Initial Development of a Procedural Guide for Implementing Response to Intervention with Gifted Elementary School Students

Stephanie Glenn Robertson
INITIAL DEVELOPMENT OF A PROCEDURAL GUIDE FOR IMPLEMENTING RESPONSE TO INTERVENTION WITH GIFTED ELEMENTARY SCHOOL STUDENTS

By

STEPHANIE GLENN ROBERTSON

A Dissertation submitted to the Department of Educational Psychology and Leadership Systems in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Degree Awarded:
Summer Semester, 2012
Stephanie Robertson defended this dissertation on December 5, 2011.

The members of the supervisory committee were:

Steven Pfeiffer
Professor Directing Dissertation

Chris Schatschneider
University Representative

Angela Canto
Committee Member

Frances Prevatt
Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies that the [thesis/treatise/dissertation] has been approved in accordance with university requirements.
I dedicate this effort to my husband, Troy Robertson whose intellectual curiosity inspired me to pursue this line of research.
ACKNOWLEDGEMENTS

I would like to acknowledge Dr. Steven Pfeiffer, my major professor and mentor for his dedication to this project and his guidance at each step. He allowed me to venture into new territory, in terms of research, and he provided me with the tools I’d need in order to be successful. I’d also like to acknowledge Joyce VanTassel-Baska and Rachel Brown-Chidsey, from whose work I drew my inspiration, and Lauren Hutto, whose lectures on RtI made me a believer. I’d like to thank my committee members, Dr. Steven Pfeiffer, Dr. Frances Prevatt, Dr. Chris Schatschneider, Dr. Briley Proctor, and Dr. Angel Canto for helping to shape this project by offering their indispensable feedback, their time, and their energy. A big thanks, as well, to my participants at all three phases who dedicated at least an hour to reading my document and answering my questions. They are a very busy group, and their time was a valuable gift.

I’d like to acknowledge my parents who have been ceaseless cheerleaders. My mother: a bold and inspiring teacher who manages to face each day with grace despite her ever changing curricula and ever expanding class sizes, and my father who helps me find solutions to problems by offering me the opportunity to “talk like we sometimes do.” Finally, I’d like to acknowledge my husband Troy. His fierce support has allowed me to confidently pursue this line of research, and his creativity and intellectual curiosity are constant inspirations.
TABLE OF CONTENTS

List of Tables vii
Abstract viii

1. INTRODUCTION 1

2. REVIEW OF THE LITERATURE 4
 2.1 American Student Performance 4
 2.2 Response to Intervention 7
 2.2.1 Definition, Theory, and Best Practices 7
 2.2.2 Traditional Populations 9
 2.2.3 Criticisms/Limitations 9
 2.3 The Gifted Student 11
 2.3.1 A Brief History of IQ 12
 2.3.2 Gifted Education 13
 2.3.3 Current Conceptualizations of Giftedness 14
 2.3.4 Funding and Support 17
 2.3.5 Best Practices in Gifted Curricula 18
 2.4 Gifted Underachievement 21
 2.5 Student Motivation 24
 2.6 Gifted Curriculum Development 26
 2.7 Response to Intervention and the Gifted 28
 2.8 Next Steps 30
 2.9 Study 33
 2.10 Operational Definition of Terms 33

3. METHODS 35
 3.1 Product Development 35
 3.2 Phase I 36
 3.3 Phase II 36
 3.4 Phase III 37
 3.5 Content, Construct, and Face Validity Measurement 39
 3.6 Addressing Potential Threats in Qualitative Research 42

4. RESULTS 44
LIST OF TABLES

1. RtI Content Validity
 Page 49

2. Gifted Content Validity
 Page 51

3. Engagement, Accessibility, and Usability
 Page 53

4. Curriculum Quality
 Page 55

5. Overall Assessment
 Page 56

6. Qualitative Feedback
 Page 59
ABSTRACT

In recent years, a focus on individual student needs has set the stage for tailoring educational interventions to address issues of students who are not working up to educational proficiency standards outlined in the No Child Left Behind (NCLB) legislation. Luckily, this change also opens the door to meeting the needs of students who are not working to their potential in the classroom. A report commissioned for the U.S. Department of Education (1993) reports that gifted students have already mastered 33-50% of material to be studied in a school year before the year even starts. Unfortunately, these same students spend the majority of their school days in regular education classrooms without modifications or accommodations to the curriculum. In addition, research indicates that gifted students allowed to work on additional material instead of maintaining the pace of the rest of the class actually performed better on end-of-the-year testing in math and science than gifted controls that did not pursue additional work (U.S. Department of Education, 1993). Further, the gifted students who engaged in independent study performed no differently in other subject areas. The implication is that one method of improving student math and science performance is to allow for accelerated and/or enriched curricula.

RtI establishes differentiated curriculum as the standard, rather than the exception, and could be used as a method to address the issue of American student underperformance in a scientific and systematic manner by focusing on early engagement leading to increased student motivation. Recommendations for use of RtI with the gifted are beginning to emerge in the literature (Hughes and Rollins, 2009; TAG, 2009; Brown and Abernathy, 2009), though no specific procedural guidelines have been published that guide the adaptation of the RtI model to meet the needs of gifted students. This paper applies the problem-solving method central to RtI to the gap between American student performance and world economic demands. It goes on to offer a potential remedy to the problem: a specific procedural guide for implementation of the RtI model with gifted students that was presented to both practitioners in the schools and experts in both RtI and Gifted Curriculum and Instruction for initial validation and qualitative feedback.
CHAPTER 1
INTRODUCTION

American education is at an exciting crossroads. Technology has changed the face of education and will continue to impact and evolve the American educational system in years to come. Technology evolves at a blisteringly rapid pace. Consider the computer: thirty years ago, computers were housed primarily on university campuses and often filled entire rooms. Now, computers powerful enough to perform complicated calculations, run games, stream television shows, store an entire library of music, access the internet, and provide nearly unlimited communication via e-mail, telephone, and video-conferencing are small enough to be carried in the pockets of millions of individuals worldwide. Developments in medicine, physics, and chemistry have progressed along similar lines. Compared to biological evolution, the speed is astounding.

This technological evolution is powered, in large part by people; and America, with its financial, ecological, and human resources, is poised to lead the world into incredible new territory or stand by while countries like India, China and Japan lead the way. The economic and safety benefits of leading in the rapidly changing world economy are large, but the costs of allowing ourselves to be outpaced are far greater.

Unfortunately, America is falling behind. In 1997, college graduates in Asia accounted for over 43 percent of all engineering and science degrees granted worldwide. Europe accounted for 34 percent, followed by North American graduates who accounted for only 23 percent. Where the United States produced 63,000 engineers that year, China produced 148,000 (National Science Board, 1998). Further, the U.S. Commission on National Security for the 21st Century (2001) lays out the case that, in the interest of national security, the United States must increase its ability to produce scientists, mathematicians, and engineers. They point out that there are not enough trained U.S. citizens available to fill technical positions, and that the number of special visas issued for foreign nationals to fill science and technology related vacancies increases year after year. The commission labels this shortage a crisis and a threat to our national security.

Despite the urgent need to improve American student performance and to fill specialized positions with American citizens, American students are falling behind. VanTassel-Baska (2009) reports that students in some Asian and European countries are outpacing American students as these countries prepare their students with advanced secondary curriculum two years beyond traditional American secondary curricula. In addition, she cites a story in the Washington Post
stating that, in an international mathematics competition for 15 year-old students, American students were underrepresented in the top performing quarter and overrepresented in the bottom performing quarter.

Even the highest-performing American students are struggling. In a paper issued by the Department of Education (1993), gifted students in the United States were some of the most underperforming worldwide, ranking last in Biology, Chemistry, Physics, Algebra, and Geometry among 13 other developed countries, controlling for the percentage of the student population taking accelerated math and science courses. The United States has the lowest total percentage of students participating in advanced courses, and even the highest-performing American students perform significantly worse than high-performing students in other countries (U.S. Department of Education, 1993).

How can America reverse these trends and gain lost ground? The Individuals with Disabilities Education Improvement Act (IDEIA) is a federal law outlining provision of special educational services to students. IDEIA was reauthorized in 2004, and it included a provision for identification of specific learning disabilities via a procedure called Response-to-Intervention (RtI). Statute I.B.614.b.6 of IDEIA stipulates that states shall not be required to take into consideration whether a child has a severe discrepancy between achievement and intellectual ability; AND must permit the use of a process based on the child’s response to scientific, research-based intervention (U.S. Department of Education, 2004). At first glance, the near-crisis level of poor American student performance and the relatively low number of students served under IDEIA seem unrelated. However, the change in language of IDEIA to include RtI reflects a broader trend of utilization of a problem-solving approach to determine student needs and to deliver a structured, systematic, and scientifically based intervention to each student’s individual difficulty.

The increased focus on individual student needs sets the stage for tailoring educational interventions to address issues of students who are not working up to educational proficiency standards outlined in the No Child Left Behind (NCLB) legislation, and the needs of students who are not working to their potential in the classroom. A report commissioned for the U.S. Department of Education (1993) reports that gifted students have already mastered 33-50% of material to be studied in a school year before the year even starts. Unfortunately, these same students spend the majority of their school days in regular education classrooms without modifications or accommodations to the curriculum. In addition, gifted students allowed to work on additional material instead of maintaining the pace of the rest of the class actually performed better on end-of-
the-year testing in math and science than gifted controls who did not pursue additional work (U.S. Department of Education, 1993). Further, the gifted students who engaged in independent study performed no differently in other subject areas. The implication is that one method of improving student math and science performance is to allow for accelerated and/or enriched curricula.

RtI establishes differentiated curriculum as the standard, rather than the exception, and could be used as a method to address the problem of American student underperformance in a scientific and systematic manner by focusing on early engagement leading to increased student motivation. Recommendations for use of RtI with the gifted are beginning to emerge in the literature (Hughes and Rollins, 2009; TAG, 2009; Brown and Abernathy, 2009), though no specific procedural guidelines have been published that guide the adaptation of the RtI model to meet the needs of gifted students. This paper applies the problem-solving method central to RtI to the gap between American student performance and world economic demands. It goes on to offer a potential remedy to the problem: a specific procedural guide for implementation of the RtI model with gifted students. Prior to implementation of this guide with students, experts in both fields will review, evaluate, and offer feedback regarding the validity of the guide. Experts will be asked the following questions:

I. Does the procedural guide demonstrate content, construct, and face validity with respect to best practices in RtI?

II. Does the procedural guide demonstrate content, construct, and face validity with respect to best practices in differentiated instruction with the gifted?

III. Are the interventions contained within the procedural guide likely to present students with an opportunity to increase engagement with class material, and does it demonstrate adequate accessibility and usability for school-based populations?
CHAPTER 2
REVIEW OF THE LITERATURE

The first section of the present literature review is devoted to establishing a need for changes in American educational structure. It outlines American student performance compared to performance of students worldwide, particularly in Science, Technology, Engineering and Math (STEM) fields. The review goes on to provide an overview Response to Intervention, including definition, theory and best practices, traditional populations, and limitations. A similar overview of giftedness in the United States including a brief history and an outline of educational conceptions, funding and support for gifted programs, and recommendations regarding best practices in working with the gifted follows. Sections on gifted student underachievement and motivation theory follow the overviews, and serve to explain why the RtI model may be a very effective intervention for increasing student motivation and decreasing underperformance. The final section of the literature review outlines the current state of literature regarding implementation of RtI with gifted students and provides recommendations regarding future directions of research.

American Student Performance

American student performance, particularly in the STEM fields has garnered a great deal of attention in the media. America, once a leader in both industry and education, is lagging behind. The lament of the deficiencies of the American education system is not a new one. A Nation at Risk (United States DOE, 1983) bemoaned the falling standards of and loss of gains achieved after the launch of Sputnik. While some reforms resulted from the report, America still lags behind much of the world, particularly in STEM fields, which hold incredible potential in terms of future employment. According to the National Commission on Mathematics and Science Teaching for the 21st Century (2000), the educational system in the United States needs to produce significantly more engineers and scientists to meet expected demand. Recall, however that in 1997, college graduates in Asia accounted for over 43 percent of all engineering and science degrees granted worldwide. Europe accounted for 34 percent, followed by North American graduates who accounted for 23 percent. Where the United States produced 63,000 engineers that year, China produced 148,000 (National Science Board, 1998). Unfortunately, American student science performance does not appear to be improving. The 2009 National Assessment of Educational Progress (NAEP) indicates that student science performance declines as students progress through the American education system. In the 4th grade, 72% of students demonstrate basic level proficiency, while 63% of 8th grade
students demonstrate basic level proficiency, and only 60% of 12th grade students demonstrate basic proficiency (NAEP, 2009).

Evaluation of American student performance data on international measures of reading, mathematics, and science reveal a variable, and not particularly positive picture of American education. Reading performance of 4th grade students is measured every five years by the Progress in International Reading Literacy Study (PIRLS; Baer, Baldi, Ayotte, & Green, 2007). In 2006, U.S. 4th graders’ average reading literacy score was slightly above the study’s average, but was below that of 4th grade students in 10 countries, including 3 Canadian provinces (Russian Federation, Hong Kong, Alberta, British Columbia, Singapore, Luxembourg, Ontario, Hungary, Italy and Sweden). Further, among the 28 participating countries (from both 2001 and 2006), The number of countries that outperformed the U.S. increased from three in 2001 to seven in 2006. While American student performance did not decline, we certainly lost ground.

The Trends in International Mathematics and Science Study (TIMSS; Gonzales, Williams, Jocelyn, Roey, Kastberg, & Brenwald, 2008) assesses mathematics and science performance of both 4th and 8th grade students every four years. In terms of mathematics scores, American fourth graders ranked 9th (of 35) in TIMSS scores and 8th graders ranked 6th (of 47). Both American 4th and 8th grade students’ scores increased between 1995 and 2007. This data is hopeful, though some might be concerned that American schools did not make the top five during either administration. The TIMSS picture for science, while not dramatic, is still alarming. The 2007 TIMSS averages for American 4th and 8th grade students were above the scale average (set at 500) and were 539 and 520 respectively. Neither score was significantly changed from the first administration in 1995. The two alarming things about American science performance are that scores remained unchanged in the 12 intervening years (a great deal of technological development occurred during those years), and that the scores were so discrepant between 4th and 8th grade students. In addition to falling average scores between 4th and 8th grade, America’s ranking fell as well. American 4th grade students ranked 5th of 35 participating countries (including Singapore, Chinese Taipei, Hong Kong, and Japan); by the eighth grade students’ rankings fell to 10th of 47 countries (behind Singapore, Chinese Taipei, Japan, Korea, England, Hungary, the Czech Republic, Slovenia, and the Russian Federation).

Another popular measure for international performance of older students is the Program for International Student Assessment (PISA; Baldi, Jin, Skemer, Green, & Herget, 2007). PISA assesses reading, math, and science literacy of 15-year old students every three years. Each cycle has a primary focus and two secondary foci. In PISA (2006), 15 year-old students’ mathematics literacy
(the primary focus of that cycle) was below the Organization for Economic Cooperation and Development (OECD is the sponsoring group of countries for PISA) average. American students’ average was 474, while the OECD average was 498. This score situated American students in the bottom quarter of participating OECD nations; America was situated in the same quarter in 2003. In addition, 23 of the 29 other participating countries scored better than the U.S. In terms of science performance, American 15-year-old students’ earned an average score of 489, lower than the average of 500 on PISA (2006). PISA was completed again in 2009, with a reading focus. In 2009, American 15 year-olds obtained an average score of 500 on the combined reading literacy scale, which was not statistically different from the OECD average. Six countries scored higher than the United States in terms of reading literacy. There was no measurable difference between the average scores of American students in reading literacy between 2000 (the last time reading was a major domain) and the present. PISA 2009 does indicate that U.S. students continue to score below the OPEC average in math, however, ranking 25th of 34 countries. American students improved in science literacy, as the 2009 scores were not statistically different from the OECD average, and represented an improvement from 2006, when they were below the average.

In summary, we see trends of American students losing ground internationally in reading, and in terms of science performance between the 4th and the 8th grades. Additionally, while we see some improvements in both 4th and 8th grade math performance, by age 15, American students perform poorly compared to international students. It is worth noting that the OECD is a different comparison group than TIMSS, so stating that something is occurring between the 8th grade and age 15 is not appropriate. However, the fact remains that 15-year old American student performance was unacceptably low, regardless of the comparison group. While some have criticized the international performance data as testing only the “brightest” students in other countries, a quick internet search of the countries ranking higher than America on TIMSS averages reveals similar compulsory attendance laws to those in the United States. Comparisons are not ideal, but they are one of the few ways Americans have to compare their performance to the performance of world students. Both TIMSS and PIRLS were administered during the 2010/2011 school year, but data is not scheduled for wide release until December, 2012. Hopefully, American students will continue to demonstrate improvements like those shown in PISA 2009 science literacy.

While solving the problem of American student performance will likely always be work in progress, Bhatt (2009) offers some hope that increased focus on working with the gifted may, in fact, be a step in the direction of progress: students who participated in gifted programs in the 8th
grade were 34% more likely to take AP classes in the 12th grade. In addition, participation in gifted programs in the 8th grade was associated with a .89 standard deviation increase in standardized math test scores. These numbers might not be surprising, as Bhatt is comparing children who meet gifted criteria to children who do not, but it offers a baseline by which the efficacy of newer interventions like RtI may be measured.

Response to Intervention

Definition, Theory, and Best Practices. According to a position paper issued by the Council for Exceptional Children (CEC, 2007), “the RtI process is designed to identify at-risk children early, to provide access to needed interventions, and to help identify children with disabilities.” This process is implemented utilizing data regarding children’s responses to scientifically based interventions. There are two important things to note regarding the CEC’s definition of RtI. The first is that it is designed to identify children who are at-risk. Operationalizing the term “at-risk” is singularly important in this case. The argument can be made that a child who is likely to perform below his/her ability, to remain unchallenged in the classroom, and as a result, form poor work habits is a child at-risk. RtI is designed to identify those children early and to provide access to needed interventions. Secondly, the CEC notably uses the word and, rather than defining the purpose of RtI as exclusively a method to identify children with disabilities.

The Heartland School District in Iowa was one of the first districts in the country to adopt a problem-solving approach for working with struggling learners. The problem-solving approach is at the heart of RtI. RtI came about in reaction to perceived failings of the traditional “test and place” models of special education. There are two key components to the RtI process as conceptualized in Iowa: the problem-solving model, and a tiered intervention system for children who are identified as at-risk. Though specific terminology for these two components varies by district, the basic components typically remain the same. Problem-solving models are common in both education and industry, and in the state of Florida, the problem-solving model contains four steps (Florida Department of Education [FLDOE], 2008). The first step is to define the problem. In order to do this, one must identify the discrepancy between expectations and current levels of performance. The way in which one defines “expectation” is central to determining who is identified and who is not. The second step in the problem-solving model is to analyze the problem: to determine why the discrepancy is taking place, utilizing data sources. The third step is to establish a goal and implement a plan to work toward that goal, utilizing evidence-based intervention. The final step is to evaluate whether the plan is working by monitoring progress via
Another way to implement the problem-solving model is to ask oneself four questions (FLDOE, 2008):

• What is the problem?
• Why is it taking place?
• What are we going to do about it?
• Is it working?

The other primary component of RtI is the tiered, scientifically based intervention approach. RtI typically utilizes universal screening techniques early in the school year to identify students who are not meeting the standards of their grade levels (Klotz & Canter, 2006), however those same universal screening tools could easily be adapted to identify students who are not only working below grade-level expectations, but also students who are working above grade-level expectations.

RtI is often delivered via a 3-tier system, which serves 80% of individuals in the general education classroom. If students fail to achieve at this level, they are advanced to the second tier, with provides more targeted, research-based intervention than general education, but less intensive than special education, and typically serves 10-15% of the student population. Students who continue to fail are advanced to tier three, which offers specially designed instruction and is typically delivered by special education teachers (CEC, 2007). Tier three usually serves the remaining 5% of students. However, it is important to note that not all systems consider tier-three interventions to be synonymous with special education services. Some students who receive tier-three interventions may not be referred for special education services. Within the tiered approach, the problem-solving model is utilized at each level, and students are intended to move back and forth through the flexible, tiered levels of support, unlike the traditional exceptional child model in which the child is either classified or not. Another very important aspect to RtI service delivery is the use of a collaborative approach by school staff for development, implementation, and monitoring of the intervention process (Klotz & Canter, 2006).

Some may question whether RtI is not traditional education repackaged with different terminology. While teachers have been using targeted, differentiated instruction for years to assist struggling students, RtI differs from traditional differentiated instruction in two major ways. First, RtI inserts formalized structure into the notion of differentiated instruction. It is both objective and data-based and it mandates specific stages at which decisions are made about intervention strategies. Second, the structure calls for universal screenings for all students, rather than assuming that students are performing to standard until they demonstrate otherwise (Brown-Chidsey & Steege,
2005). The early screening procedures are designed to identify and address problems before they significantly impact the student. For gifted students, this might mean providing challenging coursework early in school, before problematic work habits have a chance to develop. Poor effort with good outcomes leads students to believe that effort is not required, diminishing their level of intrinsic motivation (Rimm, 2008). It has been documented that gifted students have already mastered 33-50% of material to be studied in a school year before the year even starts (U.S. DOE, 1993). In addition, up to half of high-ability students underachieve (Pirozzo, 1982). In combination, these three pieces of evidence define our gifted students as at-risk, and in need of intervention.

Traditional Populations. RtI originated as a method of identifying and supporting students with learning disabilities, primarily because the IQ achievement discrepancies traditionally used to identify specific learning disabilities (SLD) delayed intervention beyond the time when interventions were most effective. It is generally recognized that closing an achievement gap of more than two years is very difficult. The traditional model of exceptional children’s services generally waited until the student had a history of failure before providing intervention, as opposed to the universal screening and early intervention components central to RtI. RtI has primarily been conceptualized as a method of identifying students with disabilities, not exceptionalities, though there has been support for RtI in identification of twice-exceptional students (Neihart, 2008; Moon, Brighton, Callahan, & Jarvis, 2008; Volker, Lopata, & Cook-Cottone, 2006). Twice-exceptional students are students who are both gifted and yet have a disability. In addition, the application of RtI continues to broaden, as RtI methods are applied to classification of Emotionally/Behaviorally Disabled students.

