You are here

Horizontal mixing in the Southern Ocean from Argo float trajectories

Title: Horizontal mixing in the Southern Ocean from Argo float trajectories.
Name(s): Roach, Christopher J., author
Balwada, Dhruv, author
Speer, Kevin, author
Type of Resource: text
Genre: Text
Date Issued: 2016-08
Physical Form: computer
online resource
Extent: 1 online resource
Language(s): English
Abstract/Description: We provide the first observational estimate of the circumpolar distribution of cross-stream eddy diffusivity at 1000 m in the Southern Ocean using Argo float trajectories. We show that Argo float trajectories, from the float surfacing positions, can be used to estimate lateral eddy diffusivities in the ocean and that these estimates are comparable to those obtained from RAFOS floats, where they overlap. Using the Southern Ocean State Estimate (SOSE) velocity fields to advect synthetic particles with imposed behavior that is "Argo-like'' and "RAFOS-like'' diffusivity estimates from both sets of synthetic particles agreed closely at the three dynamically very different test sites, the Kerguelen Island region, the Southeast Pacific Ocean, and the Scotia Sea, and support our approach. Observed cross-stream diffusivities at 1000 m, calculated from Argo float trajectories, ranged between 300 and 2500 m(2) s(-1), with peaks corresponding to topographic features associated with the Scotia Sea, the Kerguelen Plateau, the Campbell Plateau, and the Southeast Pacific Ridge. These observational estimates agree with previous regional estimates from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) near the Drake Passage, and other estimates from natural tracers (helium), inverse modeling studies, and current meter measurements. These estimates are also compared to the suppressed eddy diffusivity in the presence of mean flows. The comparison suggests that away from regions of strong topographic steering suppression explains both the structure and magnitude of eddy diffusivity but that eddy diffusivities in the regions of topographic steering are greater than what would be theoretically expected and the ACC experiences localized enhanced cross-stream mixing in these regions.
Identifier: FSU_libsubv1_wos_000386912700011 (IID), 10.1002/2015JC011440 (DOI)
Keywords: Circulation, drifter data, eddy diffusivity, pacific-ocean, scales, suppression, surface, variability
Publication Note: The publisher’s version of record is available at
Persistent Link to This Record:
Owner Institution: FSU
Is Part Of: Journal of Geophysical Research-Oceans.
Issue: iss. 8, vol. 121

Choose the citation style.
Roach, C. J., Balwada, D., & Speer, K. (2016). Horizontal mixing in the Southern Ocean from Argo float trajectories. Journal Of Geophysical Research-Oceans. Retrieved from