy as
Goersq2007) found this to impact forecast error; however, this is beyond the scope of this study

3.4 Synoptic Analysis
3.4.1 Data and Methodology

Prior work has emphasized the critical role played by synoptic scale featur€ track
forecasting (Franklin et al. 1990; Shapiro and Franklin 1B&#nnanandMajumdar2011). In
this study, we seek to build uponghiyidentifying specific synoptic setughat mayplay a role
in definingthe TC’s track spread/errazombination. To do soysoptic differences among the
four aforementione@dpread/error groups are analyzesihg the ERA Interim Reanalygista
which is available from 1979 — June 2012 (Dee et al. 2011). It should be noted that reanalysis
data does not perfectly reconstruct the past synoptic environment. Meteorologirahtbbs
data is combined with shaorrmnumerical weather forecastsa data asimilation process to
provide an estimate of the past synoptic environme&helimited spatial resolution of data

combined with suboptimal data assimilation techniques leads to such an imperdgticsy
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reconstruction (Compo et al. 2011). Additionatlyere will be differences between the actual
synoptic environment and the GFS forecast synoptic environrinwever, since GFS forecast
fields through 120hr for over a decade were space prohibitive, we will use the ERA Int
fields in their place.

Figures 3.5 - 3.18howthe mean 30@Pawinds in knots (shaded) and height
field in metersifed contours) for all timeat which the specified spreadvor forecast lies within
the specified region. The spread/error group is specified in the title, anelibbn of interest is
indicated by the gredrox. The white contours show the standard deviation ohBa@beights.
The total number of forecasts and different storms that fell within the regiorersig the title
by Nt and N, respectivelyThe folowing synoptic pattern findings must be put into perspective,
as they do not guarantee a specific spread/eorabmation. These are only compositean
reanalysis fieldsand individual cases may not be represented by the mean. Additionally,
statistical testing is needed to determine significance in the folldwidigpgs, and is beyond the
scope of this study.

The 300 hPa level was chosen to analyze for several reasons. First, thiewgget-
stream can usually be analyzedlastievel. e jet stream mapthe evolution of the
trough/ridge pattern atpper-levels which in turn influences the synoptic setup at lower levels of
the atmosphere. Additionally, the 300 hPa level is further removed from the most paensie
the TCwhich reduces the storm-induced “noise” in the synoptic field. Finally, the flow at this
level isreasonablygeostrophic so the air flow parallels height contourkis reduces the need to
plot streamlines as well

Four of the fiveregions of interest are identified in this analyBlegions 1, 3, 4, and 5.

Regions 1 and 3 are focused on because of the high population density of troublesome low
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spread/high error forecasts. Region 4 is selected to isolate unique synotatestsdics in the
mid-latitudes near lad. Finally, Region 5 is focused on because of the cluster of low spread/low
error forecasts observed. All of these regions are also chosen for angtbgannreason: they
border landneaning storms in these locations are likely to impact life aruepo Note that

Regon 2 is excluded from this synoptic analysis; it is deep in the tropics and dominated by
relatively little change in the 30@Paheight and wind field. Topographic features are likely a
greater contributor than changes in the upper-tropospheric synoptic setup in Region 2.

3.4.2 Region 1 Analysig90°W - 100°W, 20N - 30°N)

There tends to be increased uncertainty track forecasthen a system is in weak
environmental steering flow which is common in the western Caribbean andf@®igikico
(NHC 2013b). Storms in Region areat alocation that can be steered either by the easterlies in
the tropics, or by westward propagating rtattude baroclinic systemsThis may contribute to
the high occurrence of low spread/high error ¢asgs.

Of all of the faecasts that occur withindgionl, low spread/low error and low
spread/high error areghmostcommon, high spread/high error forecasts are rare, and high
spread/low error forecasts are nonexis(@able 33). The population desity statistics in
Region 1 are much different than those of the entire Atlantic. For example, 17.4%caftsrin
Region 1 & characterized by low spread/high error, wheoads 4.4% of all forecasts in the
entire Atlantic are characterized by lowead/high error. Additionbl, 3.8% of forecasts in
Region lare characterized bygh spread/high error whereas 23.3%oapécastsn the entire
Atlantic are high spread/high error.