Criticisms and Limitations. While the RtI model is promising and is very popular in special education, some criticisms have been published in the literature, and others arise when one critically analyzes the language of some RtI proponents. Still others are broadly discussed in professional educational circles. For example, Brown-Chidsey & Steege (2005, p. 5) state that “unlike REI (regular education initiative) and inclusion, RtI is by definition data-driven, so no decisions are made without evidence to support them.” It is imperative, however, to consider the quality of the data collected by potentially untrained, unsupported teachers. In addition, many of the evidence-based interventions offered on popular websites like interventioncentral.com offer poorly designed studies with extremely low participant numbers as evidence of the efficacy of the
intervention. Schatschneider, Wagner, and Crawford (2008) echo this sentiment when they identify teacher variability and variability of quality of intervention as a threat to the reliability of RtI.

Another criticism of Brown-Chidsey and Steege’s implementation manual (2005) is that they report that criticisms of RtI include the fact that teachers may not have training in data analysis, and that teachers may already feel overwhelmed by the quantity of work they are required to complete. This is a valid concern, which is poorly addressed by the authors as follows: “RtI does not require ‘adding on’ to what is already being done in the classroom. Instead it involves reviewing current classroom practices to identify those that yield evidence of effective instruction as well as those that do not. RtI methods call for teachers to replace those practices that do not yield student improvement with those that do.” The standardized reviewing practices mandated by RtI will result in an increase to teacher workload, particularly if teachers are required to overhaul a practiced system of instruction. Data collection and analysis (an essential feature of RtI) is a time-consuming practice. In its current form, this practice necessarily falls to the teacher. Without additional support for teachers, RtI will likely suffer the same fate as other popular educational initiatives: lack of funding, overextended teachers, and unattainable goals given available resources.

Further criticisms of the RtI model are beginning to emerge in the literature. For example, Schatschneider, Wagner & Crawford (2008) found that one of the fundamental measures of RtI, Oral Reading Fluency (ORF) growth scores, add no unique contribution to the prediction of future reading skills above and beyond one-time assessment at the end of the year. They go on to identify ways in which RtI is a wait-to-fail model: a) RtI interventions are not typically implemented before the 1st grade, b) RtI takes a great deal of time to measure the child’s response to both Tier I and Tier II interventions, and c) RtI requires the child to fail to respond to intervention in order to qualify for a reading disability. As research on the efficacy of RtI models continues to develop, some of these concerns may be addressed. Brown and Abernathy (2009) report that data is currently being collected and analyzed in the state of North Carolina that explores the impact of RtI on student retention rates, end-of-course test scores, and exceptional children’s referrals.

Additional criticism for RtI involves the lack of empirical studies evaluating educational attainment outcomes. For example, in a summary of RtI models with “demonstrated effectiveness” (Burns, Griffiths, Parson, Tilly, & VanDerHayden, 2007), the authors include as “demonstrated effectiveness” perceptions of support from faculty (Ikeda et. al, 1996); compliance with a prereferral intervention team model, reduced ESE rates (1/2 to 1/3 the rate of schools that did not use the intervention team model) and a 67% reduction in grade retention (Kovaleski, Tucker, & Stevens,
1996); case study data (Lau et al, 2006); description of a specific model with no outcome data (Simmons et al, 2000); and low fidelity of implementation among multidisciplinary team members for a problem-solving model called intervention-based assessment [low fidelity even though team members were asked to submit their “best case” documentation] (Telzrow, McNamara, & Hollinger, 2000). Only one of the empirical studies offered as “demonstrated effectiveness” mentions anything in terms of outcomes: reduction in grade retention and ESE referral. Studies identifying poor fidelity to problem solving models are hardly advertisements for empirical support. Schatschneider, Wagner & Crawford (2008) also state that there appear to be no published studies examining the reliability of RtI, which is equally problematic.

Finally, some generally discussed criticisms include the lack of specificity of language in RtI, the wholesale adoption of RtI by many systems, despite the lack of empirical evidence regarding its efficacy, the emotional language used in promotion of RtI that diminishes the efforts of years of professionals in special education, and lack of a uniform procedural guide regarding movement between tiers. However, despite these limitations, RtI has been adopted in a number of school districts across the country and has met with success, particularly on the individual level. Much of the support for RtI is detailed in positive case studies. In addition, the criticisms of RtI focus primarily on the lack of research regarding the intervention, not failings of the intervention itself. The RtI model represents improvement over the traditional “test and place” model in that it attempts to intervene earlier and it offers support to all students, regardless of their label. RtI is not a perfect solution to educational problems, but it represents an evolution in thinking regarding the individual needs of all students, and it establishes instructional differentiation as the norm, a differentiation that is essential to the support for America’s gifted students.

The Gifted Student

Giftedness has been conceptualized in a number of different ways over time, and by different authorities. Depending on the expert you ask (and at what point in time you ask that individual), you may hear giftedness characterized in a number of different ways. Sternberg and Davidson (2005) published a second edition of their book *Conceptions of Giftedness*, some 20 years after it was initially published and asked contributors to answer the following questions: “what is giftedness, how does your conception of giftedness compare with other conceptions, how should gifted individuals be identified, how should gifted individuals be instructed in school and elsewhere, and how should the achievement of gifted individuals be assessed?” (Sternberg & Davidson, 2005, p. ix). Thirty-six authorities in the gifted field contributed to 24 chapters outlining differing
conceptions of giftedness. The book represents the extreme variability in the definition and identification of the gifted. While it is beyond the scope of this paper to provide a detailed description of the many different conceptions, a brief outline of some of the most common and durable conceptions are offered below. However, in order to understand the varying conceptions of giftedness, one must first have a basic knowledge of IQ testing, and the relationship of the American public with gifted education over time.

A Brief History of IQ. Francis Galton first systematically studied intelligence in his laboratory in London, in an attempt to identify and replicate the best of humankind, and published his, often-erroneous conclusions about intelligence, superiority, and genius in his book *Hereditary Genius* (Galton, 1869). Historically, giftedness has been synonymous with high IQ or precocity. As intelligence measures developed in their sophistication, validity, and reliability, the notion of superior intelligence gained public interest. Lewis Terman, working in the 1920’s at Stanford University, utilized the Stanford-Binet Intelligence Scale, which he published in 1916, to identify 1,528 children with IQ scores over 135, so that he could study their lives in great detail. A surprise to his contemporaries, Terman found that most of the participants were normal, well-adjusted children rather than the anxious, neurotic children they had anticipated (Feldhusen, 2005).

While compulsory attendance and special education laws shaped public perception and educational policy, some strong advocates for the gifted emerged. Leta Stetter Hollingworth is noted for her research of social adjustment difficulties of highly gifted children. Notably, one of the major contributing factors to social maladjustment is that students were unable to find enough interesting work to do at school (Robinson & Clinkenbeard, 2008). Paul Witty is noted for his refusal to align with either side of the nature/nurture debate in his study of giftedness, and Martin Jenkins is known for his work with African-American gifted children and the societal limitations they faced (Robinson & Clinkenbeard, 2008).

While pioneers worked to understand and study highly intelligent children, work was also underway to refine and better understand the concept of intelligence. Thurstone (1936) identified factors of intelligence that emerge in unique patterns for each individual. These factors included numerical, verbal, spatial, and fluency scores and combined to form intelligence. Cattell (1971) followed Thurstone and further identified fluid and crystallized intelligence. The construct of intelligence is still in flux, and the current conception reflects the empirically supported three-stratum structure (Sattler, 2008).
Concurrent to the work conducted on the structure of intelligence, other researchers focused on talents beyond intellect. DeHaan and Havighurst (1957) identified six domains of excellence including intellectual ability, creative thinking, scientific ability, social leadership, mechanical skills and talents in the fine arts. Gardner (1983) identifies seven “intelligences” which are very similar. These include linguistic, musical, logical-mathematical, visual-spatial, bodily-kinesthetic, interpersonal and intrapersonal.

Gifted Education. While the philosophical notions of giftedness seem to follow a linear progression, giftedness in education has not had such a straightforward history. Historically, support for gifted education has been inconsistent. Support, both popular and financial, for gifted education programs has waxed and waned. A number of researchers (Colangelo & Davis, 2003; Speilhagen & Brown, 2008) have described the dichotomy of support versus non-support in terms of national focus on excellence versus equity. Excellence was the focus when the Russians launched Sputnik, and when national reports gain popular support, as in 1983’s *A Nation at Risk*. At other times during American history, the pendulum has swung in the direction of equity in education for all students, with specialized gifted education regarded as elitist and unfair. This was the case during the social upheavals of the 1950’s and 1960’s. In the 1970’s, one of the first federal studies of the gifted, the Marland Report (1971), was issued and outlined the following definition of giftedness:

> Gifted and talented children are those identified by professionally qualified persons who, by virtue of outstanding abilities, are capable of high performance. These are children who require differentiated educational programs and/or services beyond those normally provided by the regular school program in order to realize their contribution to self and society. (p. IX)

While the report offers one definition of giftedness and informed the development of programs, it was never written into law, and other researchers and advocates operationalized giftedness in different ways. Renzulli (1978), another researcher in the field at that time, operationally defined giftedness as an interaction among three basic human trait clusters: above-average general abilities, high level of task commitment, and high levels of creativity.

In 1983, *A Nation at Risk*, an open letter to the American people on the imperative of educational reform turned the tide again from equality to excellence in education, and in partial reaction, the Javits Act, passed in 1988 stated that “gifted and talented students are a national resource vital to the future of the Nation and its security and well-being” (Javits Act, SEC.4012 (a), [1], 1988). The Javits Act provided grant funding for research into gifted student performance enhancement, particularly with underrepresented populations. America’s relationship to gifted
education with the adoption of NCLB in the 1990's, which makes no specific mention of gifted students, has trended in the direction of equity once again.

In recent years, despite a number of educational reforms (NCLB, and the Reauthorization of IDEA), we are no closer to a standardized definition of giftedness. Current theorists, like Sternberg (2004), identify that there is no one clear, concise definition of giftedness. Giftedness means many things to many people, but he identifies some points of broad agreement in the attempt to isolate the gifted. First, giftedness involves more than high IQ. Second, it has both cognitive and noncognitive (e.g., motivational) components. Third, environment is critical for gifted potential to be recognized. Fourth, giftedness is not merely one thing. Multiple forms of giftedness mean that one-size-fits-all assessments are unlikely to address this broad definition. Finally, gifted evaluation measures should be created to operationalize theories, then should be validated empirically, rather than merely being assumed to be valid. The department of education currently defines the potential for high performance to include achievement/ability in any of the following areas: general intellectual ability, specific academic aptitude, creative or productive thinking, leadership ability, and/or visual and performing arts (Passow, 2004).

Regardless of the operational definition, with No Child Left Behind (NCLB, 2001), the zeitgeist seems to have shifted again to focus resources and efforts on low performing students in American schools. The impetus for schools to make Annual Yearly Progress (AYP) and to avoid the penalties associated with poor progress has caused schools to all but abandon specialized instruction and support for gifted students, despite desperate pleas from government and industry leaders for American schools to produce enough scientists, technologists, and mathematicians to keep up with demand. While popular support for gifted programs in schools has apparently waned, things may be improving. Widespread criticism of many of the NCLB policies has undermined much of the power of the law. In addition, broad popularity of the RtI model, as evidenced by its mention in the IDEIA (USDOE, 2004) may further set the stage to normalize differentiated instruction for all students, one of RtI’s basic premises, and turn public opinion away from allegations of elitism.

Current Conceptualizations of Giftedness. Kaufman & Sternberg (2008) identify the concept of giftedness as developing in several waves. The first wave includes domain-general, or IQ focused, models akin to the work of Galton, Spearman, and Terman (described earlier). They identify the second wave as encompassing more domain-specific models including Thurstone's seven primary mental abilities, the Cattell-Horn-Carroll (CHC) theory, Gardner's multiple
intelligences, and Julian Stanley's mathematically and verbally precocious youth. They describe a third wave of gifted conceptualization as systems models that include Renzulli's three-ring conception of giftedness and Sternberg's WICS model of giftedness. The fourth and final wave outlined by Kaufman and Sternberg includes developmental models of giftedness like Gagne's talent development process (DMGT), Tannenbaum's conceptualization as giftedness as an outcome rather than a potential, and Feldman's seven dimensions of development important for the development of giftedness.

Another gifted authority, Pfieffer (in press), identifies a number of conceptualizations, or models, for giftedness have been proposed by a variety of authorities in the gifted field. There is a great deal of overlap between Kaufman & Sternberg's list and Pfeiffer's, though Pfieffer groups the concepts of giftedness differently. According to Pfeiffer, some individuals advocate for educational conceptualizations, while others advocate for philosophic, political, or psychometrically-driven conceptualizations. Models range from Julian Stanley's mathematically and verbally precocious youth (SMPY) to Howard Gardner's multiple intelligences; from school-based conceptualizations developed by Tracy Cross and Larry Coleman to Francoys Gagne's developmental, differentiated model of giftedness and talent (DMGT). Other models include the three-ring conception of giftedness developed by Joseph Renzulli, the psychometric model, developed by Nancy Robinson, and the WICS (wisdom, intelligence, and creativity, synthesized) model developed by Robert Sternberg. Robinson, Sternberg, Stanley, Gardner, Cross and Coleman, Gagne, and Renzulli's different conceptualizations will each be described briefly.

Howard Gardner, the most familiar name to school psychologists in the field of gifted education (Robertson, Pfeiffer, & Taylor 2010), developed his theory of multiple intelligences because, in his words (Gardner, 1999):

The human mind is better thought of as a series of relatively separate faculties, with only loose and nonpredictable relations with one another, than as a single, all-purpose machine that performs steadily at a certain horsepower, independent of content and context (p. 32)

Gardner’s theory differs from earlier models of intelligence in three important ways (Multiple Intelligences Institute, 2008). First, he identifies that several intelligences are at work, rather than just one. Second, Gardner believes that intelligence is expressed in performances, products and ideas rather than through test scores. Finally, Gardner writes that the manner in which intelligences are expressed is culturally defined. Gardner, in a revision of his 1983 publication of seven intelligences, now identifies eight intelligences that can be expressed through a variety of products
instead of through a potentially predictive score. The areas of intelligence include linguistic, logical-mathematical, musical, spatial, bodily-kinesthetic, interpersonal, intrapersonal, and naturalist (Gardner, 1999). A number of schools around the world have developed curricula based on the domain-specific notion of multiple intelligences.

Julian Stanley, another proponent of domain-specific identification of precocity (a term he preferred to giftedness), founded the Study of Mathematically Precocious Youth (SMPY) at Johns Hopkins University. The purpose of this program is to identify young people with specific precocities, especially math and verbal skills, and provide them with educational resources including summer programs, distance education, and extracurricular opportunities, in order to help them meet their potential (Kaufman & Sternberg, 2008).

Joseph Renzulli, a proponent of a more systemic approach to gifted identification, developed his Three-Ring Conception of giftedness to include three interactive characteristics: well-above-average ability, creativity, and task commitment. According to Renzulli, the ability level is determined to be well above average if an individual demonstrates performance in the top 15-20% in any domain (Kaufman & Sternberg, 2008). His second identified conception is task-commitment, which some researchers call self-discipline. Studies have indicated that this element has a greater impact on academic outcomes than even intelligence (Duckworth & Seligman, 2005). Finally, Renzulli (2005) identifies that the creative are producers, instead of consumers, of knowledge.

Robert Sternberg, in another systemic approach, argues that traditional measures of intelligence as a means for identifying gifted individuals, like the WISC and/or SAT, neglect essential intelligences needed for success. He posits an augmented theory of successful intelligence, called WICS, which includes Wisdom (ethical reasoning), Analytical Intelligence (ability to evaluate whether ideas are good ones), Creativity (ability to generate original and interesting ideas), Practical Intelligence or Synthesis (ability to execute and convince others of the value of ideas). In addition, Sternberg believes that traditional measures of ability overemphasize analytical and memory-based abilities “to the near or total exclusion of creative and practical abilities” (Sternberg, 2010, p. 328). He describes his augmented theory of intelligence in the context of a lack of evolution in measurement of intelligence commensurate with the evolution of other discoveries of the time (e.g., we have telephones now, instead of Morse code telegraphs, which were developed near the same time as the first intelligence tests). Sternberg’s evolved theory of intelligence measurement has particular relevance in a rapidly evolving, technology-savvy age, which requires individuals to be able to not only generate ideas, but to be able to execute and market those ideas.
Françoys Gagné departs from the systemic advocates of giftedness, in lieu of a developmental model. Gagné believes in a talent-development process. According to his theory, the words “gifted” and “talented” are often used interchangeably, but should be differentiated. He developed the Differentiated Model of Gifted and Talented (DMGT) as a way to develop basic, genetic gifts, or precursors into actual talents in the areas of language, science, mathematics, art, music, and leadership (Kaufman & Sternberg, 2008).

In contrast, Nancy Robinson advocates for a psychometric approach to gifted identification. She supports the notion that traditional IQ and achievement measures offer valuable information in the identification of gifted students (Robinson, 2005), and supports a definition of giftedness with a foundation in demonstratable, measurable abilities. Finally, Tracy Cross and Larry Coleman advocate for school-based conceptions of giftedness, in which students demonstrate their talents within the school setting (Pfeiffer, personal communication, Spring 2011).

Pfeiffer, mentioned earlier, suggests a tripartite view of giftedness, viewing giftedness through three distinct but complimentary lenses: the lens of high intelligence, the lens of outstanding accomplishments, and the lens of potential to excel. He defines the gifted child as one who "demonstrates a greater likelihood, when compared to other students of the same age, experience, and opportunity, to achieve extraordinary accomplishments in one or more culturally valued domains." (p. 16, in press). Pfeiffer draws a distinction, however between the academically gifted student and the gifted child. He defines the academically gifted student as one who "demonstrates uncanny high potential for outstanding academic performance...and a thirst to excel in one or more academic domains...The academically gifted student is likely to benefit from special education programs or resources, especially if they align with their unique profile of abilities." (p. 17, in press). Pfeiffer advocates schools' adoption of not one, but three (tripartite) separate, complimentary categories of giftedness.

Funding and Support for Gifted Programs. As mentioned previously, popular support for gifted programs has fluctuated over time. Unfortunately, however, funding for gifted programs has fluctuated very little, and has remained very poor. Winner (1997) notes that only two cents out of every 100 dollars spent on special education are spent on gifted programs, while Sternberg (1996) reports that 99.9% of special education funding is reserved for poor-performing students. This is true despite the findings that 84% of respondents in a Gallup poll in 1992 reported that they would support special funding for gifted students, so long as it did not alter funding for average or slow
learners. Additionally, six states provided neither legislation nor funding in support of gifted students (U.S. Department of Education, 1993).

As RtI changes popular perspectives on differentiated instruction for all students, funding deficits may be changing as well; according to the position paper issued by the Council for Exceptional Children (CEC) and The Association for the Gifted (TAG), RtI is an allowable expense through IDEA and since gifted students with disabilities must legally be served by IDEA, it is possible that many RtI services can be incorporated into the general curriculum by realigning them to meet the needs of all students, including the gifted (CEC, 2007). In fact, under RtI, up to 15% of the special education funding can be utilized to provide services for students in need who do not qualify for special education services (U.S. Department of Education, 2004).

Best Practices in Gifted Curricula. If the educational pendulum is indeed beginning to swing in the direction of support for differentiated instruction for all students, effective interventions for gifted students must be analyzed and implemented. Differentiated instruction has been recommended for gifted children for years. Passow and Tannenbaum (1978) state that:

> The definition of gifted and talented provides the direction for the selection and use of identification procedures and of the design of educational opportunities and differentiated curricula. In fact, the procedures and techniques used for identification affect the kinds of differentiated experiences to be provided and vice versa: identification is viewed as an integral part of differentiation (p. 14).

Instead of viewing identification and differentiation as a diagnostic prescriptive model, completed in subsequent steps, they imply that prescribed enrichment becomes a method for identification even as identification facilitates enrichment (Passow, 2004). In other words, if a curriculum is accelerated, and the student still masters the material, he/she can not only be considered gifted, but has not lost time feeling held back in the classroom while waiting for psychoeducational testing. Instead of “wait to fail,” as the old exceptional student model was called, in the case of gifted students it has traditionally been “wait to be challenged.” This phenomenon is particularly problematic in the states that utilize an IQ score cut-off for gifted classification, especially when standard error of measurement is not considered. According to recent research by McClain and Pfeiffer (2011), slightly over 30% of the states in the country utilize an IQ cut-score as an identification requirement. Students with scores 1-2 points below the cut-off are deemed ineligible for additional services, and often sit bored in the classroom, ultimately becoming behavior problems. Instead of this test-and-place model, utilization of RtI would allow those students who do not meet cut-score criteria, but
who still perform exceptionally well on course material, to receive accelerated or enriched curriculum. The RtI model utilizes evidence-based interventions to help students meet their potential, and curriculum acceleration is an evidence-based intervention that can be utilized with gifted students.

When considering curriculum adaptations for gifted students, several aspects of giftedness must be considered: asynchronous development, appropriate material, emotional connection to material, and affective issues (VanTassel-Baska & Stambaugh, 2008). Gifted students possess the ability to discover, act on, and solve problems readily (Sternberg, 1996) and are able to form connections and work with abstract concepts more easily than other students (Gallagher & Gallagher, 1994). In addition, Colangelo, Assouline, & Gross (2004) identify that gifted students have the capacity to learn much more quickly than their counterparts in school. Each of these differences should be considered in developing curricula for gifted students, and an individualized program like RtI takes into account student differences when developing interventions. Traditional gifted educational models, developed with these aspects in mind, include summer and Saturday programs for gifted students, grouping and tracking, cooperative learning, specialized residential and magnet schools, talent search programs, schoolwide enrichment, accelerated education (including early school entry and dual-enrollment in high school and college), and differentiated instruction (Colangelo & Davis, 2003). Each of the programs has value, and most can be either directly applied or adapted as tier II or tier III interventions in an RtI model.

