You are here

Collective Dispersal Leads To Variance In Fitness And Maintains Offspring Size Variation Within Marine Populations

Title: Collective Dispersal Leads To Variance In Fitness And Maintains Offspring Size Variation Within Marine Populations.
3 views

Inaccessible until Mar 1, 2019 due to copyright restrictions.

Name(s): Burgess, Scott C., author
Snyder, Robin E., author
Rountree, Barry, author
Type of Resource: text
Genre: Journal Article
Text
Journal Article
Date Issued: 2018-03
Physical Form: computer
online resource
Extent: 1 online resource
Language(s): English
Abstract/Description: Variance in fitness is well known to influence the outcome of evolution but is rarely considered in the theory of marine reproductive strategies. In coastal environments, turbulent mesoscale eddies can collect larvae into packets, resulting in collective dispersal. Larvae in packets return to the coast or are lost offshore in groups, producing variance in fitness. Using a Markov process to calculate fixation probabilities for competing phenotypes, we examine the evolution of offspring size and spawning duration in species with benthic adults and pelagic offspring. The offspring size that provides mothers with the highest mean fitness also generates the greatest variance in fitness, but pairwise invasion plots show that bet-hedging strategies are not evolutionarily stable; maximizing expected fitness correctly predicts the unique evolutionarily stable strategy. Nonetheless, fixation can take a long time. We find that selection to increase spawning duration as a risk avoidance strategy to reduce the negative impacts of stochastic recruitment success can allow multiple offspring sizes to coexist in a population for extended periods. This has two important consequences for offspring size: (1) coexistence occurs over a broader range of sizes and is longer when spawning duration is longer because longer spawning durations reduce variation in fitness and increase the time to fixation, and (2) longer spawning durations can compensate for having a nonoptimal size and even allow less optimal sizes to reach fixation. Collective dispersal and longer spawning durations could effectively maintain offspring size variation even in the absence of good and bad years or locations. Empirical comparisons of offspring size would therefore not always reflect environment-specific differences in the optimal size.
Identifier: FSU_libsubv1_wos_000427588400006 (IID), 10.1086/695879 (DOI)
Keywords: environments, trade-off, adaptive dynamics, aggregated dispersal, bet hedging, chaotic genetic patchiness, cohesive dispersal, coral-reef fish, egg size, evolutionary ecology, kin aggregation, life-histories, reproductive success, reproductive variance, seed dispersal, turbulent dispersal
Publication Note: The publisher's version of record is available at https://doi.org/10.1086/695879
Persistent Link to This Record: http://purl.flvc.org/fsu/fd/FSU_libsubv1_wos_000427588400006
Owner Institution: FSU
Is Part Of: American Naturalist.
0003-0147
Issue: iss. 3, vol. 191

Choose the citation style.
Burgess, S. C., Snyder, R. E., & Rountree, B. (2018). Collective Dispersal Leads To Variance In Fitness And Maintains Offspring Size Variation Within Marine Populations. American Naturalist. Retrieved from http://purl.flvc.org/fsu/fd/FSU_libsubv1_wos_000427588400006