The staistics from Region 1 reveal that when (BES track forecassiwrongin the

western Gulbf Mexico, the ensembles tend to have low spréathenever the forecast was
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characterized by high ensemble spread, there was never resulting loim greoforecast. Thus,
if a forecaster sees high spread among the GFS biteseimn this region, the forecast is likely to
have high error (with respect to the GFS ensemble mean position).
Both low spread/low error and low spread/high error forecasts have a siradar m
synoptic structure with a trough over the eastern Pacific, a ridge ovemtha ¢&S., and
another trough near the east coast of the Ultre are slight differences between low
spread/low error and low spread/high error in the mean 300 hPa winds and heights over the
Pacific Northwest. For example, mean 300 hPa heights over the northern Rocky Maanetains
on average 50 meters lower for low spread/high error forecasts compared tooloferecasts.
Furthermore, the standard deviati@misieight are greater thd®0 meters for low spread/high
erra, whereashey are less than 50 meters for low spread/low error. The difference in mean 300
hPa winds over the northern Rockies between these two groups is up to 10 kts. These findings
suggest that a stronger baroclinic low upstream of Region 1 nmegeme cases-contribute to
the resulting high error given the initial low spread. Further statiséistd would need to be
performed to determine if the magnitude of these differences is signifidagardless of
whethersignificant differences in the mean are observed, because these synopaoackfier
between low spread/low error and low spread/high error forecasts aneelglatnall, these
findings alone are not enough to distinguish between the two groups on a case bgisase ba
The mean synoptic setup of low spread/low error and low spread/higliceacasts
differs from that ohigh spread/high errdorecasts which featurestrough over the south
central U.S. and a ridge along the east coasthe time ahigh spread/high errdorecastis
expectedd be in Region 1the mearB00hPatrough in the south central U.S. (extending from

the U.S. Southern Plains through central Mekis@pproaching the stornT he standard
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deviation height contours indicatéhata trough of greater intensity exists ims»of thesédnigh
spread/high error caseStandard deviations of height in this region are up to 100 meters.
These conclusions are derived from a large sample siz& Witrecasts/1 stormsfor
high spread/high error, 326 forecasts/19 stdonsow spread/high error, and 645 forecasts/16
stormsfor low spread/low errorHowever, as previously mentionddrther statistical analyses
would need to be done to test for significance in thesenfysdi
In summary, the population density of troublesome low spread/high error forecasts in
Regionl is alarmingly high. The ratio of low spread/high error to high spread/high error is
approximately 4:1 in Region 1, whereas this ratio for the entire Atlantic bagiprexanately
1:5, suggesting a 20-fold irease in the threat compared to the basin as a wbale to the
absence of high spread/low error forecasts in this region, a forecasteramfident when they
see a forecast with high spread in the track forecast among the GFS ensemithesfdhatast
is likely to have medium or high error (with respect to the GFS ensemble areaast
position). The main synoptic difference noted was that a mean 300 hPa ridgeates dver
and upstream of Region 1 in both low spread cases, whereas a méd&ta36fugh was located
over and upstream of Region 1 in the high spread/high error case. Therefore, it is frssible
this mean 300 hPa trough over the south central U.S. contributes to high spread/high error
forecasts in Region 1.

3.4.3 Region 3 Analysi¢65°W - 75°W, 20°N -30°N)

Forecast errors are typically smaller when a storm moves west or wéstestrand
larger when a storm recrgs and moves northward (NHC, 201@woerss, 2007). This &
possible explanation for theduster of low spreddigh errorstormsin Region 3. They likely

began on the southern edge of the subtropical ridge moving westward, and then approached the
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western edge of the ridge and began recurving toward théatricdes. This potentially
contributes to their low spad/high error classification.

Region 3 contains a high population density of high spread/high error forecasts and a
low population density of high spread/low error forecasts (Table 318 se findings are similar
to those of the entire Atlantic basi@ver the whole Atlantic Basin18% of forecasts are low
spread/low error while.4% are low spread/high errom other words, low spread/low error
forecasts are approximately four times as likely as low spread/highf@moastsDespite this,
the wo grous of forecasts are almost equally likelyRiegion 3; 8% of the total forecasts in
Region 3 are low spread/low error while 6% are low spread/high error (Tablé-808).
comparingFigure 3.1lwith Figure 3.4it can be seen thah Region 3there appears to be a
cluster of low spread/high error storms, but a lack of low spread/low error $ts€ozlative to
their overall distributions).These findings can patgally alert forecasters thatcomparedo
the rest of the Atlantic bastathis region tas a history of “misleading” forecasts.