VanTassel-Baska and Stambaugh (2008) state that, while there is little evidence of effectiveness of interventions for the gifted, three distinct curriculum dimensions have emerged as having some proven success with gifted students. The first dimension, content mastery, encourages a student to master curriculum material as quickly as possible. This is also sometimes called content acceleration, accelerated learning, or curriculum compacting. Studies in human development may provide an explanation for the success of this intervention. Shernoff, Csikszentmihalyi, Schneider, and Shernoff (2000) describe a state which they term *flow*, which is when an individual is so engrossed in a task that he/she loses track of time. Flow occurs when individual skill level and challenge level are high and matched, and will be described in more detail later in this paper.

Content mastery has proven effective in controlled settings (VanTassel-Baska & Stambaugh, 2006), and is an excellent fit with the RtI model. Curriculum compacting is a method of content mastery that follows a diagnostic-prescriptive approach (VanTassle-Baska & Stambaugh, 2006) and utilizes a form called “The Compactor” (Renzulli & Smith, 1978) to allow teachers to document
material already mastered by students. The Compactor has three columns: in the first column, teachers document student mastery of material prior to beginning a unit. The second column provides an area to document material not yet mastered, and the third column is a location to document replacement activities, which are typically enrichment or acceleration options (Figure 1). Initially, some teachers expressed concern that compacting curriculum could have a detrimental effect on standards-based testing, but a randomized, controlled trial comparing gifted students in a compacted curriculum condition to gifted students in a control setting found no significant differences in scores on the *Iowa Tests of Basic Skills* (Reis, Westberg, Kulikowich, & Purcell, 1998). Certainly, it would have been nice to see an improvement in scores in the compacted curriculum condition, but these results are still promising. The study lasted only one year, so the long-term effects cannot be evaluated, but compacting curriculum has intuitive value in keeping students “hooked in” to curriculum, rather than forcing them to study material they have already mastered.

A second dimension mentioned by Van-Tassel and Stambaugh (2008) includes higher-level processes and product development. This dimension involves the design of products involving in-depth examination of specific intellectual content and advance graphic organizers. Paul’s Reasoning Model is an example of higher-level processes, and is an advanced-process template that requires students to explore many aspects of real-world issues including themes, implications/consequences, assumptions, and a variety of points-of-view before generating inferences. The first step in this model is to establish a purpose or goal; next one defines the question then formulates his/her unique point of view regarding the problem. Students are then expected to support their perspectives with evidence, identify key concepts and ideas, identify assumptions that may lead to problematic reasoning, generate inferences, and finally understand and discuss implications of a perspective (VanTassel-Baska & Wood, 2010). Product and process development also fit within the RtI model, though they are likely to be at a higher tier of intervention, as they is prone to occur during pull-out, small group sessions.

The final dimension outlined by VanTassel-Baska and Stambaugh (2008) is the study of overarching, or epistemological theme like change. Students are taught to examine course content while looking for evidences of change, systems, and cause/effect relationships. This model allows students to approach standard curricula from a different perspective and promotes analytical thinking over rote memorization of facts. Again, this dimension is likely to occur at a higher tier of intervention, as it will probably require teacher-directed instruction to remain relevant in the students’ other studies.
Another gifted curriculum, the School-Wide Enrichment model (SEM) (Renzulli & Reis, n.d.) (Figure 2) is one that is a particularly good fit with RtI, as it is very similarly structured. Like the tiered interventions outlined in RtI, the SEM has three types of enrichment. Type I enrichment, called general exploratory activities, are designed to reach a wide variety of students to stimulate interest in a number of topics. Examples of Type I enrichment include speakers, performances, and mini-courses. Type II enrichment involves creative thinking, problem solving, specific skill building, and communication skill building. Type III enrichment entails development of authentic products by focusing on task commitment, time management, planning, organizing and executing the development of a self-selected product. SEM differs from RtI in its de-emphasis on data-based decision making. Students are identified for the SEM talent pool by use of test scores (including creativity measures) or nomination by teacher, parent, or self-nomination. Once they have been included in the talent pool and advance to Type II or Type III enrichment, students are “observed,” but the decision points are not as specific as those of RtI.

Differentiated instruction for gifted students to address their unique individual needs, has been the standard for years. Implementing RtI with gifted students alters the traditional models only slightly, if at all. Many of the interventions listed in this section can fit easily within the tiered intervention system in an RtI model. The changes under a gifted/RtI model would be small. RtI relies heavily on data for decision-making, a characteristic that does not feature prominently in traditional gifted education models. Fortunately, schools that currently utilize RtI for struggling students may already have data collection and analysis mechanisms in place. In addition, many of the interventions described above require a prior “gifted” classification in order for students to receive services. In an RtI model, interventions are implemented regardless of label.

Gifted Underachievement

Gifted underachievement is a significant problem in education, and one that may find a remedy in a program like RtI. Recall that a paper issued by the Department of Education (1993) identified that gifted students in the United States were some of the most underperforming worldwide, ranking last in Biology, Chemistry, Physics, Algebra, and Geometry among 13 other developed countries. In addition, United States has the lowest total percentage of students participating in advanced courses, and even the highest-performing American students perform significantly worse than high-performing students in other countries (U.S. Department of Education, 1993). Underachievement is not a problem unique to the United States, but it is certainly problematic. Defining gifted underachievement requires reconciling the disparate definitions of
both giftedness and underachievement. Reis and McCoach (2000), after examining a number of definitions of both terms, advocate the workable definition that gifted underachievers are students who display severe discrepancies between expected achievement (these can be measured by standardized achievement test scores or cognitive or intellectual ability assessments) and actual achievement (which can be measured by class grades and teacher evaluations). In addition, they add the caveat that the discrepancy cannot be due to a specific learning disability and must exist over time. McCall, Evahn, & Kratzer (1992, p. 2), offer a similar definition of gifted underachievement: “the underachiever is a young person who performs more poorly in school than one would expect on the basis of his mental abilities.”

While the RtI model shifts the focus away from standardized achievement tests or tests of intellectual ability, the definition can be adapted to fit the gifted, even under the new model. Even though RtI diminishes the focus of assessments, NCLB mandates a number of assessments for accountability purposes. While one would not label a student as a “gifted underachiever” under RtI, discrepancies between standardized assessment scores, such as FCAT scores, and course grades can be used as a guiding principal in examining and designing interventions to improve student performance or underperformance.

Criticisms to this method may be made, however. For example, one difficulty in the process of measuring gifted student underperformance is the variable quality of the measurement tool utilized. For example, report cards may not provide accurate pictures of underperformance because a gifted student working on an easy curriculum is likely to earn high marks, regardless of his/her effort level (Rimm, 2008). This is particularly true in elementary schools where incomplete assignments might be overlooked because students earn high marks on tests. These criticisms are valid and should be considered in examining student performance and measures such as out-of-level testing, which can be used to compensate for the deficiencies of other measures.

Pirozzo (1982) identifies that up to half of high-ability students underachieve. This is a large problem with a complicated solution but not, perhaps, unexpected. In a situation of inappropriate easy or difficult curricula, intelligent children’s withdrawal from the process of learning in school is expected. For a student underachieving in this circumstance, the cause of that underachievement would be psychologically appropriate and not defensive (Kanevsky & Keighley, 2003; Reis, 2004). Reis (2004) reports that the three major reasons for gifted student underachievement are masked serious physical, cognitive, or emotional issues, a mismatch between the student and his/her school environment, and low self-motivation, self regulation and/or self-efficacy. Further, she reports that
the school environment is where many bright students lose their drive and interest. Inappropriate curriculum was identified as a contributor to underachievement in high school students with high ability (Reis, Hebert, Diaz, Ratley, & Maxfield, 1995). Further, those students believed that their underachievement stemmed from particularly easy elementary school experiences. It appears that the students’ coursework was so easy that they did not acquire academic skills, sophisticated study skills, or effort regulation.

In terms of curriculum planning, Reis (2004) identifies a number of school-based potential reasons for gifted underachievement including spending hundreds of hours in classrooms where students rarely encounter challenging or new curriculum, boredom with being assigned tasks mastered long ago, low discussion levels, and mismatch of content to students’ ability. The remedy to this problem, curriculum adjustments, seems straightforward but few classrooms utilize this strategy in working with gifted students. Further, engagement is a very powerful tool that can be used to reverse student underachievement. It has been noted that underachievers rarely engage in specific goal-directed activities, instead engaging in wishful thinking about being discovered for natural talent that requires no work. In these instances, structuring activities tailored to the student’s specific interests may help the student to recognize the place of effort, how to cope with competition, or may lead to a better understanding of self-efficacy (Rimm, 2008). RtI interventions put into place early in students’ school experiences may also help to centralize the importance of effort and competition in achievement.

Balancing curriculum outcomes to student effort is essential to building intrinsic motivation and feelings of self-efficacy in all students. Good effort plus positive outcomes lead to achieving students while good effort and negative outcomes lead to low self-efficacy and discouragement with school. In contrast, poor effort with good outcomes leads students to believe that effort is not required, diminishing his/her level of intrinsic motivation. Finally negative effort with negative outcomes naturally lead to poorly achieving students (Rimm, 2008). Kanevsky and Keighley (2003) describe five C’s that define quality learning experiences: control, choice, challenge, complexity, and caring.

Additionally, Rimm (2008) recommends curriculum adjustments as a method to reverse patterns of underachievement in gifted children. These include the following: differentiated curriculum, subject or grade acceleration, placement in a cluster group, independent studies, and movement up in a reading or math group. Each of these recommendations fit easily within the RtI framework.
Student Motivation

A primary objective of implementation of an early-intervention program such as RtI for talented students is to address the issue of a lack of challenge in the classroom in an effort to increase student motivation. Though student motivation has been briefly discussed in earlier sections, this section is devoted to discussion of theories of student motivation and how those can be applied to the gifted/RtI model.

Flow theory, developed by Mihaly Csikszentmihalyi (1990), describes a state in which “people are so involved in an activity that nothing else seems to matter; the experience itself is so enjoyable that people will do it even at great cost, for the sheer sake of doing it.” [p.4] In other words, once one experiences a flow state, the experience itself provides an intrinsic motivation to pursue other similar experiences. In outlining flow theory, Moneta and Csikszentmihalyi (1996) describe individuals as containing three integrated “teleonomies,” which can also be described as motivational systems. These include the cultural teleonomy, the genetic teleonomy, and the teleonomy of the self. The genetic teleonomy is associated with pleasure-seeking and biologically programmed goals like eating and sex, while the cultural teleonomy relates to obtaining social and financial success. However, the teleonomy of the self is unique in that it relates to “growth in the order and complexity of consciousness” [p. 277]. The growth itself is the reward.

The growth of cognitive complexity associated with the teleonomy of the self is a function of two variables: (1) perceived challenge of an activity and (2) self-perceived skills. Low challenge plus low skill leads to apathy and low quality of experience. High challenge plus low skill leads to anxiety, while low challenge plus high skill leads to boredom. However, when perceptions of high skill are met with high challenge, an individual experiences a “flow state” and a high quality experience. An individual who chooses to consistently and actively seek out flow experiences is described as having an “autotelic personality.” Finally, flow theory emphasizes the importance of control over skills and challenges by learning new skills and selecting challenging tasks. In this way, individuals are motivated not only by the flow state, but also by the sense of accomplishment that accompanies self-determined successes. In short, flow theory describes a high quality experience in which the level of challenge is matched to the level of ability, and over which an individual has some measure of control.

Another applicable and similar theory of motivation is self-determination theory. Self-determination theory is a theory of motivation that posits that people are active, not passive, agents within their environments. The theory states that people seek to fulfill a set of psychological needs
that are universal regardless of a person’s culture of origin. These basic psychological needs drive people’s actions within the larger social context. Thus, self-determination theory is concerned with the degree to which people’s actions are motivated by self-choice versus external factors (Lafrenière, Jowett, Vallerand, Donahue, & Lorimer, 2008; Ryan & Deci, 2000).

According to the theory, self-motivated, volitional engagement in behaviors represents a higher level of motivation because engagement in the behaviors endorses one’s sense of self (Deci, Vallerand, Pelletier, & Ryan, 1991). This endorsement comes as engagement in the chosen behavior fulfills the individual’s psychological need for competence, relatedness and self-determination (or autonomy), thereby maximizing motivation, performance and development. Individuals engage in these activities for the pleasure and satisfaction they derive from their performance. They engage in activities freely, without the necessity of material rewards or constraints (Deci et al., 1991). Engagement of this nature, particularly in an academic-type endeavor, represents a very high level of student involvement. This high level of behavioral engagement develops from both psychological needs and from the individual’s social context.

The application of these theories to implementation of RtI with the gifted is two-fold: first, RtI seeks to match student skill level to challenge level, thus increasing the opportunities for flow experiences in school, thereby increasing intrinsic student motivation; second, they highlight the importance of student choice within the RtI model. Both theories highlight the importance of choice in internalization of motivation. It is important to note, however, that these theories were developed and studied using adolescents and adults. The downward extension of these models to young children must account for developmental level of the child. For example, very young children may need more prescriptive activities, with choices built in, rather than being allowed to choose their level of involvement in total.

Flow theory has been studied in educational settings with talented students for a number of years. Moneta and Csikszentmihalyi (1996) found, through experience sampling, that a match of challenges and skills increases perceptions of the quality of experiences, particularly in the school setting. They also found the converse to be true, an imbalance between challenges and skills increases negative quality of experiences. They go on to state, “if school is able to provide the student with simultaneously high levels of challenges and skills, then this context is ideal for the student’s optimization of concentration and involvement.” [p. 303]. RtI perfectly fits this recommendation in that it provides a systematic method for matching skills and challenge with gifted students. Additional research (Shernoff, Csikszentmihalyi, Schneider, & Shernoff, 2003) has
indicated that high challenge is associated with higher engagement and that self-discipline (fostered by matched challenges and abilities and student choice) has a greater impact on academic outcomes than even intelligence (Duckworth & Seligman, 2005). In addition, activities containing high levels of challenge and high level of skill were the ones in which students report greater interest, concentration, and enjoyment. Furthermore, Deci, Koestner, and Ryan (2001) emphasize the importance of building intrinsic motivation in education instead of relying on external motivators like pizza parties, particularly with children. According to their meta-analysis, external rewards undermine intrinsic motivation. Though the effects of intrinsic versus extrinsic rewards are a debated topic within the field of education, few would argue that efforts to build intrinsic motivation are misguided. Finally, Meece, Anderman, and Anderman (2006) emphasize the importance of goal-mastery in the classroom, rather than criterion-related demonstration of ability. Their analysis indicates that many students exhibit diminished motivation under criterion-related and competitive classroom structures. RtI, with its individualized instruction, emphasizes goal-oriented mastery for all students.

Flow and self-determination theory help provide a bridge between the current state of education for gifted students in the United States, and the interventions that are necessary to build motivation, autonomy, and success. In addition, these theories help to explain the philosophy of early intervention central to RtI and the importance of structured differentiated instruction for gifted students.

Gifted Curriculum Development

During the school reform movement of the 1990’s, a number of authors called for gifted curriculum to more closely align with general education curriculum, (Council for Exceptional Children, 1994; Hanninen, 1994; Treffinger, 1991; VanTassel-Baska, 1991) in order to build relationships and contextualize gifted education. These calls culminated in the development of a task force within the National Association of Gifted Children (NAGC), which evaluated perceptions of teachers and parents regarding the role of gifted education. The overwhelming response from all stakeholders was that communication, cooperation, and collaboration between gifted educators and general educators was imperative for the success of gifted education (Tomlinson, Coleman, Allan, Udall, & Landrum, 1996). More recent publications continue to call for communication, but also call for differentiation in instruction for the gifted and for the provision of a “continuum of services” for gifted students to match their individual needs (Landrum, Callahan, & Shaklee, 2001).
RtI offers a uniform structure and objective data-based program of decision making that is already in place in many schools and which could be adapted to the needs of the gifted learner.

In developing a new curriculum for gifted students, VanTassel-Baska and Stambaugh (2006) suggest that the process be approached in three ways: adoption of an extant research-based curriculum for gifted students that is already available, modification and revision of an existing curriculum, or development of a new curriculum to “fill in the gaps” of current curricula. Adaptation of the RtI model to meet the needs of the gifted, and utilization of extant evidence-based interventions at all three tiers is a blend of the three approaches. The authors emphasize the importance of team-based decision making in curriculum development and outline the role of “content experts” (professors, researchers, or practicing professionals) as one of supplier of key concepts and ideas, which provide structure to the curriculum.

There are eight steps to effective curriculum development (VanTassel & Stambaugh, 2006). These steps, in order, are planning; needs assessment; teams and workscope; curriculum development approach; tryouts, piloting, and field-testing; implementation, evaluation, and revision. At the planning stage, an individual should examine fundamental issues and important questions related to gifted curriculum and should develop a philosophy statement and goals for the curriculum. The literature review contained within this paper is an initial examination of issues and questions of gifted education. A philosophy statement and goals for the curriculum are outlined in the attached procedural guide. A macro-level needs-assessment can also be found in the literature review of this paper, but prior to the adoption of any new curriculum, a micro-level needs assessment (state, district, and school-level) should be completed. The third stage of curriculum development, teams and workscope, is not applicable to this project, as this is an individual endeavor. The fourth stage, curriculum development approach is described in the above paragraph. The bulk of this project is situated between stages four and five: prior to piloting and field-testing, this curriculum is being subjected to initial validation by content experts. Follow-up studies will be required at stage five before the curriculum can progress to subsequent stages, however mechanisms for program evaluation are built in to the curriculum as a function of its heavy reliance on data-based decision making and progress monitoring. Finally, in gifted curriculum development, VanTassel-Baska and Stambaugh (2006) have outlined 20 principles for use in development of gifted and talented programs. These principles are addressed in the Multidimensional Rating Scale accompanying the procedural guide, and include: appropriateness for gifted learners, diversity, openness, integration, substantive learning, independence, complexity, transfer, depth, choice,
creativity, peer interaction, self and social understanding, communication skills, timing, multiple resources, accelerated-advanced pacing, continuity, economy, and challenge.

RtI and the Gifted

Little research exists in the area of empirical data regarding use of RtI with the gifted (Volker, Lopata, & Cook-Cottone, 2006; Bianco, 2010). However, buzz regarding utilization of RtI with the gifted is beginning to emerge. Some organizations have issued position papers regarding its use. For example, the Council for Exceptional Children (CEC, 2007) mentions the use of RtI with twice-exceptional students. In addition, two years after publication of the CEC position paper, the CEC collaborated with The Association for the Gifted to issue a position paper specifically addressing the use of RtI with the gifted (TAG, 2009). According to that position paper, response to Intervention should be “expanded in its implementation to include the needs of gifted children.” Each of the major components of RtI can be modified to meet the needs of the gifted. The critical elements of RtI, including their modifications are as follows (TAG, 2009):

1. **Universal screening** can be utilized to recognize student strengths and abilities in order to provide appropriate education to advanced students.
2. **Progress Monitoring** can be used to document mastery. Once a student has demonstrated mastery in an area, additional opportunities must be provided for continued learning and enrichment in areas related to student strengths.
3. **Established Procedural Guides** should be researched/created that allow gifted students access to advanced curricula, associated with student strengths that provide depth and breadth of information and are flexibly paced.
4. **Problem Solving Approaches** should be applied to situations in which students are not progressing at above-grade levels commensurate with their abilities in the same way they are applied for students who are not working up to grade level.
5. **Tiered Supports and Services** for gifted students differentiate the breadth and depth as well as the complexity and pacing of curricula content for students within each tiered level of intervention. This differentiated curriculum is delivered via acceleration and enrichment opportunities.

In addition, an entire issue of Gifted Child Today was dedicated to the use of RtI with the gifted. In that edition, Hughes and Rollins (2009), recommend a set of critical elements very similar
to the recommendations issued by CEC-TAG, but with the addition of five dimensions: Early Intervention, in which students are identified and nurtured regardless of label or teacher bias; Professional development, in which teachers are trained to deliver specific strategies like acceleration, enrichment, and differentiated instruction; Collaborative Structure, which emphasizes a team approach in designing interventions; Parental Involvement, which focuses on increasing communication in order to build upon student interests and strengths; and Resources, which focuses resources to meet the needs of students rather than the needs of programs.

Hughes and Rollins (2009) identify that some students enter school with low achievement due to circumstances such as poverty or linguistic differences and that students are sometimes excluded from gifted services due to difficulties with placement instruments. RtI addresses this problem by providing targeted support and enrichment to students who excel at a variety of different tasks and without the added pressure of high-stakes test results. RtI also provides flexibility in designing interventions for twice-exceptional students who may require accelerated curriculum in one subject area and remediated instruction in another. In the same issue of Gifted Child Today, Brown and Abernathy (2009) advocate for the importance of establishing specific policy in order for RtI to be utilized consistently for the gifted.

States are beginning to heed this call. In Florida, a workgroup has been formed to begin exploring utilization of RtI with gifted students. This workgroup emphasizes the diversity of learners, and the importance of focusing on four components in strength-based programming: acceleration, differentiated content, process and product, and affective and career guidance (Gardner, Henderson, Kesler, Musselman, O’Meara, & Tietjen, 2011). The Department of Education in Colorado also makes mention of utilization of RtI with gifted students in its RtI manual. Within this model, the pace of acceleration is based on individual needs, which may include multiple forms of acceleration over time (Colorado Department of Education, 2009). Wisconsin has developed and implemented a gifted education program utilizing the RtI model. Wisconsin DPI outlines seven key characteristics of an effective gifted education plan: systemic, responsive, fluid, appropriate, collaborative, sustainable, and comprehensive (Rollins, Mursky, & Johnsen, 2011). In addition, the state of Montana has issued guidelines for utilizing RtI with gifted learners (Montana OPI, 2009).

Recall that Sternberg (2004) identified commonalities between differing conceptions of giftedness and made recommendations regarding improving service delivery: First, giftedness involves more than high IQ. RtI addresses this concern directly by completely eliminating the
component of intellectual assessment. RtI focuses on matching curriculum to specific, obtained achievement rather than on predicted achievement. Second, it has both cognitive and noncognitive (e.g., motivational) components. RtI also addresses this recommendation directly, in that interventions are delivered in direct response to student performance, which is dictated, in large part, by noncognitive components like motivation. Third, environment is critical for gifted potential to be recognized. Environment is a difficult component to modify. Certainly children’s home and community experiences will not be addressed by RtI, but providing enriching experiences for students in school-based settings based on student need impacts the school environment, in which students spend a great deal of time. Fourth, giftedness is not merely one thing. Multiple forms of giftedness mean that one-size-fits-all assessments are unlikely to address this broad definition. RtI necessarily utilizes multiple forms of assessment and allows for giftedness in a broad number of areas. Finally, gifted evaluation measures should be created to operationalize theories, then should be validated empirically, rather than merely being assumed to be valid. Universal screening tools could easily be utilized to establish a ceiling cut-score, above which students would receive targeted interventions like curriculum acceleration. RtI can be utilized to improve identification and delivery of services to gifted students in such a way that it meets each of Sternberg’s recommendations for improvement of gifted student services.

Finally, while utilization of RtI with the gifted is certainly not the solution to all of the problems with the American education system, it can be viewed as step toward solving one specific problematic area: gifted student underperformance. Underperformance in STEM fields, in general, is leading to a crisis in the American labor force, and any potential remedies to this problem should be considered. Further, even if RtI does not drastically improve overall performance, it certainly aligns with best-practices in working with gifted students, and though it is a paradigm shift in gifted service delivery, it is one that deserves attention as it may be a way to overcome sentiments of elitism and lack of funding for gifted programs.

Next Steps

Perhaps the most fitting conclusion to a literature review investigating the possibility of utilization of RtI as an effective intervention to improve gifted students’ outcomes is to apply the problem-solving model integral to RtI to gifted student education at the macro-level. Define the problem:
In this instance, there are two related problems: a mismatch between gifted student ability, and the ability level at which they are taught (leading to larger problems with poor work habits) and the
mismatch between performance of American students in the STEM fields and industry demands for professionals in these fields.

1. A report commissioned for the U.S. Department of Education (1993) reports that gifted students have already mastered 33-50% of material to be studied in a school year before the year even starts.

2. Up to half of high-ability students underachieve (Pirozzo, 1982).

3. The educational system in the United States needs to produce significantly more engineers and scientists to meet expected demand (National Commission on Mathematics and Science Teaching for the 21st Century, 2000).

4. American students are losing ground internationally in reading, and in terms of science performance between the 4th and the 8th grades. Additionally, while we see improvements in both 4th and 8th grade math performance, at age 15, American students seem to perform poorly compared to international students.

Analyze why the problem is occurring:
The problem of underachievement of gifted students may stem from internalized low-levels of intrinsic motivation due to reinforced lack of effort early in school, or stemming from any number of complicated factors associated with boredom or frustration in the classroom.

1. Gifted students spend the majority of their school days in regular education classrooms without modifications or accommodations to the curriculum (U.S. Department of Education, 1993).

2. Poor effort with good outcomes leads students to believe that effort is not required, diminishing his/her level of intrinsic motivation (Rimm, 2008).

Implement a solution:
A potential solution that is gaining in support and exposure in the literature is the application of the RtI model as an intervention model for students on both ends of the achievement spectrum. According to CEC-TAG (2009) and Hughes and Rollins (2009) this solution may include:

1. Universal screening that examines both exceptionally high and exceptionally low student performance.

2. Early intervention to nurture the academic needs of all students.

3. Progress monitoring to assure that students receive the level of intervention most appropriate to their needs.
4. Tiered intervention services utilizing established procedural guides, implemented with fidelity.

5. Collaborative teams including both gifted and academic specialists to develop interventions appropriate to students’ needs and who encourage parental input and communication.

6. Problem solving approaches that are applied to students who are not progressing appropriately for their abilities.

Evaluate outcomes:

Outcomes should be monitored on both micro- and macro-levels in both the short- and long-term. These outcomes may be evaluated as follows:

<table>
<thead>
<tr>
<th>Micro</th>
<th>Macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term</td>
<td>System-wide increased end</td>
</tr>
<tr>
<td>Individual student progresses according to his/her ability</td>
<td>of course test scores for</td>
</tr>
<tr>
<td></td>
<td>students who followed modified curricula</td>
</tr>
<tr>
<td>Long-term</td>
<td>Increased American student</td>
</tr>
<tr>
<td>Individual student improved motivation, educational self-</td>
<td>performance when</td>
</tr>
<tr>
<td>efficacy, and achievement</td>
<td>compared to world student</td>
</tr>
<tr>
<td></td>
<td>performance</td>
</tr>
</tbody>
</table>

Certainly, these outcomes are very lofty goals and contain constructs that are difficult to measure (student ability, self-efficacy and motivation), but in presenting an ideal, setting the standard exceptionally high may provide incentive to move toward the goal. In addition, in order to be considered successful, improvement in only one of the four quadrants is necessary. While improvement in all four quadrants would be outstanding, it is highly unlikely.

While RtI as a program is in its infancy in many places in the country, and its efficacy is still being evaluated and considered by a number of researchers, consideration of broadening its scope to include both high and low performing students could only benefit students. The fit of RtI to gifted education is exceedingly promising, and, in light of the difficulties facing the American educational system, it is imperative to begin a dialogue regarding the potential benefits of expanding RtI’s usage.
Study

Some position papers, and general guidelines for implementation of RtI with the gifted are beginning to emerge in the literature. However, a validated specific procedural guide for service delivery has not yet been published. An effective model of RtI for gifted populations will marry theory and best practices in both RtI service delivery and gifted education interventions. The objective of this study is to 1. develop a specific procedural guide for delivery of RtI services to gifted students, based on theories of RtI and gifted curriculum and instruction (Appendix 6), 2. establish initial face, content, and construct validity for this procedural guide by submitting it for evaluation to a panel of subject matter experts in the fields of giftedness and RtI, along with a multidimensional rating scale (Appendices 1 & 2) and 3. obtain qualitative feedback from experts regarding the structure, utility, and applicability of the procedural guide (Appendix 2).

Research questions are as follows:

I. Does the procedural guide demonstrate content, construct, and face validity with respect to best practices in RtI?

II. Does the procedural guide demonstrate content, construct, and face validity with respect to best practices in differentiated instruction with the gifted?

III. Are the interventions contained within the procedural guide likely to present students with an opportunity to increase engagement with class material, and does it demonstrate adequate accessibility and usability for school-based populations?

Operational Definition of Terms

Subject Matter Experts- Members of professional organizations such as the National Association of Gifted Children or the National Association of School Psychologists who are first authors of two or more journal articles in either the gifted or RtI fields.

RtI- (Response to Intervention) a data based methodology that utilizes the problem-solving model and tiered interventions to address the differing needs of students.

Gifted- For the purposes of this study, giftedness is defined as a student who demonstrates knowledge and abilities above that of their peers in any subject area.

Content Validity- For the purposes of this study, content validity refers to the extent to which the procedural guide represents the multiple facets (outlined in the beginning of the guide) of two constructs: RtI and Differentiated Instruction for the Gifted.

Increased student engagement- High quality experiences in which the level of challenge is matched to the student’s level of ability, and over which the student has some measure of control.
Construct Validity: For the purposes of this study, construct validity refers to the extent to which the (overall) procedural guide represents two constructs: RtI and Differentiated Instruction for the Gifted.

Face Validity: For the purposes of this study, face validity refers to the extent to which the procedural guide appears to provide RtI interventions for gifted students.

Accessibility: For the purposes of this study, accessibility refers to the ease with which readers are able to understand the theories and interventions outlined in the procedural guide.

Usability: For the purposes of this study, usability refers to the ease with which consumers are able to implement interventions and recommendations outlined in the procedural guide.

Applicability: For the purposes of this study, applicability refers to the likelihood of adoption of this, or a similar, model at the school level.
CHAPTER 3
METHODS
Product Development

Procedural Guide

The 58 page procedural guide was developed based on the best-practice principles in both RtI and Gifted Curriculum and Instruction (CEC, 2007; CEC-TAG, 2009; FLDOE, 2008; VanTassel-Baska & Stambaugh, 2008; NAGC, 2010), and includes principles from Flow Theory (Moneta & Csikszentmihalyi, 1996; Shernoff, Csikszentmihalyi, Schneider, & Shernoff, 2003) and Self Determination Theory (Deci, Koestner, & Ryan, 2001). The guide includes a philosophy statement along with curriculum goals, overviews of RtI and Gifted Curriculum Components, specific strategies for getting started, examples of interventions at all three tiers, a glossary of terms, an annotated resource list, and reproducible forms. The entire procedural guide can be found in Appendix 6. Prior to the initiation of any element of this project, approval from Florida State University's Institutional Review Board was received (Appendix 7).

Multidimensional Rating Scale

Variables on the multidimensional rating scale were developed based on the work of several individuals. The first section of the rating scale, curriculum quality, is adapted from a checklist by VanTassel-Baska and Stambaugh (2006) and is designed to measure the breadth and depth of the services included in the curriculum guide. These items are indicative of best practices in gifted curriculum development. The second section of the rating scale is designed to measure the validity of the RtI component or the gifted curriculum and instruction component of the procedural guide, depending on which survey was completed. The last open-ended question in this section, on both surveys, is designed to obtain qualitative feedback from respondents. Regarding the RtI survey, six key elements are identified and measured in this section, based on the recommendation of CEC-TAG (2009) and Hughes and Rollins (2009). The six elements are identified in both articles as central to RtI with gifted students. Similarly, on the gifted survey, the second section is designed to measure the validity of the gifted curriculum and instruction component of the procedural guide. This section draws from the work of VanTassel-Baska and Stambaugh (2008) regarding effective interventions with the gifted, and the work of Moneta and Csikszentmihalyi (1996) [flow theory], along with self-determination theorists (Lafrenière, Jowett, Vallerand, Donahue, & Lorimer, 2008; Ryan & Deci, 2000) who emphasize the importance of student choice in education. The third section in both surveys is a section analysis, to determine if an entire section should be modified or
eliminated and was included based on suggestions from research experts (Prevatt, personal communication, 2011). The final section of the rating scale, demographic information, includes questions similar to those asked by Pfeiffer (2003), and is designed to establish subject matter expert status. The Multidimensional Rating Scales can be found in Appendices 1 and 2.

Phase I-Qualitative

Participants

In the initial phase, the draft of the procedural guide was subjected to the scrutiny of a focus group, which consisted of veteran classroom teachers of gifted children (grades 1-5 were represented), a school administrator, a school psychologist, an RtI expert (the district liaison), a school counselor, and a reading coach, for a total of 10 group members.

Method

According to Glenn (2011), focus groups should have a minimum of six members, and will likely only be able to answer 4-7 questions in a one-hour time frame. The four questions posed to the focus group were as follows:

- What would you add to make the procedural guide more helpful to teachers?
- What would you change about the structure of the procedural guide to make it more helpful to teachers?
- What would you recommend that would make students more likely to engage in the process?
- What is unlikely to work in this procedural guide?

The focus group meeting lasted approximately one hour, at a local elementary school, before school started one morning. The school administrator served as the facilitator for this focus group. Participants were presented with an informed consent document along with paper copies of the procedural guide approximately one week prior to the focus group meeting date, and were compensated for their time with refreshments (coffee and donuts) during the focus group. All recommendations offered by the focus group were recorded, carefully considered, and were compared to best-practices in the literature. They were then either incorporated into the procedural guide, or justification for non-inclusion was provided. The feedback obtained from participants was utilized to improve the usability of the procedural guide for school-level practitioners.

Phase II-Qualitative

Participants

Participants in Phase II included a director of a school psychological services organization, a professor who participated in the development of a widely utilized career inventory, a visiting
professor in psychometric measurement who is a practicing school psychologist, and a doctoral candidate in communications, for a total of four participants. An additional professor in the school psychology department was unable to attend at the last minute, due to a family emergency.

Method

In addition to the development of the procedural guide, a multidimensional rating scale to accompany it was developed. This scale included demographic information regarding expert participants (for example, number of years in the field, credentials, position, number of books edited, chapters published, number of juried articles published, and membership in professional organizations), construct validity evaluation, face validity evaluation, curriculum quality, evaluation of specific components, and a qualitative feedback portion. During Phase II of the study, a draft of the multidimensional rating scale was piloted to individuals with experience developing rating scales, and the format of the scale was discussed in a group format. Qualitative feedback was obtained, analyzed, and incorporated into the multidimensional rating scale. During Phase II, the group was asked to answer four questions:

- What would you add?
- What would you change?
- What would you remove?
- What is unlikely to yield usable data?

Each focus group participant was provided with a small thank-you gift ($5 Starbucks gift card) for participating and a copy of the informed consent letter. Light refreshments were served at the group discussion, which took place on a late spring afternoon on Florida State University’s campus, and lasted approximately one hour. The doctoral candidate in communications served as the facilitator for this group. All recommendations offered by the focus group were recorded and carefully considered. They were then either incorporated into the multidimensional rating scale, or justification was offered for non-incorporation. Feedback obtained from the focus group was utilized to improve the multidimensional rating scale in terms of improving the readability, user-friendliness, and the quality of the data obtained.

Phase III-Mixed Methods

Participants

Based on similar work by Gavin et al (2009), six experts in the field of gifted research and six experts in the field of RtI were initially recruited for this study. Experts were defined as members of professional organizations (National Association of Gifted Children and National Association of
School Psychologists, respectively), who were first authors of two or more journal articles in either the gifted or RtI fields, as outlined by Pfeiffer (2003). The a priori criteria for gifted experts were checked against records in PsychArticles and/or GoogleScholar prior to the experts’ invitation to participate in the study. Data regarding number and type of publications, educational attainment, and awards were obtained from the sample to further establish the credibility of the expert group.

Initial recruitment of participants for Phase III took place in May and June 2011. Researchers in the respective fields of gifted education and RtI identified the initial pool of experts, and their expert status (in terms of being the lead author of at least two articles in the field) was independently verified using PsychArticles and GoogleScholar. One RtI participant was found not to meet the a priori criteria during the initial search of two databases, but he was still included in the participant pool in case juried articles had been published, but were not listed on either database. The demographic section of the survey would provide concrete information. Each participant agreed to complete the study prior to the distribution of materials, and provided the researcher with a mailing address.

Procedure

During Phase III, the modified procedural guide and the multidimensional rating scale were submitted to twelve subject matter experts with the objective of obtaining a sample of ten experts in the two respective fields (five in the field of RtI and five in the field of gifted education). Content, construct, and face validity data, along with data regarding the participants was obtained and analyzed. In addition, experts were encouraged to provide qualitative feedback regarding the structure and design of the procedural guide.

The initial participant pool included six experts in the field of gifted education and six experts in the field of RtI. Procedural guide and rating scale distribution took place during the first week of July, with a request for a response by August 15, 2011. Paper copies of the procedural guide, along with an informed consent letter, and receipt of a charitable donation made in the honor of the participant (as an incentive to participate), were mailed in early July. Follow-up e-mails were utilized to verify receipt of materials by the experts, and to provide a reminder as the deadline approached. On the deadline of August 15, 2011 only two RtI participants and three gifted participants had participated in the study. Additional reminder e-mails and telephone calls were conducted on August 16 and August 21, respectively.

Due to the low response rate, additional experts were identified via literature searches, searches of leaders of professional organizations (NAGC and RtI steering committees), and
professional recommendations. The a priori criterion for expert status was verified for the additional pool of experts in the same manner as the original expert pool (via PsychArticles and GoogleScholar). Four additional gifted experts and five additional RtI experts were invited to participate on August 21. The experts were asked whether they preferred hard or digital copies of the procedural guide and informed consent. Each participant requested digital copies, which were distributed on the same day as the experts’ response. A complete data set for gifted experts was obtained on August 25, but two additional usable responses arrived after that time. The two additional responses were excluded from the quantitative analysis, but the qualitative feedback was analyzed and incorporated into the procedural guide.

By September 11, five RtI participants had completed the online assessment of the procedural guide, but one response was unusable because the expert (mentioned earlier) did not, in fact, meet the a priori criteria as an expert. Therefore, the data set was incomplete. In order to recruit additional participants, each expert was e-mailed and asked to recommend one to two additional experts in the field of RtI. Six additional RtI experts were invited to participate (expert criteria verified in the same manner described above). On September 14, an additional RtI response was received, but suffered from a technical difficulty (resulting in responses to the first 15 questions not being recorded). The remaining RtI experts were emailed with a link to a “supplemental” survey that consisted only of the missing responses. The anonymous participant completed the supplemental survey on the 15th, which completed the data set. An additional participant completed the survey on the 16th. As with the additional gifted expert responses, this response was not included in the quantitative analysis, but the qualitative feedback was incorporated into the procedural guide.

Content, Construct, and Face Validity Measurement

Validity is a difficult concept to measure in the social sciences and in education. Shadish, Cook, and Campbell (2002) quote a report issued by the National Academy of Sciences on research in early child development outlining the problems:

In measuring human height (or weight or lung capacity, for example), there is little disagreement about the meaning of the construct being measured, or about the units of measurement (e.g., centimeters, grams, cubic centimeters)… Measuring growth in psychological domains (e.g., vocabulary, quantitative reasoning, verbal memory, hand-eye coordination, self-regulation) is more problematic. Disagreement is more likely to arise about the definition of the constructs to be assessed. This occurs, in part, because there are often no natural units of
Construct validity, say Shadish, Cook, and Campbell (2002), involves inferring from the sampling particulars of a study to the complicated constructs those particulars represent. However, while they may be controversial, constructs are important for unifying language in research, and translating findings to practice. They outline that constructs are common to the language of science, and consist of items far broader than the traditional notions of psychological constructs, like depression. For example, ethnicity is a construct that is often measured, but which can be controversial. In order to establish construct validity, they recommend four steps: 1. beginning with a clear definition of person, setting, treatment, and outcome constructs of interest, 2. careful selection of instances that match those constructs, 3. assessment of the match between instances and constructs to see if any slippage between the two occurred, and 4. revision of construct descriptions according to evidence. In this study, operational definitions of terms are offered to clarify definitions of each aspect of the constructs at the outset of the study. Additionally, instances can be identified as the variables on the multidimensional rating scale, whose reflectiveness of the broader constructs of RtI and Gifted Curriculum and Instruction is measured on the multidimensional rating scale. These instances are highlighted as important pieces of each construct by experts in the respective fields, and across the literature. Finally, the objective of the study is to adapt and modify sections that indicate “slippage.”

Content Validity: Lawshe (1975) operationally defines content validity as the extent to which members of an expert panel identify overlap between a measure and a performance domain. In an adaption of Lawshe’s traditional measure, each broad section of the procedural guide was used as a proxy for the measure, and the domain was best practices in either RtI or gifted curriculum and instruction. For each section of the procedural guide, the Subject Matter Experts (SMEs) were asked the following question: “Is the intervention described in this section “clearly reflective,” “somewhat reflective,” or “not reflective” of the construct of RtI or Gifted curriculum/instruction?” (Lawshe, 1975). Using this measure, if over half the raters describe an element as clearly reflective, that section can be described as having some content validity. A numeric value for content validity of each section will be calculated by utilizing Lawshe’s content validity ratio formula: \[CVR = \frac{n_e - N/2}{N/2} \] In this equation CVR = content validity ratio, \(n_e = \) number of panelists indicating “clearly reflective,” \(N = \) total number of panelists. If over half the respondents indicate that the element is “clearly reflective,” the CVR will be a positive number.
Likewise, if fewer than half rate the element as “clearly reflective,” the CVR will be a negative number. According to Lawshe’s calculation, each of the five Subject Matter Experts would have to rate each component of the intervention as “clearly reflective” of the construct of either RtI or Gifted curriculum/instruction in order for the component to demonstrate adequate content validity, though an 80% majority is considered adequate by a number of other professionals (Pfeiffer, Proctor, Prevatt, & Schatschneider, personal communication, 2011). It should also be noted that Lawshe allowed items to be retained in the final form based on item analysis, even if they did not demonstrate adequate content validity.

Content validity was explored in order to determine the extent to which the essential components of both RtI and gifted curriculum/instruction were well-represented in the procedural guide. In other words, the author was interested in making sure she was not misrepresenting key elements of either broad construct (RtI and gifted curriculum/instruction), by submitting her description of the elements to theoretical experts in the two fields. The information obtained from this quantitative analysis was utilized to guide revisions to the final version of the procedural guide, not to firmly establish content validity of any individual components.

Construct Validity: Construct validity traditionally refers to the extent to which a measurement is representative of a hypothetical construct (Heiman, 2002). For the purpose of this study, construct validity refers to how well the procedural guide reflects best practices in RtI and best practices in gifted curriculum and instruction, upon close reading and consideration of the components of the procedural guide. In order to measure this, an overall judgment by the expert panel, measured by likert scale, as to how well the procedural guide reflects the construct of “best practices in gifted curriculum and instruction” or “best practices in RtI” was included in the multidimensional rating scale.

Construct validity was explored in order to determine, according to the theoretical experts, how well the broad constructs were represented in the procedural guide. This was an important component to measure because a goal of the procedural guide is to marry best practices in both fields, and if the broad constructs were not well represented the goal could not be met. Again, the results of this section were not intended to firmly establish validity of either construct in the procedural guide, but were utilized to guide modifications to the final product.

Face Validity: Face validity, a less consequential variable in this study, traditionally refers to the extent to which a measure appears to measure what it purports to measure (Heiman, 2002). In this study face validity merely refers to how well the guide appears to reflect RtI and “best practices
in gifted curriculum and instruction.” Similar to the construct validity measure, face validity was measured by likert scale.

Face validity was measured in order to insure that readers might have some faith in the content of the guide prior to a detailed reading. Intuitively, it seems important in that individuals have some belief that a product is likely to work prior to their investing time in the product.

Addressing Potential Threats in Qualitative Research

Sampson (2008) suggests that in qualitative research, the researcher should address issues of transparency, coherency, and credibility. In phase III, and the qualitative portions of the study, the researcher addressed transparency issues by submitting the procedural guide to a panel of experts unknown to the researcher. In this way, more objective feedback was obtained. In addition, she removed herself from the focus group process (and served only in the capacity of note-taker) in order not to introduce bias during the focus group procedure. She documented the demographic information of focus group members and discusses the ways in which the demographics may impact the results of the study in the discussion section of this dissertation. Further, she obtained feedback from her dissertation committee regarding additional potential biases, and addresses those biases in the discussion section.