A synoptic comparison of both low spread groups is executed in an attempt to find unique
patterns that determine whether a low adréorecast results in low or high error (Figs. 3.8 and
3.11). The mean synoptic set up of low spread/low error forecasts shows a stromgtedgeg
from the north to soutbentral Atlantic, immediately east of the low spread/low error forecasts.
It is likely that, on average, the steering flow of these storms is dominaters y1ahg upper-
level high pressure. There is a mean upges! trough upstream of these storms at the times
they are forecast to be within Region 3; the mean trough axis is along thra &€aSteoast from
New Yorkto Florida.

The synoptic setup of thesaa spread/low error forecagssin contrast to tat of thelow

spread/high error forecasts for which the mean trough axis intersectsti esaction of
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Region 3. This mean trough axis extends from the Canadian Maritimes, to the starthwes
Atlantic—which is approximately 1250 km further west of the low spread/low error meartroug
axis. The trough interaction is a likely cause of the low spread/high erroastia Region 3.
The trough-like shaped whistardard deviation height contoucenterecbver the trough axes in
both cases further supports the above, and suggests that the amplitude of the trouglgs can va
considerably.Despite thisstandard deviations of heighisoreveal individual cases for which
the low spread/high error trough is displaced further east of the mean troughvotildgesult
in a similar trough/ridge pattern between both low spread/high error and lowl/$prearror in
these individual cases. Thus, while distinction was noted in the mean synoptic seegnbetw
low spread/low error and low spread/high error, individual cases may not be replaseltey
the mean.

The synoptic set up of both high spread cal#fésrs fromthat of both low spread cases.
It features uppelevel ridging oveRegion 3 and the westeftlantic (Figs. 3.9 and 3.10)The
mean 30(hParidge is stronger for high spread/low error cases than for high spread/high error
cases. The mean flow is typically more zonal for the high spread/higlcases.

One important note about these findings is that the mean synoptic setup of high
spread/high error forecasts in this Region 3 (where &aB@Qidge was observed upstreasn)
much different than that of Region 1 (where a BB@trough was observed upstream of high
spread/high error forecastsyhis supports the method of identifying synoptic patterns by region,
as notable differences in the synoptic setup for specific spread/esupsgare found to occur

among different regions throughout the Atlantic basin.
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Theabove conclusions are derived from a substantial sample size with 9 (48), 17 (217),
17 (160), and 25 (658) storms (forecasts) for high spread/low error, low spread/IQuo@rror
spread/high error, and high spread/high eraspectively.

In summary of this region, the most ndeabnding was thathe location of the 300 hPa
trough may help a forecaster deterenif a track forecast with lowpread among the GFS
ensembles will result in low or high errof C/trough interactiorikely contributes to the
occurrence ofow spread/fgh error forecds in Region 3. Findings in this analysis led to
conclusions applicable to the synoptic analysis of all regions. Through a ceompaifrfindings
from Region 3 with those of Region 1, it was determined that it is useful to asgtyagic
setups by region. This is in part due to the fact that there are climatologysatgbhand
synoptic patterns unique to various regions that ultimately play a role in a T@d/sprer
classification.

3.4.4 Region 4 Analysis (>3%, 60°W — 75°W)

It has been shown that increasing poleward motion can detyeatdorecasting (Goerss
2007). Additionally, as storms move into higher latitudes they are subject to simqgeaesterly
upperievel flow and midlatitude frontal systems. An analysis of storms in higher latitudes was
done to assess if these chanigespper-level flow patterns amadcreasedaroclinicity playg a
role in the resulting spread/error combinatodra forecast

In Region 4, high spread/high error forecasts are the most common, occurriiga?6.4
the time. Low spread/low error forecasts are also common, occurring 13.8% of theHigte.
spread/low error and low spread/high efayecastsre the least common, occurring only%.7

and 2.7 of thetime, respectively(Table 33). These statistics are similar to those found for the
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entire Atlantic basin.Thus, the previously observed positive correlation between spread and
error holds true in this region.