The researcher addresses potential coherency problems by obtaining feedback from a variety of professionals in a variety of formats. Feedback regarding the procedural guide and/or multidimensional rating scale was obtained from the following professionals: school psychologists, teachers, administrators, professors, RtI experts, gifted differentiated curriculum experts, school counselors, and experts in the field of rating scale development. In addition, information was gathered using a variety of formats including a focus group, a pilot group discussion, and a multidimensional rating scale.

Finally, potential credibility issues during the qualitative portion of the study were addressed by obtaining professional identification information from the participants, linking both the multidimensional rating scale and the procedural guide to best practices, and by providing specific instructions to participants in the focus group and the pilot group.

In phase III, the quantitative portion of the study, the measure consisted of a multidimensional rating scale. During the development phase, the scale was first piloted to a group of three experts in scale development for qualitative feedback, which were incorporated into the measure. The scale was developed to answer specific questions regarding the procedural guide.
In summary, although both the Procedural Guide and the Multidimensional Rating Scale were developed specifically for this study, they were developed systematically in order to reduce the effects of potential bias. Transparency, coherency, and credibility issues were addressed at each phase in the development of both the procedural guide and the multidimensional rating scale designed to measure the quality of the procedural guide.
CHAPTER 4
RESULTS
Phase I-Qualitative

The qualitative feedback from the Phase I focus group included recommendations about including student self-referrals, clarification about universal screening tools, changing the forms to include more check-boxes rather than open-ended questions, and modifying example forms. Each recommendation was carefully considered, compared to best practices across the literature in both RtI and gifted, and was either incorporated into the procedural guide or a justification for non-inclusion was offered.

In response to the first question, “What would you add to make the procedural guide more helpful to teachers?” respondents offered some suggestions, which were incorporated into the procedural guide. These included adding a student self-evaluation of strengths, and clarification of universal screeners. A recommendation against the Naglieri non-verbal measure was not directly addressed in the procedural guide because the Naglieri was not specifically mentioned. The team member mentioned it because that specific school had utilized it in the past, and had experienced difficulty. Final recommendations regarding the first focus group question required increasing emphasis on items included in the guide. For example, a recommendation was made to include an intervention focused on social development. In response, the role of social interaction through instructional strategies like conceptual discussions, grouping, cooperative learning, and problem-based learning was emphasized. A final recommendation was the inclusion of a checklist of gifted characteristics for teachers. In response to this recommendation, the passage stating that demonstrated excellence in a subject area was the only qualifying criteria for advancement through tiers in this RtI model was highlighted. Traditional characteristics of gifted students are not appropriate to this model, which is merely meant to augment traditional gifted education, not replace it.

In response to the second focus group question, “What would you change about the structure of the procedural guide to make it more helpful to teachers?” the group offered many suggestions, which were incorporated into the procedural guide. These included simplification of the reproducible forms by including more checklists, emphasizing the potential negative social impact of independent study (this was emphasized in the conclusion section), turning the flow-chart to increase readability, titling each chart, modifying examples to model ideal documentation, and
changing language regarding movement between tiers from “advanced to tier II” to “tier II interventions are added.” Recommendations regarding categorizing interventions/enrichments based on subject-area and color-coding those interventions were not incorporated because as it is currently written, each of the interventions can be adapted across subject area, broadening the utility of the guide. Additionally, a recommendation regarding targeting very specific skills (like decoding) was not incorporated because, while targeting makes sense in traditional RtI (as remediation - building a specific skill is the goal), in an enrichment model, general subject area enrichment is likely to be more beneficial to the student than specific, targeted skill building activities.

The third focus group question, “What would you recommend that would make students more likely to engage in the process?” also yielded several responses that were incorporated into the procedural guide. The conclusion section was expanded to include information on helping students understand what it means to be gifted, and to advocate for early identification in order to encourage children to take academic risks. In addition, a recommendation for teacher training in fostering a culture where giftedness is valued was included. A recommendation to focus on depth rather than breadth in enriching curriculum was not incorporated because this seemed to be a preference based on the structure of gifted education at the particular school where the focus group was conducted. Concurrent foci on both depth and breadth, with options for either or both were maintained in the procedural guide.

The final focus group question, “What is unlikely to work in the procedural guide?” generated a great deal of discussion, and yielded some additional modifications to the procedural guide. The participants felt strongly that curriculum compacting was too labor-intensive to be practical in a school setting. They also reported that students are unable to attend subjects in advanced grade-levels because of logistical concerns. While these recommendations were considered, the interventions were retained in the guide because curriculum compacting has a strong evidence base, and because some schools are able to build master schedules that allow students to attend different grade level subject-matter classes. Additionally, while these solutions may not be practical at this particular school, they should not be excluded from the guide. Other recommendations that were incorporated into the guide include changing the structure of some of the reproducible forms to include more checklists, and modification of the example students’ interventions to be more feasible in a school setting (i.e. parents providing transportation to after school programs rather than the school). Finally, funding problems and potential funding streams
were discussed. For a more comprehensive and detailed list of the recommendations offered during Phase I, along with the evaluator’s response to each recommendation, see Appendix 3.

Phase II-Qualitative

During phase II of the study, focus group participants were asked the following questions: “What would you add?” “What would you change?” “What would you remove?” and “What is unlikely to yield unusable data?” In addition to answering the specific questions, the group offered the recommendation to have several volunteers complete the survey in order to obtain an accurate time estimate. Within the group, consensus was reached regarding the specific recommendations, and each recommendation offered by the group was incorporated into the multidimensional rating scale.

Qualitative feedback from participants in Phase II included moving the demographic section to the end of the survey, and dividing the survey into distinct sections, which include descriptions. Based on this feedback, both forms of the multidisciplinary rating scale were divided into four sections: Curriculum Quality, Validity, Overall Assessment, and Demographic Information. Participants also recommended the elimination of several items to reduce the amount of time required of participants. This recommendation resulted in the elimination of ten items (culled items and reasoning for culling them can be found in Appendix 4). The committee emphasized the importance of including comments boxes for most items, therefore comments boxes were added to each question in the Curriculum Quality section, each question in the Validity section, and each question in the Overall Assessment section. The committee recommended including checkboxes for common professional organizations rather than answer blanks, so the Demographic Information section includes primarily checkboxes rather than comments boxes. Finally, the committee recommended rewording several questions. For a detailed list of the reworded questions and other recommendations offered during Phase II, along with the evaluator’s response to each recommendation, see Appendix 4.

Phase III-Mixed Methods

Participant Demographics

A total of thirteen participants completed the multidimensional rating scale (seven gifted experts and six RtI experts). An additional RtI and an additional Gifted response were received, but were considered unusable because they were each missing responses to the first several questions. Additionally, the incomplete RtI response did not meet the a priori criteria for expert status. For the
quantitative evaluations (curriculum quality, validity, engagement, usability and accessibility), only the first five responses received (chronologically) in each expert group were included in the analysis. However, qualitative feedback from all 13 participants was analyzed and addressed. Additionally, the expert demographics described here are reflective of the entire group of respondents (n = 13).

Combined- In terms of years of experience, experts report an average of 22.8 years of experience (range: 5-42). All respondents report a doctoral degree (Ph.D. = 12, Ed.D. = 1). Additionally, three report having earned M.A. degrees, one reports an M.Ed., and one reports an Ed.S. Recall that, during phase II, participants suggested checkboxes rather than blanks for experts. For this reason, ranges were offered to the experts in terms of the number of products they had authored. For example, the most often selected number of books edited by the experts was 1-5 (n = 6), followed by 6-10 (n = 3). The most often selected number of chapters authored or co-authored is 6-10 (n = 5). The most often selected range of number of juried articles for which the expert is first author is more than 40 (n = 4). The most often selected range of number of juried articles for which the expert is an author (other than first author) is also more than 40 (n = 4). All respondents report memberships in professional organizations including: National Association of School Psychologists (NASP), National Association of Gifted Children (NAGC), the Association for the Gifted (TAG), individual state organizations, and the American Psychological Association (APA). Interestingly, no gifted experts report membership in APA, while no RtI experts report membership in NAGC.

RtI- RtI experts had an average of 18 (range: 5-35) years of experience, and report position titles including: senior scientist, professor, associate professor, consultant/researcher, and psychologist/associate scholar. Within the RtI group, the most often selected range of books edited by the experts is 1-5 (n = 4, reflective of the combined group), while the most often selected ranges of chapters authored or co-authored are 6-10 and more than 16 (n = 2 for each). Additionally, one respondent had edited 1-5 chapters, and one had edited 11-15. The most often selected range of number of juried articles for which the expert is first author is more than 40 (n = 3) again reflective of the combined group. The most often selected range of number of juried articles for which the expert is an author (other than first author) is also more than 40 (n = 3, reflective of combined group).

Gifted- Gifted experts had an average of over 27 (range: 12-42) years of experience, and report position titles including: professor of gifted studies, director of teacher and leader preparation programs, Smith professor emerita, senior scientist, assistant professor, and director of gifted
education/gifted program coordinator (at a research one institution), professor, associate professor, consultant/researcher, and psychologist/associate scholar. Within the Gifted group, the most often selected ranges of books edited by the experts are 1-5 (n = 2), 6-10 (n = 2), and more than 16 (n = 2). Additionally, one respondent reported editing 11-15 books. The most often selected range of chapters authored or co-authored is 6-10 (n = 3, reflective of the combined group). The most often selected range of number of juried articles for which the expert is first author is 1-10 (n = 3). Two additional respondents reported being first author of 11-20 and more than 40 juried articles, respectively. The most often selected range of number of juried articles for which the expert is an author (other than first author) is 11-20 (n = 3). Two respondents reported co-authoring more than 40 articles, while one reported co-authoring 1-10 and another reported co-authoring 11-20. Interestingly, while gifted experts reported more years of experience and more books edited, as a group they report authorship/co-authorship on fewer juried articles.

Content, Construct, and Face Validity – RtI

Content Validity- In order to measure content validity, experts were asked to rate components of RtI, as described in the procedural guide, as reflective of traditional procedures in RtI. Recall that Lawshe (1975) operationally defines content validity as the extent to which members of an expert panel identify overlap between a measure (a component of the procedural guide) and a performance domain (traditional procedures in RtI). Answer options included the following: clearly reflected, somewhat reflected, and not reflected. Recall also that, for the purposes of this study, in order to demonstrate content validity, Lawshe’s content validity ratio (CVR) must be .60 or higher (80% of participants) or greater. CVR = \(\frac{n_e - N/2}{N/2} \) In this equation CVR = content validity ratio, \(n_e \) = number of panelist indicating “clearly reflective,” \(N \) = total number of experts in the field. The RtI content areas measured included: universal screening, early intervention, progress monitoring, tiered support, team-based decision-making, and the problem-solving model. Areas demonstrating adequate content validity, according to the guideline of 80% established earlier, include: universal screening, tiered support, and the problem-solving model. Areas not demonstrating adequate content validity include early intervention, progress monitoring, and team-based decision-making. Due to the small sample size, even highly rated items, like Tiered Support, which 80% of respondents identified as “clearly reflected,” demonstrate seemingly low CVR numbers. Notably, all RtI content areas obtained positive CVR values.
Qualitative feedback by experts in this area reveals that experts would like to see a more parent involvement regarding team-based decision-making. Additionally, the experts concern about progress monitoring with gifted students because they fear that ORF and traditional approaches to CBM will not be good progress monitoring tools for gifted students. They indicated concern that these are unlikely to reflect growth in the more advanced skills and will likely be completely irrelevant for older students. Finally, experts would like to see a downward expansion of the guide for use with pre-kindergarten students. Also qualitatively, the majority of items not rated as “clearly reflective” of traditional practices in RtI were rated as “somewhat reflective.” The exceptions were progress monitoring and tiered support (one rating of “not reflective” each).

Construct Validity- Construct validity was measured using a likert-type scale. The following information was provided to experts as a section header before the validity section of the multidimensional rating scale:

Shadish, Cook, and Campbell (2002) outline that constructs are common to the language of science, and consist of items far broader than the traditional notions of psycholgical constructs like depression. For example, ethnicity is a construct that is often measured, but which can be controversial. For the purpose of this section, please consider best practices in RtI as a construct.

In order to assess construct validity, experts were asked, “Overall, how well does the procedural guide reflect the construct of RtI?” Options were as follows: 1-not at all, 2-somewhat, 3-mostly, and

Table 1

RtI Content Validity

<table>
<thead>
<tr>
<th>RtI Content Area</th>
<th>Lawsche CVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal Screening</td>
<td>1.00</td>
</tr>
<tr>
<td>Early Intervention</td>
<td>.20</td>
</tr>
<tr>
<td>Progress Monitoring</td>
<td>.20</td>
</tr>
<tr>
<td>Tiered Support</td>
<td>.60</td>
</tr>
<tr>
<td>Team-Based Decision-Making</td>
<td>.20</td>
</tr>
<tr>
<td>Problem-Solving Model</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Progress Monitoring and Tiered Support each obtained one rating of “not reflected” all other scores were either “somewhat reflected” or “clearly reflected.”
4-completely. The majority of experts (n=3) identified the guide as “completely” reflecting the construct of RtI ($M = 3.6, SD = 0.547$). The remaining two experts identified the guide as “mostly” reflecting the construct of RtI. The range of responses was 3-4.

Face Validity - Similarly, face validity was measured using a likert-type scale. Experts were asked, “Overall, how well does the procedural guide demonstrate face validity with respect to the construct of RtI?” Again, options were: 1-not at all, 2-somewhat, 3-mostly, and 4-completely. Regarding face validity, the majority of experts (n=3) identified the guide as “mostly” demonstrating face validity with respect to the construct of RtI, while an additional two identified the guide as “completely” demonstrating face validity with respect to RtI ($M = 3.4, SD = 0.547$). The range of responses was 3-4. Interestingly, the guide was rated by the RtI experts as demonstrating somewhat higher construct validity than face validity.

Content, Construct, and Face Validity – Gifted Curriculum and Instruction

Content Validity - In order to measure content validity, experts were asked to rate components of gifted curriculum, as described in the procedural guide, as reflective of “best practices in gifted curriculum and instruction.” Recall that Lawshe (1975) operationally defines content validity as the extent to which members of an expert panel identify overlap between a measure (a component of the procedural guide) and a performance domain (traditional procedures in gifted curriculum and instruction). Answer options included the following: clearly reflected, somewhat reflected, and not reflected. Recall also that, for the purposes of this study, in order to demonstrate content validity, Lawshe’s content validity ratio (CVR) must be .60 or higher (representing 80% of participants). CVR = $(n_c - N/2) / N/2$ In this equation CVR = content validity ratio, n_c = number of panelist indicating “clearly reflective,” N = total number of experts providing ratings. The Gifted Curriculum and Instruction content areas measured included: content mastery, process and product development, overarching theme study, and student choice. Areas demonstrating adequate content validity, according to the raters include only content mastery. Areas not demonstrating adequate content validity include process and product development, overarching theme study, and student choice.
Table 2

Gifted Content Validity

<table>
<thead>
<tr>
<th>Gifted Content Area</th>
<th>Lawsche CVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Mastery</td>
<td>.60</td>
</tr>
<tr>
<td>Process and Product</td>
<td>-.20</td>
</tr>
<tr>
<td>Development</td>
<td></td>
</tr>
<tr>
<td>Overarching Theme Study</td>
<td>-.20</td>
</tr>
<tr>
<td>Student Choice</td>
<td>-.20</td>
</tr>
</tbody>
</table>

* Overarching Theme Study obtained one rating of “not reflected”
 all other scores were either “somewhat reflected” or “clearly reflected.”

Qualitative feedback by experts in this area reveals that raters would like to see a modified
description for independent study, cross-categorization between some product development
components and choice/control components. Also, qualitatively, most content areas were rated as
“somewhat” reflective of traditional practices in gifted curriculum and instruction. Only one area
had one rating of “not reflective” (overarching theme study).

Construct Validity - Construct validity was measured using a likert-type scale. The
following information was provided to experts as a section header before the validity section of the
multidimensional rating scale:

Shadish, Cook, and Campbell (2002) outline that constructs are common to the language of
science, and consist of items far broader than the traditional notions of psycholgical
constructs like depression. For example, ethinicity is a construct that is often measured, but
which can be controversial. For the purpose of this section, please consider best practices in
“gifted curriculum and instruction” as a construct.

In order to assess construct validity, experts were asked, “Overall, how well does the procedural
guide reflect the construct of best practices in gifted curriculum and instruction?” Options were as
follows: 1-not at all, 2-somewhat, 3-mostly, and 4-completely. The range of responses for this item
was 1-4, indicating a great deal of variability amongst the experts ($M = 2.6, SD = 1.14$). One expert
rated the construct validity as “not at all reflective” of best practices in gifted curriculum and
instruction, one rated it as “somewhat” reflective, two rated it as “mostly” reflective, and one rated it
as “completely” reflective of best practices.
Face Validity- Similarly, face validity was measured using a likert-type scale. Experts were asked, “Overall, how well does the procedural guide demonstrate face validity with respect to the construct of best practices in gifted curriculum and instruction?” Again, options were: 1-not at all, 2-somewhat, 3-mostly, and 4-completely. Responses were again varied, with two respondents reporting that the guide “somewhat” demonstrates face value, one respondent reporting that it “mostly” demonstrates face value, and two respondents reporting that it “completely” demonstrates face value with respect to best practices in gifted curriculum and instruction ($M = 3, SD = 1$).

Overall Engagement, Accessibility, and Usability

Engagement- Engagement was measured, like face and construct validity, using a likert-type scale. Both RtI and Gifted experts were presented with identical questions so that overall student engagement potential could be measured. Experts were asked, “How likely are the interventions contained in this guide to present students with an opportunity to increase engagement with class material?” Rating options were identical to the face and construct validity options (1-not at all, 2-somewhat, 3-mostly, and 4-completely). Of the ten experts, half (four RtI and one gifted) rated engagement potential as “completely.” Four (three gifted and one RtI) rated engagement potential as “mostly,” and a final (gifted) expert rated the engagement potential as “somewhat.”

Accessibility- Accessibility was measured using an identical likert-type scale. Experts were asked “How easy is it for readers to understand the theories and interventions outlined in this procedural guide?” Three experts (all RtI) reported that the guide was “completely” easy to understand. Four experts (two RtI and two gifted) rated the guide as “mostly” easy to understand. Two gifted exerts rated the guide as “somewhat” easy to understand, and one gifted expert rated it as “not at all” easy to understand.

Usability- Usability was measured using an identical likert-type scale, however it is worth noting that the wording in this question forced reverse scoring. Experts were asked, “How difficult will it be for readers to implement the interventions and recommendations outlined in this procedural guide?” Two gifted experts reported that it would be “not at all” difficult for readers to implement interventions. Three experts (two gifted and one RtI) reported that they felt that it would be “somewhat” difficult to implement interventions. Four RtI experts reported that it would be “mostly” difficult to implement interventions, and one gifted expert reported that it would be “completely” difficult to implement interventions.
Table 3

Engagement, Accessibility, and Usability

<table>
<thead>
<tr>
<th></th>
<th>Engagement</th>
<th>Accessibility</th>
<th>Usability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gifted 1</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Gifted 2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gifted 3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gifted 4</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Gifted 5</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Gifted Mean</td>
<td>3</td>
<td>2.2</td>
<td>2</td>
</tr>
<tr>
<td>Gifted SD</td>
<td>0.707</td>
<td>0.836</td>
<td>1.224</td>
</tr>
<tr>
<td>RtI 1</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>RtI 2</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>RtI 4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>RtI 5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>RtI 6</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>RtI Mean</td>
<td>3.8</td>
<td>3.6</td>
<td>2.8</td>
</tr>
<tr>
<td>RtI SD</td>
<td>0.447</td>
<td>0.547</td>
<td>0.447</td>
</tr>
</tbody>
</table>

For Engagement and Accessibility, 1 is a poor rating, while 4 is a favorable rating, but for Usability, 1 is a favorable rating and 4 is a poor rating (due to the wording of the question).

Curriculum Quality-

The first 13 questions of the multidimensional rating scale were designed to evaluate the procedural guide’s quality. They were adapted from a checklist by VanTassel-Baska and Stambaugh (2006) designed to measure gifted curriculum quality. Both gifted and RtI experts were presented with the same 13 questions. This section of the multidimensional rating scale includes a header that states the section contains questions were:

- designed to measure the quality of the procedural guide as a tool to be used with gifted, or high ability students (the terms are used interchangeably in the document). This section is based on the work of VanTassel-Baska and Stambaugh (2006). Though there is no one standard definition of the term gifted, this study liberally defines a gifted student as one who demonstrates knowledge and abilities above that of their peers in any subject area.
Each question utilizes a likert-type scale identical to the scales mentioned earlier to obtain the experts’ evaluation of different aspects of the procedural guide (1-not at all, 2-somewhat, 3-mostly, 4-completely). Qualitative responses were requested via comments boxes if respondents chose “not at all” or “somewhat.”
<table>
<thead>
<tr>
<th>Question</th>
<th>Combined Mean (SD), Mode Range</th>
<th>RtI Mean (SD), Mode Range</th>
<th>Gifted Mean (SD), Mode Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are the interventions presented in the procedural guide based on a clear assessment of the abilities and needs of high-ability learners?</td>
<td>3.1 (0.74), 3</td>
<td>3.6 (0.55), 4</td>
<td>2.6 (0.55), 3</td>
</tr>
<tr>
<td>Are there provisions for multiple means to attain ends within the procedural guide?</td>
<td>3.2 (0.63), 3</td>
<td>3.4 (0.55), 3</td>
<td>3.0 (0.71), 3</td>
</tr>
<tr>
<td>Does the procedural guide allow for a focus on significant subject matter, skills, and products that are consequential to the learner and the discipline?</td>
<td>3.2 (0.79), 3</td>
<td>3.6 (0.55), 4</td>
<td>2.8 (0.84), 2,</td>
</tr>
<tr>
<td>Are there provisions for self-directed learning?</td>
<td>3.1 (0.74), 3</td>
<td>3.4 (0.55), 4</td>
<td>2.8 (0.84), 2,</td>
</tr>
<tr>
<td>Is there a provision for the study of systems knowledge, underlying principles and concepts, and key theories?</td>
<td>2.6 (0.97), 2</td>
<td>3.2 (0.84), 3, 1-4</td>
<td>2.0 (0.71), 2</td>
</tr>
<tr>
<td>Are there provisions for transfer of learning within and across domains of knowledge?</td>
<td>2.5 (0.71), 2</td>
<td>3.0 (.71), 3, 2-4</td>
<td>2.0 (0.00), 2</td>
</tr>
<tr>
<td>Are there provisions for students to study ideas and apply skills to targeted problems and issues?</td>
<td>3.1 (0.88), 4</td>
<td>3.6 (0.55), 4</td>
<td>2.6 (0.89), 2</td>
</tr>
<tr>
<td>Do high-ability learners have opportunities to learn from other students who share abilities and interests?</td>
<td>3.1 (0.74), 3</td>
<td>3.4 (0.55), 3</td>
<td>2.8 (0.84), 2,</td>
</tr>
<tr>
<td>Is there a provision for the utilization of a variety of material and resources in the learning process?</td>
<td>3.1 (0.74), 3</td>
<td>3.4 (0.89), 4</td>
<td>2.8 (0.45), 3</td>
</tr>
<tr>
<td>Is there a provision for speed of student apprehension and subsequent curricular modifications?</td>
<td>3.0 (0.82), 3</td>
<td>3.4 (0.55), 3</td>
<td>2.6 (0.89), 2</td>
</tr>
<tr>
<td>Does the set of learning experiences presented in the procedural guide span K-12?</td>
<td>2.6 (0.97), 2</td>
<td>2.8 (1.3), 4</td>
<td>2.4 (0.55), 2</td>
</tr>
<tr>
<td>How applicable is this procedural guide to schools?</td>
<td>3.6 (0.52), 4</td>
<td>3.8 (0.45), 4</td>
<td>3.4 (0.55), 3</td>
</tr>
</tbody>
</table>

The range of possible responses was 1-4
All but two responses in this set ranged from 2-4 (or, qualitatively, somewhat-completely). Two questions included responses of 1 (not at all). On the question evaluating the study of systems (question 5 on the multidimensional rating scale), one gifted expert rated the procedural guide as “not at all” offering a provision for the study of systems knowledge, underlying principles and concepts, and key theories. In addition, the question evaluating the set of learning experiences spanning grades K-12, garnered one “not at all” response from one RtI expert. In general, RtI experts rated the curriculum quality higher than the gifted experts.

Overall Assessment

The overall assessment section of the multidimensional rating scale was designed to obtain a section-by-section evaluation of the procedural guide. Both RtI and gifted experts were asked to evaluate the helpfulness of broad sections of the procedural guide. They were asked to choose from the following options: 1-not at all, 2-somewhat, 3-very. Space was also provided for qualitative suggestions regarding recommended modifications, in the form of comments boxes.

Table 5

Overall Assessment

<table>
<thead>
<tr>
<th>Question</th>
<th>Combined Mean (SD), Mode, Range</th>
<th>RtI Mean (SD), Mode, Range</th>
<th>Gifted Mean (SD), Mode, Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall, how helpful did you find the preface?</td>
<td>2.7 (0.48), 3, 2-3</td>
<td>2.8 (0.45), 3, 2-3</td>
<td>2.6 (0.55), 3, 2-3</td>
</tr>
<tr>
<td>Overall, how helpful did you find the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>curriculum goals?</td>
<td>2.8 (0.42), 3, 2-3</td>
<td>2.8 (0.45), 3, 2-3</td>
<td>2.8 (0.45), 3, 2-3</td>
</tr>
<tr>
<td>Overall, how helpful did you find the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RtI overview</td>
<td>2.6 (0.52), 3, 2-3</td>
<td>2.6 (0.55), 3, 2-3</td>
<td>2.6 (0.55), 3, 2-3</td>
</tr>
<tr>
<td>Overall, how helpful did you find the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gifted Curriculum Components?</td>
<td>2.5 (0.53), 2, 3, 2-3</td>
<td>2.6 (0.55), 3, 2-3</td>
<td>2.4 (0.55), 2, 2-3</td>
</tr>
<tr>
<td>Overall, how helpful did you find the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Getting Started Section?</td>
<td>2.5 (0.53), 3, 2-3</td>
<td>2.8 (0.45), 3, 2-3</td>
<td>2.2 (0.45), 2, 2-3</td>
</tr>
<tr>
<td>Overall, how helpful did you find Tier I?</td>
<td>2.7 (0.48), 3, 2-3</td>
<td>2.8 (0.45), 3, 2-3</td>
<td>2.6 (0.55), 3, 2-3</td>
</tr>
<tr>
<td>Overall, how helpful did you find Tier II?</td>
<td>2.6 (0.52), 3, 2-3</td>
<td>2.8 (0.45), 3, 2-3</td>
<td>2.4 (0.55), 2, 2-3</td>
</tr>
<tr>
<td>Overall, how helpful did you find Tier III?</td>
<td>2.4 (0.52), 2, 2-3</td>
<td>2.6 (0.55), 3, 2-3</td>
<td>2.2 (0.45), 2, 2-3</td>
</tr>
<tr>
<td>Overall, how helpful did you find the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resources?</td>
<td>2.7 (0.48), 3, 2-3</td>
<td>2.8 (0.45), 3, 2-3</td>
<td>2.6 (0.55), 3, 2-3</td>
</tr>
<tr>
<td>Overall, how helpful did you find the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forms/Appendices?</td>
<td>2.7 (0.48), 3, 2-3</td>
<td>2.6 (0.55), 3, 2-3</td>
<td>2.8 (0.45), 3, 2-3</td>
</tr>
</tbody>
</table>

*Range of possible options (1-3). No section obtained any scores of 1, however.
Experts are least satisfied with the helpfulness of Tier III. They also find Gifted Curriculum Components and the Getting Started less helpful. Again, gifted experts differ from RtI experts in that they find Tier II to be only “somewhat” helpful as well. No sections obtained any rating of “not at all” helpful.

Qualitative Feedback-

Both gifted and RtI experts were asked to provide qualitative feedback throughout the multidimensional rating scale. In fact every question, with the exception of the questions in the Demographic Information section, provided a comments box and requested additional feedback. In addition, experts were invited to “Please provide any additional feedback you may have regarding the procedural guide. Is there anything that should be added to increase its utility? Anything that should be eliminated? Anything that should be changed?” Each qualitative response was carefully considered and was compared to best-practices in gifted curriculum/instruction or RtI. Nearly every qualitative recommendation was incorporated into the procedural guide with the exception of only two. One recommendation was to recategorize various forms of academic acceleration into the same area as ability grouping since all are instructional management practices. This recommendation was not adopted because the interventions are currently in an alphabetized list, which may be more accessible for regular classroom teachers, who are the intended audience. Additionally, the recommendation to make the gifted curriculum components less jargon-filled was not adopted because the components were copied directly from the National Association of Gifted Children, and are most accurate in their directly quoted format.

Only three respondents (two RtI and one gifted) provided qualitative feedback on questions in addition to the open-ended question mentioned above. All experts except one RtI expert provided at least one piece of qualitative feedback (see Table 6). Please recall that qualitative feedback from all usable responses was included in this section. Recommendations include mentioning empirical support for RtI, modification of the definition of CBM, wording changes throughout the document including minimizing “educationese,” providing more examples, expansion of tier III, expanding and annotating the resource section, increasing the number of examples in the “Making it Real” sections, including additional language regarding twice-exceptional students, adding a section aligning this model to more traditional gifted service delivery models,
including parents more in the decision-making process, and increasing information on data collection/analysis.

In response to the qualitative feedback, a large number of modifications to the procedural guide were incorporated. For example, the Burns (2005) article was incorporated into the RtI Overview. The definition of CBM and progress monitoring were changed. The definition of CBM was clarified and inaccuracies were corrected. In addition, specific strategies for out-of-level CBM measurement (out-of-level ORF, for example) were incorporated. Informal assessments (in the form of weekly quizzes) were suggested as a progress monitoring strategy for subject areas that have fewer standardized measures and for older students. Wording throughout the document was changed to simplify the language and to minimize the use of words exclusively utilized in academic circles. Additional interventions at tier III were incorporated, and the function of tier III as an intensification of tier II was emphasized. The resource section was increased by 20% and was annotated. Further, a full additional “Making it Real” example was added for a student with a different strength, in a different grade level, who responded differently to the interventions in order to increase the comprehensiveness of the guide. Information regarding the utility of the model for twice-exceptional students was added in the introduction of the guide. Finally, parents were added as core team members, and the role of the model as a bridge between traditional gifted education and current practices was emphasized. For a detailed list of expert feedback, along with author responses to each recommendation, please see Appendix 5.
Table 6

Qualitative Feedback

<table>
<thead>
<tr>
<th>Participant</th>
<th>(Paraphrased) Feedback Items</th>
</tr>
</thead>
</table>
| Respondent 1 | - Expand complexity of interventions at Tier III
| | - Increase transfer
| | - Build in accelerated-advanced pacing
| | - Increase middle/high school opportunities for continuity
| | - Increase variability, specificity, and number of options for interventions
| | - Some product development components belong in choice/control too
| | - Include all various forms of academic acceleration in the same place as ability grouping
| | - Make language less filled with educationese
| | - Make gifted curriculum components a bit more specific and less jargon-filled
| | - Increase comprehensiveness and annotate resources
| | - Include additional “making it real” examples for additional subjects in the appendix |
| Respondent 2 | - Specify identification vs. service delivery
| | - Increase focus on special populations (twice-exceptional)
| | - Elaborate about professional development, professional involvement, and fidelity of implementation |
| Respondent 3 | - Add a section on alignment of the procedural guide to traditional gifted programs
| | - Add additional “making it real” samples |
| Respondent 4 | - Increase time spent addressing underrepresented groups
| | - Increase time spent on twice exceptional
| | - Increase focus on team approach |
Table 6 Continued

<table>
<thead>
<tr>
<th>Qualitative Feedback</th>
<th>Gifted Participants</th>
<th>RtI Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant</td>
<td>(Paraphrased) Feedback Items</td>
<td>(Paraphrased) Feedback Items</td>
</tr>
</tbody>
</table>
| Respondent 5 | o Increase parent/student involvement
 o Simplify language | |
| Respondent 7 (not included in quantitative analysis) | o Enhance narrative on how to collect/chart/plot data | |
| Respondent 8 (not included in quantitative analysis) | o Concerned about the effectiveness of teacher implementation | |
| Respondent 1 | o Mention the empirical support for the efficacy of RtI
 o Add a downward extension for early childhood (prior to kindergarten entry) | |
| Respondent 2 | o Concerns about progress monitoring with gifted students (ORF and traditional CBM may not be good progress monitoring tools for gifted students because they are unlikely to reflect growth in more advanced students) | |
| Respondent 4 | o Soften language regarding cut scores
 o Change wording to reflect that RtI can be both intervention and assessment for classification (instead of “is”)
 o Add other specialists to the individuals who can deliver interventions at tier III | |
| Respondent 5 | o Correct definition of CBM | |
| Respondent 7 (not included in quantitative analysis) | o Add additional examples | |
| **RtI Participants** | | o “Making it real” examples are very helpful |
CHAPTER 5
DISCUSSION

While position papers, and general guidelines for implementation of RtI with the gifted are beginning to emerge in the literature, a validated specific procedural guide for service delivery has not yet been published. An effective model of RtI for gifted populations marries theory and best practices in both RtI service delivery and gifted education interventions. The objective of this study was to develop a specific procedural guide for delivery of RtI services to gifted students, based on theories of RtI and gifted curriculum and instruction, establish initial face, content, and construct validity for this procedural guide by submitting it for evaluation to a panel of subject matter experts in the fields of giftedness and RtI, along with multidimensional rating scales (Appendices 1 & 2) and obtain qualitative feedback from experts regarding the structure, utility, and applicability of the procedural guide. In order to improve the final product, feedback from each of the three phases of the study was analyzed and incorporated to the final version of the procedural guide (Appendix 6). During phase I of the study, an RtI team in an actual elementary school, along with gifted teachers participated in a focus group that provided feedback regarding the structure and utility of the procedural guide. Phase II involved piloting the multidimensional rating scale to professionals with experience in scale use and development, along with a group discussion with recommendations for improvement of the rating scale. During phase III of the study, in which the modified procedural guide and multidimensional rating scale were submitted to experts in giftedness and RtI, both quantitative and qualitative feedback was utilized in a final revision of the procedural guide. Quantitative data provided specific areas of focus for theory-based improvement, while qualitative data provided directions with ways to improve those areas.

It is important to note that the primary objective of this study was to obtain qualitative feedback to improve the final product. The quantitative data is particularly subject to variability due to the small sample size (n = 10), however it is important to note that few experts exist in either field who meet the a priori criteria as experts. So, while the sample size is small, it represents a substantial proportion of the experts in the respective fields. The quantitative data was not used to draw firm conclusions regarding the individual components (for example, the content validity of progress monitoring as described in the guide), but was used to guide revisions to the procedural guide.

Each phase of data collection uniquely contributed to the development of the final product, the procedural guide, which is attached as an appendix to this document. Phase I provided insights
into the practical use of the guide in the school setting. The team of school-based professionals suggested realistic modifications that facilitate the use of the procedural guide in a school system. They also discussed potential logistical difficulties that may not have occurred to theoretical experts or to individuals focused on delivery of the ideal. The unique perspective of the actual individuals for whom the product was designed was invaluable. Phase II allowed for the refinement of the multidimensional rating scale, so that it effectively and efficiently obtained the most useful data about the procedural guide from theoretical experts. The recommendations to eliminate items, cluster questions, and to move the demographic information section to the end of the document yielded a much more streamlined and clear measure. Finally, phase III yielded a wealth of information regarding clarification of constructs and content, improvement of individual sections, and improvement of curriculum quality. Theoretical experts at phase III provided unique insights into the fine-grained theoretical components of the procedural guide, and offered detailed recommendations regarding development of interventions and recommendations about future directions.

Content, Construct, and Face Validity – RtI

Half of the measured content validity areas for RtI obtained adequate content validity. Content validity was measured for the areas of universal screening, early intervention, progress monitoring, tiered support, team-based decision-making, and the problem-solving model using Lawshe’s content validity ratio. One hundred percent of the RtI experts identified that universal screening and the problem-solving model were clearly reflective of traditional procedures in RtI. Eighty percent identified tiered support as clearly reflective of traditional procedures in RtI. These three areas demonstrate adequate content validity. Early intervention, progress monitoring, and team-based decision-making all received content validity ratios of 0.2, indicating that only 60% of the experts viewed these components as clearly reflective of traditional practices in RtI.

Qualitative feedback from experts provided some direction about recommended methods for increasing content validity in the inadequate areas. First, progress monitoring as it was initially described included regular classroom assignments as a type of curriculum-based measure (CBM). While this is occasionally the case in schools, a key component of CBM is a statistically adequate measure, which may not be the case for classwork. The definition of CBM was modified in response to this feedback, as were the recommendations about progress monitoring for older students and subject areas with fewer valid and reliable measures (like science and social studies).

Second, feedback from experts indicated a strong preference for parents to be included in
the decision-making process. A number of studies have found positive associations between parent involvement and student academic performance (Hara & Burke, 1998; Hill & Craft, 2003; Hill & Tyson, 2009; McCauch, Goldstein, Behuniak, Reis, Black, et al., 2010; Topor, Keane, Shelton, & Calkins, 2010). Parents were originally included as optional team members, because there was concern that it might be difficult for parents to attend meetings. In response to the feedback, however, parents were included as core team members and their role was emphasized in the decision-making process. Additionally, as talented children move through the tiers of support in a gifted RtI model, parental involvement should increase. Cho & Campbell (2011) found that the parents of students at the highest levels of scientific achievement maintain significant interactions and continue providing intellectual resources, even into high school, when parental involvement tends to wane. Further, some interventions (like after school or weekend enrichment programs) require at least minimal parental involvement in the form of transportation, and best practices in RtI with gifted populations recommend parental involvement to increase communication and build on student strengths and interests (Hughes and Rollins, 2009).

Finally, little qualitative feedback was offered regarding early intervention beyond a request for a downward extension of the procedural guide for use with pre-kindergarten age students. Very young, gifted children are characterized by precocious reasoning. According to Robinson (1993) the young gifted child learns quickly, remembers with little effort, reasons with advanced skills, makes generalizations more readily and is able to observe his/her own thinking better than other children of his/her age. Response to Intervention naturally addresses the differences between these children and their typically developing peers by individualizing instruction. However, a study comparing gifted students enrolled in a pre-kindergarten program to suitable controls found no evidence of advantages to enrollment in the program (Draper, Larsen, Harris, & Robinson, 1992, as cited in Robinson, 1993). A program like RtI for bright students would benefit those already enrolled in pre-kindergarten programs, whose instruction should be differentiated, but might not be necessary for the population at large.

In terms of construct and face validity, which were both measured using a simple likert-type scale, the procedural guide was rated as adequate. Interestingly, more experts rated the guide as completely reflecting the construct of RtI than demonstrating face validity, however the small sample size makes this difference less meaningful.
Content, Construct, and Face Validity – Gifted Curriculum and Instruction

Only one of the measured content validity areas for Gifted Curriculum and Instruction obtained adequate content validity. Content validity was measured for the areas of content mastery, process and product development, overarching theme study, and student choice using Lawsche’s content validity ratio. The areas identified for content validity evaluation were derived from the work of VanTassel-Baska and Stambaugh (2006), and self-determination theory (Deci et. al, 1991). Eighty percent of the gifted experts indicated that content mastery was clearly reflective of content mastery in traditional gifted curriculum and instruction. Each of the other three areas (process and product development, overarching theme study, and student choice) obtained content validity ratio scores of -0.2. The lower ratio score does not indicate that the areas are not reflective of traditional gifted curriculum and instruction, but that they less clearly reflect traditional methodologies. The range of ratings related to construct validity was 1-4 (from not at all to completely), and the range of ratings related to face validity was nearly as widely spread (2-4).

The lower level of demonstrated validity may be, in part, due to the lack of coherency in the field. It is important to note that psychology and education have not yet come to an agreement regarding a uniform definition of “gifted.” A 2001 study by Pfeiffer reports that experts in the gifted field indicate a “lack of consensus on how to conceptualize and define the gifted and talented” and “problems with the identification process” are impactful issues. Borland (2005) describes giftedness as a chimera; a social construct of questionable validity. Further, researchers like Feldhusen (2005) conceptualize gifts as genetic potentials that blossom in interaction with stimulating experiences. Gardner (1983) has popularized the notion of multiple intelligences that can be used to identify broad categories of gifts. Indeed, when searching the literature for components to include in the content validity area, the components for RtI were clearly outlined across several sources. The gifted components were much more difficult to identify, as there was a great deal of variability regarding different conceptions of “best practices” in gifted curriculum and instruction. This variability may have been reflected in the construct validity ratings, ranging from not at all to completely reflective of the construct of “best practices in gifted curriculum and instruction.” It appears that “best practices in gifted curriculum and instruction” is a less unitary construct than “best practices in RtI.”

Qualitative feedback from gifted experts was less specific to the content areas, but modification suggestions included modifying the description for independent study and cross-categorization between some product development components and choice/control components.
Both were completed and incorporated into the attached procedural guide, along with a number of other general improvements and revisions specifically outlined in Appendix 5.

Engagement, Accessibility, and Usability

Engagement, Accessibility, and Usability, like gifted content validity, yielded widely variable results. Half of the experts rated that the interventions in the guide were “completely” likely to present students with an opportunity to increase engagement with class material. Over half (seven of ten) experts indicated that the theories and interventions outlined in the guide were either “completely” or “mostly” easy to understand. Of note, RtI experts rated the guide as more accessible (easy to understand) than gifted experts. Perhaps the structure of the guide was more familiar to RtI experts than to gifted experts. Finally, the range of ratings for usability of the interventions was widely varied (from “not at all” difficult to implement to “completely” difficult to implement). Notably, gifted experts rated the interventions as less difficult to implement than RtI experts.

No expert offered an explanation as to why he/she felt that the interventions would be difficult to implement, but some speculative reasons for difficult implementation include lack of resources (particularly in terms of staff), large class sizes making documentation difficult for multiple children in the classroom, and perceived lack of training regarding the interventions. Studies have indicated that larger class sizes are negatively related to student achievement (Gibbs & Lucas, 1996). Progress monitoring, required in an RtI program is in many cases, the responsibility of the teacher. The more students a teacher has in class, the more students are likely to be identified in a program like RtI requiring data collection. Ever-increasing time demands on teachers are likely to lead to high levels of teacher stress. According to Kyriacou (2001), one of the most often referenced sources of teacher stress is time pressures/workload.

Programs like RtI, especially if they are not implemented well, have the potential to increase teacher workload, therefore adequate training is essential. If teachers do not see the value in the intervention, they are far less likely to implement the intervention with fidelity. Indeed, it has been said, “the bridge between a promising idea and the impact on students is implementation, but innovations are seldom implemented as intended” (Berman & McLaughlin, 1976, p. 349).

O’Donnell (2008) in an analysis of implementation fidelity literature, found that across studies fidelity of implementation was positively correlated with positive outcomes. However, Burns, Vanderwood, and Ruby (2005) found consistent implementation infidelity associated with problem-solving and prereferral intervention teams. Burns, Jacob, and Wagner (2008) recommend extensive
training for teachers, administrators, and psychologists in implementation of the RtI model, precise administration of interventions, and reliably measuring changes in student performance. In order to facilitate the training process, a teacher “Needs Assessment” was included in the appendices of the procedural guide. Additionally, fidelity checks (for intervention implementation) are a component on forms at tiers II and III.

Finally, in an effort to increase accessibility, based on both quantitative and qualitative data, language in the guide was simplified and less “educationese” was utilized. In an effort to increase usability, the aspect of professional development prior to implementation was emphasized (with a goal of increasing feelings of competence in implementing interventions).