The plots do not reveal any major differences among the 4 spread/error groups in the 300
hPaheight or wind fields upstream Region 4 (Figs. 3.12 — 3.15). The plots show meaRa300
ridging near the Rocky Mountains, and troughing near the east coast of the LlbSthélmean
maximum jet wind speeds and locations are simailaong the four groups, ranging from 60 to
70 knots and centered east of the U.S. East coast. It is likely that the subtle sjiffepticces
that do occur can be partially attributed to differences in sample size amomgups. @ther
analyses, or casgudies, would be necessary to distinguish among spread/error groups in the

middle and high latitudes.

3.4.5 Region 5 Analysi$75°W — 80°W, 27N — 37N)

In Region 5, low spread/low error and high spread/high arethe most likely
forecasts, as wdsund for the entire Atlantic basin. These forecasts occur 13.8% and 26.4% of
the time respectivelyin Region 5. Low spread/high error and high spread/low error forecasts
are very rare in Region 5even rarer than they are for the entire Atlantic. These forecasts occur
2.7% and 0.7% of the time, respectively (Table 3.3). This reveals an even stroiigex pos
correlation between spread and error in Region 5, with fewer cases deviatimipé overall
relationship.

The mean 300Paheights of forecas with resulting low error (high spread/low error
and low spread/low error) show a ridge upstream (along the U.S. East cobstyedion(Figs.
3.17 and 3.19). This is in contrast to the mean synoptic setup of high error forecasts (low
spread/high error and high spread/high error) which show a trough approaching ugsigsam

3.16 and 3.18). The standard deviation of the height contours show there is not much deviation
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from the mean trough ridge position, although the amplitude may vary. The melaR&800
trough is more pronounced in the high spread/high error mean synoptic analysis compared to the
low spread/high error analysis. Therefore, this supports the fact thatampstoeighs may
contribute to the high error in track forecasts for TCs located in this Regomatged along the
east coast of the U.S.

There is a sufficient sample size included in the high spread/high errosiamnvaity a
total of 235 different forecasfrom 15 different storms, and in the low spread/low error analysis
with 353 different forecastsom 10 different storms. The high spread/low error and low
spread/high error analyses, however, are not as robust. There are only 6adbmeud
different storms, and 12 foreca$tsm 4 different storms includedespectiely.

Given the small sample sizegse studies were done for each of the fow spread/high
error stormshurricane Noel (2007jropical stormCristobal (2008), hurricane Hanna (2008),
andtropical stormDanny (2009). For each storm, the synoptic pattern {B@0vind speeds and
height contours) was plotted at four evenly spaced intervals throughout the stesmanl The
storm’s locatio is indicated by a black ddtigs. 3.20 — 3.23).

We begin by analyzing the synoptic evolution iorricaneNoel. Forecasts of this storm
hadlow spread, yet high error occurring at each of the iowgs plotted FromTime 1—Time
2, the center of Noel traversed the mountainous terrain of Ragall from Seodvn 3.3.1 that
mountaingnfluence a track foireast. Also recall that this information combined with the
geographical analysis from Region 2 led us to hypothesize that mountains neagénithe
likelihood of low spread/high error forecasts. This hypothesis is supported lopskistudy.
HurricaneNoel then reemerged into the western Atlantic waters at which point an upper level

trough was located over the Florida peninsula and approaching the storm (Time 3).
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For both hurrican&loel andtropical stormDanny, an upper level trough developed over
the northwestern Gulf of Mexico. It amplified and became negativedyl tdt it propagated
eastward toward the storm. This synoggtupis in contrast to the mean synopgetupof the
low spread/low error forecasts, for which there is mean uppelfidging along the eastern
U.S. Therefore, in these cases, it is possible that the 300 hPa trough approachiagupstre
contributed to the low spread/high error classification of the forecasts for tnoitahe Noel
and tropical storm Danny.

Hurricane Hana, liketropical stormDanny, interacted with a strong upper level affit-
low. However, the cut-off level low that interacted with Hanna was centeredheveorthern
Atlantic and extended deep into the subtropics. Hanna continued to have lowsgheawtor
forecasts after this trough passed to the east. A possible reason fotltikighly progressive
and amplified flow. By ime 4, a strong ridge built in ovelanna in the western Atlantic.