Curriculum Quality

In terms of curriculum quality, the most highly rated areas include applicability to schools and provisions for students to study ideas and apply skills to targeted problems and issues. One additional highly rated area was allowance for a focus on significant subject matter, skills and products that are consequential to the learner. The lowest rated areas include a provision for the study of systems knowledge, provisions for transfer of learning within and across domains, and learning experiences spanning K-12. In an effort to improve curriculum quality, some additional interventions and resources were added. Again, this section reveals that RtI experts consistently rated the curriculum more highly than gifted experts.

Section Analysis

The section analysis indicated that RtI experts found the sections more helpful than the gifted experts did. All sections were rated as very helpful, with the exception of the following: gifted curriculum components, getting started, and tier III. In an effort to improve these sections, getting started was reitled “Professional Development and Getting Started,” and the role of professional development was emphasized. Additional information was included indicating the utility of the guide for twice-exceptional students and traditionally underrepresented groups in gifted education, and the function of tier III as an intensification of tier II was emphasized.

Implications of Findings

This procedural guide represents a first step toward a specific methodology for adaptation of the RtI model to gifted students. It builds upon the important pioneering work by Volker, Lopata & Cook-Cottone (2006), Bianco (2010), and The Association for the Gifted (2009). The guide was not meant to replace traditional delivery of services to gifted children, but to augment those services, building a bridge between those who meet state-established criteria for gifted interventions and
those highly motivated, bright students who may fall short—particularly underrepresented groups and students with disabilities or cultural differences that may mask gifts. The procedural guide is an additional step in the direction of advocating for the establishment of specific policy to insure that RtI is utilized consistently for gifted students, as Brown and Abernathy (2009) suggest. It follows in the footsteps of states like Colorado and Montana, which have already written policies for RtI with gifted students.

Recall that research indicates that gifted students have already mastered 33-50% of material to be studied in a school year before the year starts (USDOE, 1993), and that up to half of high ability students underachieve (Pirozzo, 1982). Further, research indicates that gifted students spend the majority of their school days in regular classrooms without modifications or accommodations (USDOE, 1993), and that the problem of underachievement may stem from internalized low-levels of intrinsic motivation because they are reinforced (with good grades) for low-effort attempts at classwork (Rimm, 2008). The utilization of RtI with the gifted is a promising method for increasing student engagement with curricular material, regardless of whether or not a student carries a gifted label. The infrastructure for RtI is already present in many schools, and slight adaptations would allow it to be utilized for students on both ends of the ability continuum.

RtI with gifted students addresses many of the commonalities in differing conceptions of giftedness that Sternberg (2004) identified. RtI addresses the increasingly common view that giftedness involves more than high IQ by eliminating (or minimizing) the element of intellectual assessment in gifted identification. This particular model can work within programs that may require intellectual assessment by offering support to students even before they receive intellectual assessment (and can continue providing services even if the student is found ineligible for “traditional” gifted education). It focuses on matching curricular interventions to obtained achievement rather than predicted achievement. It also addresses the commonly held view that giftedness is comprised of both cognitive and non-cognitive components by utilizing interventions in direct response to student performance, which is due, in large part, to non-cognitive components like motivation. Third, it is a common view that environment is important to the expression of gifts. According to expert ratings, this model of RtI enhances the school environment by providing opportunities for students to engage more fully with the curriculum. Another commonality in differing conceptions of giftedness is that giftedness is not merely one thing. This model utilizes multiple forms of assessment and progress monitoring, in the form of curriculum-based measures and informal assessments. It allows for giftedness in multiple areas, and for a more dimensional
model of giftedness. It also addresses asynchronous development in that it allows for support of more developed skill areas, while protecting less-developed skill areas. Finally, RtI is based upon the philosophy that students who struggle should be offered support, regardless of whether their intellectual and academic achievement meet established standards. RtI with gifted students builds upon that philosophy by providing support to help students meet their potentials regardless of specific standards or labels. The highly motivated and interested science student who barely misses the IQ score cut-off for her district can receive structured and monitored support to build her strength.

A great deal of additional research is needed in this area. Subsequent studies may more fully investigate the engagement, accessibility and usability of the procedural guide by submitting it to practitioners (teachers, administrators, school psychologists, and other school professionals). Further, research regarding the professional development needs of school employees before a program like RtI with gifted populations is implemented could help to clarify perceived weaknesses in the program. Finally, the procedural guide should be piloted in an actual educational environment, and the effectiveness of the intervention should be measured.
CHAPTER 6
LIMITATIONS

Some limitations should be noted with respect to this study. First, constructs in gifted curriculum and instruction are less consistent than constructs in RtI, leading to a great deal of variability amongst experts regarding reflection of construct validity. Additionally, the number of professionals involved in phase II was low because one participant had to drop out on the day of the meeting. The response rate for phase III was low, which lead to two additional rounds of experts being invited to participate in the study. Ultimately the sample size was adequate, however. An additional limitation in phase III was a system malfunction resulting in the loss of some data. Enough data was recovered to utilize the responses, but participants may have provided more qualitative comments the first time they submitted responses, and may not have had the time to dedicate to repeating the qualitative responses.

A final limitation in phase III is an instrumentation issue. This is a distinct possibility since no reliability or criterion-related validity was obtained for the instrument. For example, the instructions may not have been clear enough, or may have been open to multiple interpretations. Related to this issue is the possibility that experts may have been unclear about some specific items they were asked to rate. For example, when asked about how well the construct of “best practices in gifted curriculum and instruction” were represented, they may have had widely differing views about what items may constitute “best practices,” since the term was open to individual interpretation. Similarly, both gifted and RtI experts were asked to read and respond to the procedural guide, but were not specifically told to focus on the entire guide, and therefore may have focused on only those portions that related to their areas of expertise.

Finally, a theoretical evaluation of a procedural guide is merely a first step in the eventual implementation of the procedural guide. The information gained by exposure of the procedural guide to experts is very helpful in shaping it, but there is a great deal of work to be done prior to the adoption of a procedural guide of this nature. The results should not be interpreted as establishment of validity, as the sample size of expert evaluators was very small. The objective of this study was exploratory and was primarily used to help shape the ultimate product. The intervention should be subjected to pilot and experimental studies before the effectiveness of the intervention can be established.
APPENDIX 1

RTI MULTIDIMENSIONAL RATING SCALE
Thank you for your willingness to participate in this study. This online rating scale is divided into four parts: Quality, Validity, Overall Assessment, and Demographic information. Each section includes an introduction that describes the types of questions and the length of the section.

The first section, Quality, contains fifteen questions is designed to measure the quality of the procedural guide as an tool to be used with gifted, or high ability students (the terms are used interchangably in this document). This section is based on the work of VanTassel-Baska and Stambaugh (2006). Though there is no one standard definition of the term gifted, this study liberally defines a gifted student as one who demonstrates knowledge and abilities above that of their peers in any subject area.

1. Are the interventions presented in the procedural guide based on a clear assessment of the abilities and needs of high-ability learners? *

 Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

 □ 1
 □ 2
 □ 3
 □ 4
 □ If you answered 1 or 2, please provide additional comments

2. Are there provisions for multiple means to attain ends within the procedural guide? *

 Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

 □ 1
 □ 2
 □ 3
 □ 4
 □ If you answered 1 or 2, please provide additional comments
3. Does the procedural guide allow for a focus on significant subject matter, skills, and products that are consequential to the learner and the discipline? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments

4. Are there provisions for self-directed learning? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments

5. Is there a provision for the study of systems of knowledge, underlying principles and concepts, and key theories? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments
6. Are there provisions for transfer of learning within and across domains of knowledge? *
 Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)
 - 1
 - 2
 - 3
 - 4
 If you answered 1 or 2, please provide additional comments

7. Are there provisions for students to study ideas and apply skills to targeted problems and issues? *
 Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)
 - 1
 - 2
 - 3
 - 4
 If you answered 1 or 2, please provide additional comments

8. Do high-ability learners have opportunities to learn from other students who share abilities and interests? *
 Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)
 - 1
 - 2
 - 3
 - 4
 If you answered 1 or 2, please provide additional comments
9. Is there a provision for the utilization of a variety of material and resources in the learning process? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments

10. Is there a provision for speed of student apprehension and subsequent curricular modifications? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments

11. Does the set of learning experiences presented in the procedural guide span K-12? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments
12. How likely are the interventions contained in this guide to present students with an opportunity to increase engagement with class material? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments

13. How easy is it for readers to understand the theories and interventions outlined in this procedural guide? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments

14. How difficult will it be for readers to implement the interventions and recommendations outlined in this procedural guide? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments
15. How applicable is this procedural guide to schools?*

*Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4

☐ If you answered 1 or 2, please provide additional comments

RtI Protocol Validation

RtI Validity

The following eight questions are designed to evaluate the content, construct and face validity of the procedural guide with respect to the construct RtI. Shadish, Cook, and Campbell (2002) outline that constructs are common to the language of science, and consist of items far broader than the traditional notions of psychological constructs, like depression. For example, ethnicity is a construct that is often measured, but which can be controversial. For the purpose of this section, please consider best practices in RtI as a construct.

16. Universal Screening-
 Is universal screening, as described in the procedural guide, reflective of traditional universal screening procedures in RtI? *

* If you select "not reflected," please comment as to why

☐ clearly reflected
☐ somewhat reflected
☐ not reflected
17. Early Intervention-
Is early intervention, as described in the procedural guide, reflective of traditional early intervention procedures in RtI?*
If you select “not reflected,” please comment as to why
- clearly reflected
- somewhat reflected
- not reflected
- Comments

18. Progress Monitoring-
Is progress monitoring, as described in the procedural guide, reflective of traditional progress monitoring procedures in RtI?*
If you select “not reflected,” please comment as to why
- clearly reflected
- somewhat reflected
- not reflected
- Comments

19. Tiered Support-
Is tiered support, for the purpose of enrichment, as described in the procedural guide, reflective of traditional tiered support procedures in RtI?*
If you select “not reflected,” please comment as to why
- clearly reflected
- somewhat reflected
- not reflected
- Comments
20. Team-based decision-making-
Is team-based decision-making, as described in the procedural guide, reflective of traditional team-based decision-making procedures in RtI?*
If you select “not reflected,” please comment as to why

- clearly reflected
- somewhat reflected
- not reflected
- Comments

21. Problem-Solving Model-
Is the problem-solving model, as described in the procedural guide, reflective of traditional problem-solving model procedures in RtI?*
If you select “not reflected,” please comment as to why

- clearly reflected
- somewhat reflected
- not reflected
- Comments

22. Overall, how well does the procedural guide reflect the construct of RtI?*

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

- 1
- 2
- 3
- 4
- Comments

23. Overall, does the procedural guide demonstrate face validity with respect to
the construct of RtI?*

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ Comments

RtI Protocol Validation

Overall Assessment

The following twelve questions are designed to obtain a section-by-section evaluation of the procedural guide. The last question is open-ended so that you may provide questions, concerns, feedback, and/or comments regarding the overall document.

24. Overall, how helpful did you find the preface?

 Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

 ☐ 1
 ☐ 2
 ☐ 3
 ☐ Modifications, if any

25. Overall, how helpful did you find the curriculum goals?

 Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

 ☐ 1
 ☐ 2
26. Overall, how helpful did you find the RtI overview?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any

27. Overall, how helpful did you find the Gifted Curriculum Components?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any

28. Overall, how helpful did you find the Getting Started Section?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any
29. Overall, how helpful did you find Tier I?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any

30. Overall, how helpful did you find Tier II?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any

31. Overall, how helpful did you find Tier III?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any
32. Overall, how helpful did you find the Resources?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any

33. Overall, how helpful did you find the Forms/Appendices?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any

34. Please provide any additional feedback you may have regarding the procedural guide. Is there anything that should be added to increase it’s utility? Anything that should be eliminated? Anything that should be changed?

RtI Protocol Validation

Demographic Information

This is the final section of the rating scale, and the following seven questions are designed to obtain demographic information from
respondents. Please provide your best estimations if you are unsure of answers. Thank you again for your willingness to participate in this study!

35. How many years have you worked in either the Gifted Education or RtI field?

36. Please list the degrees you've obtained beyond a Bachelor's Degree
Choose all that apply
☐ M.A.
☐ M.S.
☐ M.Ed.
☐ Ed.S.
☐ Ed.D.
☐ Ph.D.
☐ Psy.D.
☐ Other, please specify

37. What is your current position/title?

38. Please estimate the number of books you’ve edited and/or monographs authored
Select at least 1 response and no more than 1 response.
☐ 0
☐ 1-5
☐ 6-10
☐ 11-15
☐ more than 16

39. Please estimate the number of chapters you’ve authored or co-authored
Select at least 1 response and no more than 1 response.
☐ 0
☐ 1-5
☐ 6-10
☐ 11-15
40. Please estimate the number of refereed articles for which you are the first author*
Select at least 1 response and no more than 1 response.
- [] 0
- [] 1-10
- [] 11-20
- [] 21-30
- [] 31-40
- [] more than 40

41. Please estimate the total number of refereed articles for which you are an author*
Select at least 1 response and no more than 1 response.
- [] 0
- [] 1-10
- [] 11-20
- [] 21-30
- [] 31-40
- [] more than 40

42. Please list any professional organizations in which you hold membership*
Choose all that apply
- [] NASP
- [] NAGC
- [] APA
- [] TAG
- [] State Organizations (for example, FASP)
- [] Other(s), please specify
APPENDIX 2

GIFTED MULTIDIMENSIONAL RATING SCALE
Gifted Protocol Validation

Procedural Guide Quality

Thank you for your willingness to participate in this study. This online rating scale is divided into four parts: Quality, Validity, Overall Assessment, and Demographic information. Each section includes an introduction that describes the types of questions and the length of the section.

The first section, Quality, contains fifteen questions is designed to measure the quality of the procedural guide as an tool to be used with gifted, or high ability students (the terms are used interchangably in this document). This section is based on the work of VanTassel-Baska and Stambaugh (2006). Though there is no one standard definition of the term gifted, this study liberally defines a gifted student as one who demonstrates knowledge and abilities above that of their peers in any subject area.

1. Are the interventions presented in the procedural guide based on a clear assessment of the abilities and needs of high-ability learners? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments

2. Are there provisions for multiple means to attain ends within the procedural guide? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments
3. Does the procedural guide allow for a focus on significant subject matter, skills, and products that are consequential to the learner and the discipline? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments

4. Are there provisions for self-directed learning? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments

5. Is there a provision for the study of systems of knowledge, underlying principles and concepts, and key theories? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments
6. Are there provisions for transfer of learning within and across domains of knowledge? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

- [] 1
- [] 2
- [] 3
- [] 4

If you answered 1 or 2, please provide additional comments

7. Are there provisions for students to study ideas and apply skills to targeted problems and issues? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

- [] 1
- [] 2
- [] 3
- [] 4

If you answered 1 or 2, please provide additional comments

8. Do high-ability learners have opportunities to learn from other students who share abilities and interests? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

- [] 1
- [] 2
- [] 3
- [] 4

If you answered 1 or 2, please provide additional comments
9. Is there a provision for the utilization of a variety of material and resources in the learning process?*

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments

10. Is there a provision for speed of student apprehension and subsequent curricular modifications? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments

11. Does the set of learning experiences presented in the procedural guide span K-12? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments
12. How likely are the interventions contained in this guide to present students with an opportunity to increase engagement with class material? *

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments

13. How easy is it for readers to understand the theories and interventions outlined in this procedural guide?*

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments

14. How difficult will it be for readers to implement the interventions and recommendations outlined in this procedural guide?*

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments
15. How applicable is this procedural guide to schools?*

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1
☐ 2
☐ 3
☐ 4
☐ If you answered 1 or 2, please provide additional comments

Gifted Protocol Validation

Gifted Curriculum and Instruction Validity

The following six questions are designed to evaluate the content, construct and face validity of the procedural guide with respect to the construct “gifted curriculum and instruction.” Shadish, Cook, and Campbell (2002) outline that constructs are common to the language of science, and consist of items far broader than the traditional notions of psychological constructs, like depression. For example, ethnicity is a construct that is often measured, but which can be controversial. For the purpose of this section, please consider best practices in “gifted curriculum and instruction” as a construct.

16. Content Mastery-

Is content mastery, as described in the procedural guide, reflective of traditional content mastery procedures in gifted curriculum and instruction?*

If you select “not reflected,” please comment as to why

☐ clearly reflected
☐ somewhat reflected
☐ not reflected
☐ Comments
17. **Process and Product Development**-
Are process and product development, as described in the procedural guide, reflective of traditional process and product development procedures in gifted curriculum and instruction?*
If you select “not reflected,” please comment as to why:
- Clearly reflected
- Somewhat reflected
- Not reflected
- Comments

18. **Overarching Theme Study**-
Is the study of overarching themes, as described in the procedural guide, reflective of traditional overarching theme study procedures in gifted curriculum and instruction?*
If you select “not reflected,” please comment as to why:
- Clearly reflected
- Somewhat reflected
- Not reflected
- Comments

19. **Student Choice**-
Is student choice, as described in the procedural guide, reflective of traditional student choice procedures in gifted curriculum and instruction?*
If you select “not reflected,” please comment as to why:
- Clearly reflected
- Somewhat reflected
- Not reflected
- Comments
20. Overall, how well does the procedural guide reflect the construct of best practices in gifted curriculum and instruction?

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ Comments

21. Overall, does the procedural guide demonstrate face validity with respect to the construct of best practices in gifted curriculum and instruction?

Please select from one of the following (1-not at all, 2-somewhat, 3-mostly, 4-completely)

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ Comments

Gifted Protocol Validation

Overall Assessment

The following twelve questions are designed to obtain a section-by-section evaluation of the procedural guide. The last question is open-ended so that you may provide questions, concerns, feedback, and/or comments regarding the overall document.
22. Overall, how helpful did you find the preface?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any

23. Overall, how helpful did you find the curriculum goals?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any

24. Overall, how helpful did you find the RtI overview?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any

25. Overall, how helpful did you find the Gifted Curriculum Components?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
26. Overall, how helpful did you find the Getting Started Section?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any

27. Overall, how helpful did you find Tier I?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any

28. Overall, how helpful did you find Tier II?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any
29. Overall, how helpful did you find Tier III?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any

30. Overall, how helpful did you find the Resources?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any

31. Overall, how helpful did you find the Forms/Appendices?

Please select from one of the following continuum (1-not at all, 2-somewhat, 3-very)

☐ 1
☐ 2
☐ 3
☐ Modifications, if any
32. Please provide any additional feedback you may have regarding the procedural guide. Is there anything that should be added to increase its utility? Anything that should be eliminated? Anything that should be changed?

Gifted Protocol Validation

Demographic Information

This is the final section of the rating scale, and the following seven questions are designed to obtain demographic information from respondents. Please provide your best estimations if you are unsure of answers. Thank you again for your willingness to participate in this study!

33. How many years have you worked in either the Gifted Education or RtI field?*

34. Please list the degrees you’ve obtained beyond a Bachelor’s Degree*

Choose all that apply

☐ M.A.
☐ M.S.
☐ M.Ed.
☐ Ed.S.
☐ Ed.D.
☐ Ph.D.
☐ Psy.D.
☐ Other, please specify

35. What is your current position/title?*
36. Please estimate the number of books you've edited and/or monographs authored*
Select at least 1 response and no more than 1 response.
- 0
- 1-5
- 6-10
- 11-15
- more than 16

37. Please estimate the number of chapters you've authored or co-authored*
Select at least 1 response and no more than 1 response.
- 0
- 1-5
- 6-10
- 11-15
- more than 16

38. Please estimate the number of refereed articles for which you are the first author*
Select at least 1 response and no more than 1 response.
- 0
- 1-10
- 11-20
- 21-30
- 31-40
- more than 40

39. Please estimate the total number of refereed articles for which you are an author*
Select at least 1 response and no more than 1 response.
- 0
- 1-10
- 11-20
- 21-30
- 31-40
- more than 40

40. Please list any professional organizations in which you hold membership*
Choose all that apply
- NASP
☐ NAGC
☐ APA
☐ TAG
☐ State Organizations (for example, FASP)
☐ Other(s), please specify
APPENDIX 3

PHASE I – Qualitative Responses

In attendance:
Jeff Van Sickle - counselor
Stephanie Holmes – school psychologist
Terry Price – reading coach
Mary Fort – RtI coordinator
Angie Walker – school principal
Gifted Teachers:
Kiersten Brazier - 1st
Irene Gunderson -2nd
Miranda Bowen -3rd
Renee Kelly – 5th
Holly Harden – 4th

WHAT WOULD YOU ADD TO MAKE THE PROCEDURAL GUIDE MORE HELPFUL TO TEACHERS?

- add student self-referral including student strengths. Self-evaluation form
 Added student self-referral form and student self-evaluation form

- What kind of universal screener are we talking about using? Slosson/K-BIT? Are we talking grade-level or classroom screening?
 This model advocates school wide universal screening, completed within classrooms. For example, students who score in the top 10-15% of their class on the FAIR (a Florida statewide assessment) or STAR Math might be referred to the RtI team for possible additional enrichment at tier II (see page 12 for additional information). It is important to note, however, that universal screenings are not the only method of referral. Teachers may also refer high performing students within the classroom, parents may refer students, or students may refer themselves.

- Naglieri – results were not reliable (retained kids tended to top out-high scorers on Naglieri didn’t reflect classroom performance)
 Naglieri not included as a screening tool in this procedural guide
● Add an intervention to include social development/interaction points
Social interaction is promoted through instructional strategies like conceptual discussions, grouping, cooperative learning (jigsaw), problem-based learning

● Checklist for gifted characteristics to give to teachers
Highlighted passage stating that demonstrated excellence in a subject area was the only qualifying criteria for advancement through tiers in this RtI model. Traditional characteristics of gifted students are not appropriate to this model, which is merely meant to augment traditional gifted education, not replace it.

WHAT WOULD YOU CHANGE ABOUT THE STRUCTURE OF THE PROCEDURAL GUIDE TO MAKE IT MORE HELPFUL TO TEACHERS?
● Don’t give teachers too much to fill out; checklist (make things simpler)-A checklist that outlines what needs to be completed for each child/A checklist of the main interventions including a tab for other/a checklist for reason for referral (social/behavioral)

Changed Tier II & III Intervention Planning formats to include checklists rather than open-ended questions and eliminated the question “Reason for Referral,” as that information should be included on the student’s Referral form. This form will be kept in the student’s file, and there is no need to duplicate the question.