Unlike the previous three storms mentioned, trd@t@amCristobal did not interact with
anupper level trough and was not embedded within amplified uppelflow. Rather,
Cristobal was located in the center of a strong upper-level high, and tHatitide flow was
zonal from Time 1 through Time 4Lhis reveals that although troughs interacting with the storm
may increase the likelihood of a low spread/high error forecast, a low spréaelfugforecast
may still occur in their absence.

Therefore, although there are differences in the mean dach case is unique. An
approaching trough may increase the likelihood of resulting high error in thaggreowever,
in and of itself, it cannot be used to determine the resulting spread. Other riaasbise

analyzed in context of the storm.
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In summary of Region,%n even stronger positive correlation between error and spread
is observed. For exampleforecaster may be guided by the fact lbvatspread among GFS
ensemble member tracks through Regioasuls in low error96.7% of the time, and results in
high error only 3.3% of the time. The most notable synoptic observation was that ateupper-
trough along the east coast of the U.S. (upstream Region 5) may contributettadkginrorfor
a TC located in Region 5. However, casel&si revealed that low spread/high error forecasts
may occur in the absence of a nearby upper-level trough. Thus, the trough/ridgegzds not
guarantee a certain spreadde classification for a TC tck forecastind further work is needed
to refine these patterns

3.4.6 Simultaneous TCs
It has been documented that interaction among simultaneous TCs degrades track

forecasting (Carr and Elsberry 2000). Brand (1970) determined@satithin 1450 km (783 n.
mi.) are close enough to interact witlckather. This interaction frequently causes significant
changes in the translation speed and directiofCs# However because of the TCs ability to
impact the synoptic scale circulation over a broader dis@amténdirectly impact distant TCs
this threshold was relaxed slightly. Storms less than 2000 km (1050)refreach other were
included in the analysis. The term “simultaneous TCs” will be used below tabadeany time
there are two Atlantic TCs within less than 2000 km of each other.

Thefirst analysis determines the spread/error combination that is likely b fiastimes
during which there are simultaneous TCs. There were a total of 292 forectstsctireed when
two simultaneous TCs existed. Of thémecasts56 (19.21%) had lownsemble speal yet
resulted in high errod 8 (6.2%) hadlow spread and low error, and 7 (Z4phadhigh spread
and high error (Table 3)4 The other 72.2% of the forecasts were characterized by one of the
other 5 error/confidence classifications @ning either medium spread or error. Thus,
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simultaneous TC forecasts are most likely to be charaeteby low spread/high error.
However, such occurrences are ra®shown next.

A second analysis was done to determine how often simultaneous TCs occur, shown in
Table 35. This calculates the percentage of total forecasts of a given spreagteumthat
were within less than 2000 km of a second TC. Of the 1418 low spread/high error forecasts, 56
forecastoccurred when there were simultaneous T&83% of the time). Contrarily, none of
the 455 forecasts with high spread/low error occurred when there were sgpulsal Cs.Of the
5893 low spread low error forecasts,fbB2castg0.31%) occurred when there were
simultaneous TCs. Of the 7504 high spread/high error forecdst®castg0.09%) occurred
when there were simultaneous TCs. Although low spread/high error forecasis hidéaheous
TCs present for a slightly higher percentage of the time compared to thgmaiihes these
percentageare very small. This leads to the conclusion that, although simultaneous TCs may
significantlyincrease the likelihood of a misleading (low spread/high error) forecast,rithey a
sufficiently rare occurrences that other factors must be analyzed to detehmiresulting
spread/error combination. However, if a forecaster knows that simultaneousgi3iCthe
finding from Analysis 1 shows that approximately one in five times, the foredabew
characterized by low/spread highaetr This is considerdphigher than the rate for that

combination for the basin as a whole (on&®3 times).

45



Table 3.1:Percentage of the specified spread/error groigpés forecasts that fall within the
specified region. For example, of all low spread/highrdioecastsn the entire Atlantic basin,
22.99% are located in Region 1.

Spread/Error Group Region 1 | Region 2 | Region 3 | Region 4 | Region 5
Low Spread/High Error 22.99 15.37 11.28 3.39 3.89

| High Spread/Low Error 0.00 1.10 10.55 2.86 0.78

| High Spread/Hip Error 0.95 3.12 8.77 6.22 15.24
Low Spread/Low Error 11.8p 12.9 4.00 4150 q51
Low Spread/Low Error 11.89 12.09 4.00 4.50 6.51

Table 3.2:Mean Julian and calendar day of spread/error groups.

Low Spread/ Low Spread/ High Spread/ High Spread/
High Error Low Error Low Error High Error
Mean Julian
Day 251 241 253 253
Mean Calendar
Day Sept 7 Aug 28 Sept 9| Sept 9|
St Dev(days) 33 35 24 33
95%
Confidence
Interval 249-252 240-242 251-256 252-254
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Table 3.3:Percentage of forecasts in the specified region with the specified spread/erro
combination. For example, 17.42% of all forecasts in Region 1 are characterized by low
spread/high error. The remaining forecasts contain medium spread and/or medium er

Spread/Error Group Region1l | Region2] Region3d Regionf Regionp
Low Spread/High Error 17.4p 9.18 5.4 2]71 q78
| High Spread/Low Error 0.0b 0.41 1.y2 0J73 3189
| High Spread/High Error 3.7p 9.45 23.pl 26|37 13.24
Low Spread/Low Error 34.4y 27.42 7.¥9 13|78 24.89
Remainder 44.32 52.51 61.14 56.41 57.p0

Table 3.4:Percentage dbtal simultaneous TC forecasts that fell within each of the specified
spread/error groupgi-or example, given that there are simultaneous TCs, 19.21% of the time the
forecast will be characterized by I@pread/high error.)

Low Error High Error

High Spread 0.00% 2.43%

Low Spread 6.22% 19.21%

Table 3.5: Percentage ofotal forecasts of a given spread error group that were within less than
2000 km of a second TC (characterized by hasingultareous TG). (For example, a low
spread/high error forecast will be characterized by simultaneous TCs 3.98&4tiofi¢.)

Low Error | High Error

High Spread 0.00% 0.09%

Low Spread 0.31% 3.93%
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Region 3

Region 1

Region 2

Figure 3.1: Location of low spread/high error forecasts. Each storm is marked by a unique
color/shape combination. Each colored mark represents a different ensemblenaeast from

a different model run. The boxed regions denote Regions 1, 2, and 3—Ilocations where low
spread/high error forecasts have a high population density.

48



Region 4

Figure 3.2: As in Figure 3.1 except fdrigh spread/low error forecasiad for he boxed area
denotes Region 4+the midlatitudes along the U.S. east coast where there is a low population
density of high spread/low emorecasts.
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Figure 3.3: As in Figure 3.1 except for high spread/high error forecasts.
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Region 5

Figure 34: As in Figure 3.1 except foolw spread/low error forecasasd for the boxedrea
denoteRegion5—where low spreattiw error forecasts have ah population density, and low
spread/high error forecasts have a low population density.
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Figure 3.5: Plot of the mean 300 hPa winds in knots (shaded) and height field in metkrs (
contours) for all times at which a low spread/high error fotdimsswithin Region 1940°W -
100°W, 20°N - 30°N), highlighteldy thegreen box. The white contours show the standard
deviation of 300 hPa heights. The analysis consists of 326 individuabsiky forecastsN;)
and 19 different storms gNthat fell within Region 1.
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Figure 3.6:As in Figure 3.5 excefor high spread/high error forecasand except for the
analysis consists afl individual six-hourly forecast${) and11 different stormgNy) that fell
within Region 1.
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Figure 3.7: As in Figure 3.5 except for low spread/leworand except fortte analysis consists
of 645 individual sixhourly forecastsN;) and 16different stormgNs) that fell within Region 1.
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Figure 3.8: Plot of the mean 300 hPa winds in knots (shaded) and height field in meters (
contours) for all times at which a low spread/high error forecast liegwviRegion 3 (65°W -
75°W, 20°N - 30°N), highlighted by the green box. The white contours show the standard
deviation of 300 hPa height Theanalysis consists of 160 individual wurly forecastsN;)
and 17different stormsNs) that fell within Region 3.
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Figure 3.9:As in Figure 3.8 except for high spread/low eand except fortte analysis consists
of 48 individual six-hourly foecastsN) and9 different stormsNs) that fell within Region 3.
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Figure 3.10:As in Figure 3.8 except for high spread/heghor and except fohe analysis
consists of 658 individual sikeurly forecastsN;) and 25different stormsi) that fel within
Region 3.
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Figure 3.11:As in Figure 3.8 except for low spread/low ermod except fortte analysis consists
of 217 individual sixhourly forecastsN;) and 17different stormsNs) that fell within Region 3.
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Figure 3.12:Plot of the man 300 hPa winds in knots (shaded) and height field in megsts (
contours) for all times at which a low spread/high error forecast liagwRegion 4 ¥35°N,

60°W - 75°W), highlightedby thegreenbox. Thewhite contours show the standard deviation of
300 hPa heights. The analysis consists of 48 individudiaixly forecastsN;) and Sdifferent
storms WNy) that fell within Regior.
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Figure 3.13:As in Figure 3.12 except for high spread/low eeod except for the analysis
consists of 13 individal six-hourly forecastsN;) and 7 different storms @Nthat fell within
Region 4.
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Figure 3.14:As in Figure 3.12 except for high spread/high earat except for the analysis
consists of 467 individual sikeurly forecastsN;) and 27 differenstorms [Ny that fell within
Region 4.
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Figure 3.15:As in Figure 3.12 except for low spread/low emod except for the analysis
consists of 244 individual sikeurly forecastsN;) and 18 different storms Nthat fell within
Region 4.
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Figure 3.16: Plot of the mean 300 hPa winds in knots (shaded) and height field in metkrs (
contours) for all times at which a low spread/high error forecast liggwvRegion J75°W -
80°W, 27°N - 37°N), highlightetly thegreen box. The white contours show the standard
deviation of 300 hPa heights. The analysis consists of 12 individulabsnky forecastsN;) and
4 different storms (N that fell within Region 5.
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Figure 3.17:As in Figure 3.16 except for high spread/low emod except fortteanalysis
consists of 60 individual sikeurly forecastsNs) and 5 different storms Nthat fell within
Region 5.
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Figure 3.18:As in Figure 3.16 except ftigh spread/high errcand except for the analysis
consists of 235 individual sikeurly fore@sts ;) and 15different stormsNs) that fell within
Region 5.
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Figure 3.19:As in Figure 3.16 except for low spread/low emnd except for the analysis
consists of 353 individual sikeurly forecastsN;) and 10 different storms (Nthat fell withn
Region 5.
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Figure 3.20:Plots of the mean 300 hPa winds in knots (shaded) and heighinfieletersred
contours) aftour evenly spaced time intervas € d. This is an analysis dfurricaneNoel—a
storm with low spread/high error forecasts in Regidd®W - 80°W, 27°N - 37°N), highlighted
by thegreenbox. The storm’s position at the given time is indicated by the black dot.
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Figure 3.21: As in Figure 3.20 except fdr.S. Cristobal
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Figure 3.22: As in Figure 3.2@xcept forhurricane Hanna.
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Figure 3.23: As in Figure 3.2@xcept forT.S.Danny

70



CHAPTER FOUR

CONCLUSION AND FUTURE WORK

4.1 Statistical and Synoptic Conclusions

The forecast track spread among ensemble members tends to be used asoa fhr@xy f
amount of confidence a forecaster has engbidance A forecaster typically feels more
confident in the guidance when there is low spread among ensemble member ¢@ast$or
However, there are instances where a low spread forecast results inrbighAgiorecaster
following this common way of thinking and relying on these ensembles is likely thege
forecast wrong.

The first goal of this research was to quantify the relationship betwessag track
spread and error, to determine if spread is a good proxy for confidence. Addifiarasiought
to determine how often these troublesome low spread/high error forecastsas well as other
combinations of spread and error. To determine thisGH®@wasusedto analyzethe forecast
track spread and erréor 2004-2011Atlantic TCs. Error and spread were evaluated first for the
storm as a whole, second alsiaction offorecasthour for each TC, and third for each six-hourly
forecastsegmentor each storm.For each of the three analyses, terciles of both spread and error
were detemined, giving ime error/spreacdombinations.

The second goal of this research was to idefdifyors associated with unique
spread/error combination€limatological, synoptic, and physicataracteristiswere examined
for four of the nine combinations: high spread/hegtor,low spreadow error, high spreatiow
error,andlow spread/higlerror.

Mean track forecast error increased with higESensembldorecast traclspread.In

Analysis —wherestormaveragevalues of error and spreackre cosidered—we found a
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significant positive correlation between error and spread withwaiue of 0.61 (p < 0.01).In

Analysis 2—wherethe storm average spread/error relationship evolution as a function of forecast
hour was observedastatistically signiicant positive correlation was fourfdr all forecast

hours analyzed (12 — 12Gjth r* values ranging from 0.31 to 0.681 Analysis 3—where

individual forecast segments as a function of forecast hour were considegeterally

statistically significanpositive correlation existed. Random sampling within the gamma
distribution revealed statistical significance in 86%haf 21spread/errocomparisons.

Therefore the GFSensemblespreadnay oftenserveasa good indicator athe eventual
forecasterrar. However,ensemblepreadalonedoescannot completely depigthatthe GFS
errorwill be. Further, these results do not suggest what the sign of the error (whether the
eventual track is likely to be left or right of the forecast) even when teadfgror relationship
is strong. For example, although rare, forecasts with low spread/higloectord.4% of the
time and those with high spread/low error occur 1.4% of the tByeconsidering
climatological,physical, and synoptic factorsfaecastemight haveabetterunderstanding of
theerrorthatwill resultfrom aparticularGFSmodelforecast in certain instances.

For instance, there is a higher likelihood of a low spread/high error forecastwde
tropical cyclones exist simultaneously withess than 2000 km. @ in five timesthe track
forecast of simultaneous T@sll be characterized bpw spread and high error.

Threeregions were identified venetroublesome low spread/high error forecasts tend to
occur. Region 1) the Western Gulf Mexico along the coast of Texas and MexiRegion2)
the Western Caribbean along the coast of Nicaragua and Costa Rica, and3Rdgoivestern

Atlantic near the Bahamad.he east coast of the U ffom north Florida to the middtlantic
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(Region 5 wasidentified as a region where there is an even stropgstive correlation
between error anspread

In Region 1, wmenever the forecast was characterized by high ensemble spread, there was
never resulting low error in the forecast. Thus, if a forecaster sees higth apreag the GFS
ensembles in this region, the forecast is likely to have high error (with tésghe GFS
ensemble mean position). Additionally, TC/trough interaction in this region is lixédad to a
high spread/high error forecast

Regions 1 and 2 border rugged mountain ranges that extend tiMexgio, Nicaragua,
Costa Rica, and Guatemal&teep topography has been shown to impact TC track. Thus, the
frequent occurrence of low spread/high error forecasts in these regions ohag/ tothe
inability of the GEFS toaccount for the impacts of mountainous terrain stretching from Mexico
to Costa Rica on TC motion.

The mean 300 hPa height and wind field distinguishes the low spread/low error from the
low spread/high error forecastsRegion 3. The mean trough axia low spread/high error
forecasts in Region 3 extends from the Canadian Maritimes, to the southwektatit-At
which is approximately 1250 km further west of the low spread/low error meamtagigy The
trough interation is a likelya common cause of the low spread/high error forecast in Region 3.

These findings are based on observations ahtgnsynoptic setup. Individual cases
may not be represented by the mean. Many of the synoptic findings in thicheserely
serve as a starting point in identifying the various fadtmscontribute to a forecasts’ defining

spread/error combination.
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4.2 Future Work
It should be noted that past studies found models other than the ai€EB-as the

Canadian Meteorological Centre (CMC), theited KingdomMeteorologicalOffice (UKMO)

(Hamill 2011), and a consensus of models (Hauke 2006)—to have a stronger positive@orrelati
between error and spread. Thus, future research could identify the spreadadromstep of,

for example, a consensus of models so that unique climatological and synoptic tattoes c
identified among the spread/error groups.

Additional climatological, synoptic, physical, and sub-synoptic analyses anuhcsons
among the various spread/error groups could help a forecaster determine iflbigtemor will
result in a particular GFS ensemble forecédtre specifically, by considering factors
including—but not limited te—vorticity, moisture, and motion vector, it may be possible for a
forecaster to better understand when a low spread forecast will result in loighStatistical

testsare needed to te&dr significance in thesynoptic analysifindings.
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