Included a checklist of all recommended supporting documentation as the first form in Appendix 1 of the procedural guide. Also added a paragraph with explicit instructions on creating student folders in the “Basic Structure of RtI with Gifted Students” section.

● Categorize interventions/enrichment based on subject area
Each of the interventions can be adapted across subject area. A one-time time investment on the part of a teacher will allow him/her to be familiar with a number of interventions that can be implemented in any subject area.

● Target a more specific skill (similar to RtI specific target area)
In traditional RtI this makes sense, as remediation (building a specific skill) is the goal. In an enrichment model, general subject area enrichment is likely to be more beneficial to the student that specific, targeted skill building activities.
- Even though you’re giving more advanced information, we can’t give them a grade on the more advanced because it “isn’t fair” and parents might get angry

 This will be a decision made at the school level, and is not addressed by this program.

- Curriculum compacting is so time-consuming for teachers that it isn’t doable in a regular education classroom — rather it might be more helpful to go deeper instead of further

 While curriculum compacting may be impractical in large classrooms, it has a strong evidence base, and will remain in the procedural guide as an option for teachers. A number of options are also suggested for teachers who may prefer to delve more deeply into topics rather than cover additional material (i.e., abstraction, conceptual discussions, extensions, higher order thinking skills, independent study, learning contracts, and varying levels of complexity).

- Keep in mind the social impact of independent study — they need peer interaction/problem solving/compromising/working with other people

 Conclusion/Final recommendation section addresses this issue

- Make it color-coded

 This refers to dividing interventions by subject area. Opted against this, as specifying subject areas for specific interventions is limiting.

- Turn the flow-chart to make it more readable

 Turned the flow chart

- Title each chart

 Titled each chart

- Forms located in the Appendix are good

 Good

- Example forms are helpful

 Good
Example on calendar shouldn’t have arrows because it is a fidelity check and you want teachers to fill it out every day. (p 75)

Removed arrows

Reference to data points throughout (unclear whether referring to progress monitoring or benchmark data points).

Specified data points to come from pre-determined CBM measures (progress monitoring)

Page 26 in this version of the document: added “in-depth” instruction to the description of the tier III interventions, but left “more frequent” in the document as well. Members of this particular focus group may not deliver instruction more frequently, but that does not mean the option should be excluded from a model that is designed to work across state lines.

Generalize projects across curriculum

This recommendation is mentioned throughout the procedural guide

Self-evaluation

Included a student self-evaluation form in appendices

Avoid action terms in describing movement between tiers (don’t say “move to tier II” because it implies that they do not receive tier I as well. Instead say “tier II interventions were added”)

Included specific directions regarding adding tier II interventions while maintaining tier I interventions in the movement between tiers section and checked wording throughout.

WHAT WOULD YOU RECOMMEND THAT WOULD MAKE STUDENTS MORE LIKELY TO ENGAGE IN THE PROCESS?

Self-referral form would help students engage in the process (interests/student strengths/best way to learn/weaknesses/things they don’t like in learning/things that motivate the student)
Self-referral form included in appendices-incorporates suggested topics

- Interventions that help kids to understand what it means to be gifted
 Included a recommendation in the Conclusion/Final Recommendations section, which was newly added during this round of edits.

- Depth rather than breadth in enriching curriculum
 This was a preference based on the structure of gifted education at the particular school where the focus group was conducted.

- Foster a culture of children who are willing to take risks (identify young)
 Included this recommendation in the conclusion section

- Opportunities to interact with peers
 Many recommended interventions offer opportunities to interact with peers, and a recommendation regarding counselor-lead groups is included in the conclusion

- Fostering culture where giftedness is valued (possible meetings with school counselor-a group with all grade levels)
 Included this as a recommendation regarding teacher training (in conclusion)

- Providing choices and opportunities for gifted students
- Leadership skills training
- Higher level options for gifted kids-more options for skills
- Virtual classes

Each of the bullet points above (with the exception of leadership skills training) is offered as interventions in the charts of interventions. Leadership skills training is briefly mentioned in the conclusion, but is beyond the scope of this guide.

WHAT IS UNLIKELY TO WORK IN THE PROCEDURAL GUIDE?

- Curriculum compacting
 Addressed earlier
○ Universal screener may or may not work

Will have to be tested in field-testing

○ Too qualitative/need more checklists instead of forms to fill out

Changed the structure of some forms to include more checklists/fewer open-ended questions

○ Make a list of specific skills in each academic area

This recommendation follows a skills remediation (traditional) model of RtI, rather than an enrichment model

○ Students can’t go different grade level for subject area because of logistics (time of day/what about when they’re in 5th grade-can’t go into 6th grade)

Mentioned this in the context of administrator involvement. Master schedules would have to be built with a specific target subject area in mind. For example, a master schedule might be built around common math instruction throughout the school. This would require monumental effort on the part of the administration, but may be a possibility.

○ Funding prohibits after school interventions

Recommended grant-funding efforts like donors choose in the conclusion

○ Make examples more likely to be feasible in the schools (not the ideal, but the useful/practical)

Changed examples to more feasible options (for example, changed the sample student’s transportation to his extracurricular math event from school-provided to parent-provided).
APPENDIX 4

PHASE II – Qualitative Feedback

In attendance:
Lauren Hutto
Beverly Atkeson
Janet Lenz
Kristin Carlton (facilitator, doctoral candidate in communications)

- **What would you add?**
 - Too long…Eliminate items
 Proposed:
 Eliminated a number of items. Eliminated items and justification for elimination are listed below.

- Room for comment is valuable in this environment
 Increased the number of comment boxes

- Offer comment boxes for all categories (in case they’d like to add something and be specific and ask for the information)
 - On question 5 add the option for books and monographs
 Added monographs as an additional term

- Add comment box in section 3 if they select “not reflected”
 Added comment boxes to these questions

- Question 36-add enrichment after
 Added qualifier, “for the purpose of enrichment” after tiered support

- **What would you Change?**
 - On question 7 it would be more common to say refereed articles
 Changed wording on this question

- Put it in an electronic format
 Questionnaire in Survey Management System in FSU college of education

- Move the demographic information to the end
 Moved Demographic questions to the end

- Add question regarding number of articles total
 Added question immediately after question regarding 1st authorship

- Add the qualifier “approximately”
 Changed wording from “please specify the number of articles” to “please estimate the number of articles”

- Offer associations and allow them to check them off (differentiate this question for RtI vs. Gifted) and offer check boxes for number of years
 Offered associations to allow them to check them off eliminated number of years (not necessary information)

- Change the term “continuum” with choose “choose from the following”
Eliminated the word “continuum” throughout

- Change the term “specify” to “please provide additional comments”
 Changed throughout

- Wording of questions 22 and 23 is awkward-reword these questions (asking two questions with different answers in one)
 Removed these questions (for justifications, see culled question section)

- Change format on the combined questions to a matrix format rather than selecting “one of the following”
 Removed these questions (this comment refers to the same questions as above)

- Change wording on question 12 (it incorporates too many things)
 Removed this question (for justification, see culled question section)

- Change “curriculum” to “procedural guide” throughout
 Changed procedural guide throughout

- Question 45 add “choice”
 Added word

- Question 44 make sure “overarching theme” is consistent throughout
 Reworded question

- Questions 40 & 41 words (selection options) should be changed to something more like “excellent” “good” etc. (look at all questions throughout)
 Reworded the questions to more accurately reflect answer options

- Change wording on 47-the end to “Modifications, if any”
 Changed wording on each section

- Try to chunk out the questions (create a schema and cluster the questions-provide a quick introduction to each section and have sections appear one after another)
 Created introductions for each section, which establishes expectation for the type of question and the length of each section.

- Make “students” or “gifted students” consistent throughout (possibly change to “high ability students” (in an introduction, specify that high ability includes the traditional notion of gifted-operationally define the term)
 Operationally defined the term in the introduction and outlined that the terms were used interchangeably throughout.

- Question 25 is awkwardly worded (perhaps talk about flexibility and how quickly you move on to new material as opposed to reviewing)
 Reworded to reflect speed of student apprehension and subsequent curricular modifications.

- Question 24-change wording to “Does the procedural guide provide for the utilization of…”
 Question culled (see justification in culled question section)
Look at wording on question 26 and revisit the term “well-defined”
Reworded the question to read “Does the set of learning experiences presented in the procedural guide span K-12?”

Additional changes:
- Changed wording in the 1st question to reflect “interventions in the procedural guide” rather than just “the procedural guide” (increase clarity)
- In the 2nd question, changed wording from “alternative means to attain ends” to “multiple means to obtain ends” because the guide isn’t prescriptive (therefore, it is all alternatives)
- Changed wording on the 3rd question to “does the procedural guide allow for…” instead of “does it”

What would you remove?
- Remove pronouns (as it is described). Change to “as described”
 Removed pronouns throughout
- Consider removing question 48
 Removed question
- Remove the terms “structure and content” from question 58
 Changed the wording to the broader “any additional feedback you may have regarding the procedural guide”
- If there’s a way to get the information from the demographics a priori without burdening them with asking the questions, it would be helpful to remove the section (see if you can pull vitae from online)
 Attempted to pull the information from online sources, but comprehensive information is unavailable (for example, most university sites only include short bios and selected bibliographies, not the comprehensive information needed).

Unlikely to Yield Usable Data
- Demographics??
- Change to “content of procedural guide” from “curriculum” throughout (see questions 15, 16, and 17)
 Changed terms from curriculum to procedural guide throughout

Additional Tips
- Once it’s in the system, have volunteers do several dry runs to make sure I’m accurate on my time estimates.

Questions culled (and reasoning):
- Are there opportunities for nonprescribed curricular responses?
 The procedural guide itself does not prescribe curricular responses. Therefore, all responses are nonprescribed.
- Is there an integrative use of cognition and emotion as well as the curriculum dimensions of advanced content, higher-level processes and concepts in the curriculum?
 The procedural guide does not address cognition and emotion beyond differentiated instruction and curricular acceleration.
- Do activities and projects require creative processes to be employed?
The procedural guide does not mandate activities or projects. These are left up to the discretion of the teacher, and while creative processes are offered as potential interventions, whether or not they’re applied to projects is up to the individual implementing the procedural guide with students.

- Are there opportunities to develop and examine personal and societal values and beliefs included in the curriculum?
 The procedural guide does not offer specific lessons in the way that a traditional curriculum would. It merely addresses modifying extant curricula to meet the needs of high-ability students.

- Are oral and written skills to dialogue, share, and exchange ideas included?
 The procedural guide does not offer specific lessons in the way that a traditional curriculum would. It merely addresses modifying extant curricula to meet the needs of high-ability students.

- Is the apportionment of instructional time consistent with characteristics of gifted learners for shorter or longer periods of time?
 Time apportionment is left to the discretion of the individual implementing the procedural guide with students and is not prescribed.

- Is there evidence that the curriculum guide has been streamlined to match the learning capacity of gifted students?
 The guide recommends streamlining extant curricula, but does not specifically outline a streamlined curriculum (because no curriculum is presented).

- Are there sufficient provisions for advanced levels of learning that require learners to stretch for understanding?
 While provisions are recommended to teachers, the degree to which students will be required to stretch will be left to the instructors.

- Are there provisions for students to make decisions regarding activities and tasks to be completed and how they might be done?
 This question is very similar to another one: “Are there provisions for self-directed learning?” Therefore, this question was culled.
APPENDIX 5

PHASE III – Qualitative Responses

Expert Feedback (RtI):

Respondent 1

26. Overall, how helpful did you find the RtI overview?
Mention the empirical support for the efficacy of RtI (e.g., the IES practice guides on reading and math; the Burns 2005 meta-analysis)

 ○ Incorporated Burns 2005 into page 5 (RtI Overview)

34. Please provide any additional feedback you may have regarding the procedural guide. Is there anything that should be added to increase its utility? Anything that should be eliminated? Anything that should be changed?
This is very nicely done. The author has a clear grasp of the principles and practices of RtI and a deep knowledge of how it is implicated in authentic education settings. Would like to see something like this for early childhood (prior to kindergarten entry). There is such a need!

 ○ Downward extension (to Pre-K) may be an option in the future.

Respondent 2

23. Overall, does the how well does the procedural guide demonstrate face validity with respect to the construct of RtI?
I have concerns about progress monitoring with gifted students, but RTI is well described.

34. Please provide any additional feedback you may have regarding the procedural guide. Is there anything that should be added to increase its utility? Anything that should be eliminated? Anything that should be changed?
I don't think ORF and traditional approaches to CBM will be good progress monitoring tools for gifted students. They will not likely reflect growth in the more advanced skills and will likely be completely irrelevant for older students. In my opinion, considerable work is needed regarding monitoring student progress, but I do not have good suggestions because I do not know the gifted literature.

 ○ For both 23 and 34, wording regarding CBM and progress monitoring was changed. The definition of CBM was clarified (and inaccuracies were corrected). Offered some specific strategies for out of level CBM measurement (out-of-level ORF, for example). Suggested informal assessment (in the form of weekly quizzes) as a progress monitoring strategy for subject areas that have fewer standardized measures and for older students (p. 19).
*Respondent 3 yielded an unusable response

Respondent 4

34. Please provide any additional feedback you may have regarding the procedural guide. Is there anything that should be added to increase its utility? Anything that should be eliminated? Anything that should be changed?

1) on p.4, there is a comment about students suffering due to legislator-established cutscores. This language is a little severe and should probably be softened.
 ○ Softened the wording (p. 4)

2) Also p.4, RtI is called both intervention and assessment for classification. You might consider changing "is" to "can include". There are many varied RtI models.
 ○ Changed wording to “can be” rather than “is” (p. 4)

3) On p.5, it is stated that most Tier III interventions are delivered by special education teachers. This is certainly CEC's perspective, but there are models of RtI where special education is Tier 4 (or 5) or where special education is only one possible component of Tier III. you might list special education teachers, reading/math specialists, gifted teachers, EL teachers--any specialist who can deliver the most intensive interventions.
 ○ Added the additional specialists to the list (p. 5)

4) On p.12, CBMs are implied to be "typical classwork, tests, and quizzes". This is not an accurate description and should be revised.
 ○ Revised the description on pages 12 and 19

Respondent 5

34. Please provide any additional feedback you may have regarding the procedural guide. Is there anything that should be added to increase its utility? Anything that should be eliminated? Anything that should be changed?

More examples.
 ○ An additional set of example forms for a different grade-level/subject area were added in the appendices

Respondent 6

No qualitative feedback provided

Respondent 7 (not included in quantitative analysis)
34. Please provide any additional feedback you may have regarding the procedural guide. Is there anything that should be added to increase its utility? Anything that should be eliminated? Anything that should be changed?

The use of “Making it Real” examples is exceptional in helping the reader visualize application of this proposed service delivery model.

- Additional “Making it Real” examples added at the end of the document.

Expert Feedback (Gifted):

Respondent 1

5. **Complexity**

Seems to happen primarily in the Tier II interventions, but not in Tier III.

- Tier III expanded. Re-emphasized that tier II interventions are often left in place in addition to tier III interventions (p. 13)

6. **Transfer**

The potential is there at Tier II, but there is no insurance that this will occur with the structure the way it is.

- The provision for transfer of learning is in place. It cannot be insured based on the structure because interventions are intentionally non-prescriptive to allow for addressing individual student needs.

10. **Accelerated-Advanced Pacing**

This is not automatically built in, but the possibility is there with both Tier II and Tier III because of group size.

- Again, there is a provision for accelerated learning (i.e. curriculum compacting), but accelerated pacing was intentionally not mandated.

11. **Continuity**

The focus seems more specifically focused on elementary interventions but there is some reference to middle and high school options, mostly out of school.

- Again, elementary focus was intentional

13. **Accessibility**

I do wish the interventions were more varied, specific, and with many more options suggested.

- Additional intervention options added in tiers, and an additional specific application was added as an example at the end, but the general interventions are left vague to allow for teacher specification
14. **Usability**

The guide is pretty specific, especially with its “making it real” examples.

- Good

17. **Gifted content validity**

Am not sure the method description for independent study makes sense! Research a “teacher”?

- Added a hyphen after teacher (teacher-chosen or self-chosen = teacher- or self-chosen) p. 15

19. **Gifted content validity**

Some of the product development components belong in choice/control too. Why did you call it “student choice” and then use choice/control in your table?

- Changed wording to be consistent from text to table and added Student Choice/Control to some of the product development items

20. **Overall, how well does the procedural guide reflect the construct of best practices in gifted curriculum and instruction?**

If you include ability grouping, you probably should include all the various forms of academic acceleration in the same place, since all are instructional management practices.

- An interesting suggestion for categorization, but the intended audience is regular classroom teachers, who may find an alphabetized list of interventions at Tier I more accessible.

24. **Helpfulness of the RtI overview**

Make the language a bit less filled with educationese

- Simplified the language on page 5

25. **Helpfulness of the gifted components**

Try to make the gifted curriculum components a bit more specific and less jargon-filled

- Components defined on page 5. Jargon is from quoted NAGC programming standards, which the author is not at liberty to change.

29. **Helpfulness tier III**

Concern about using SEM and ICM in same category as cognitive process development. ICM has very little to do with executing development of a self-selected product.

- Separated the two descriptions and offered a more complete description of ICM (p. 27)

30. **Helpfulness Resources**

It’s a good start but I think it should be more comprehensive and perhaps annotated

- Expanded and annotated resources
32. Please provide any additional feedback you may have regarding the procedural guide. Is there anything that should be added to increase its utility? Anything that should be eliminated? Anything that should be changed?

I think your “making it real” examples are the best part of this guide. Perhaps you could include more of these in the appendix, using other subject areas than just math. And do some for different age levels (developmental levels) of gifted kids.

- Added an additional set of examples in an appendix

Respondent 2

32. Please provide any additional feedback you may have regarding the procedural guide. Is there anything that should be added to increase its utility? Anything that should be eliminated? Anything that should be changed?

Off to a great start…you go back and forth about gifted identification but really in your procedural guide your focus is on service delivery and less on identification. Additionally, you give a "nod" to underachieving and twice-exceptional gifted but the content is focused on the "traditional" gifted student and almost nothing is mentioned about special pops. Lastly, you don't elaborate about professional development, parent involvement, and fidelity of implementation...all of these are essential to RtI.

- Highlighted that the guide is meant to augment traditional methods of identification to build a bridge between those who meet state-established criteria for gifted interventions and those highly motivated, bright students who may fall short. Added emphasis about twice exceptional (p. 4) and underrepresented groups, and increased parent role in the description. Emphasized the importance of professional development leading to fidelity of implementation.

Respondent 3

32. Please provide any additional feedback you may have regarding the procedural guide. Is there anything that should be added to increase its utility? Anything that should be eliminated? Anything that should be changed?

I think you need to add a section on alignment of the guide to traditional gifted programs. How does it fit? You have aligned it to the new standards but not to the working models in the field. I like the Making It real sections. they are useful. You might want to give 2-3 examples as opposed to just one for the tiers you are addressing to illustrate the principle of individual differences at work.

- Added an additional sample in the appendix. Emphasized wording in the preface that outlines alignment with (and utilization with) traditional gifted models (p. 4)
Respondent 4

32. Please provide any additional feedback you may have regarding the procedural guide. Is there anything that should be added to increase its utility? Anything that should be eliminated? Anything that should be changed?

Stephanie, you have done a nice job compiling this information. One of the major benefits of an RtI approach for highly capable learners is our ability to nurture potential in young children who have historically been underrepresented in gifted education. I would like to see you address this area more fully within your guide. Also, students with complex needs (2e, social and emotional challenges, etc.) are often well served within this approach – you are getting at this with Miguel – but could be much more explicit here showing how a complex set of needs can be addressed across the tiers through team work. The other aspect of RtI that will be different in some cases for gifted educators in this team approach to meeting the needs of all learners – this may be worth a mention as well! Thanks for this work – and please excuse the typos in this form – I am rushing to get it to you!!

- Emphasized applicability to twice-exceptional learners and underrepresented groups (p. 4).

Respondent 5

32. Please provide any additional feedback you may have regarding the procedural guide. Is there anything that should be added to increase its utility? Anything that should be eliminated? Anything that should be changed?

Besides the Gifted RtI team mentioned above, I did not see how parents and the student were involved besides filling out the referral forms. (I found the parent form a little heavy on "teacher jargon"; I think some parents would not really understand what the questions were aiming for.) Parental involvement is a vital part of the RtI Problem Solving Process.

- Simplified parent form (removed verbiage about intervention goals). Increased parent role in text (p. 12 & 19)

Respondent 6 yielded an unusable response

Respondent 7 (not included in quantitative analysis)

32. Please provide any additional feedback you may have regarding the procedural guide. Is there anything that should be added to increase its utility? Anything that should be eliminated? Anything that should be changed?
This will be a very useful tool for teachers/schools. I really like the case study approach with the examples of completed forms. This adds clarity. One area that I think could be enhanced are more descriptions/narrative on how to collect/chart/plot data. How much data should be collected? What types of data? You do mention possible data sources by instrument, but how can teachers ensure that the data they are collecting is also representative of different skills/content, assessment types (formative/summative; formal/informal), and learning modalities (students having the opportunity to demonstrate their learning through a variety of mediums)?

- Expanded CBM section to include informal assessment, and specified type of informal assessment (p. 20).

Respondent 8 (not included in quantitative analysis)

32. Please provide any additional feedback you may have regarding the procedural guide. Is there anything that should be added to increase its utility? Anything that should be eliminated? Anything that should be changed? Just curious about the expectations of the effectiveness of teacher implementation…

- Importance of fidelity of implementation added in section on professional development
APPENDIX 6

PROCEDURAL GUIDE

RtI with Gifted Populations: Building Early Student Strengths

Stephanie G. Robertson
Florida State University
Table of Contents

Preface ... 123
Philosophy Statement and Curriculum Goals 124
RtI Overview ... 125
The Problem Solving Model 127
Key Gifted Curriculum Components 128
Professional Development and Getting Started 131
Tier I ... 133
Tier II ... 139
Tier III ... 146
Conclusion and Final Recommendations 149
Glossary of Terms ... 151
Resources .. 151
References ... 155
Appendices ... 158
 Forms
 Assessments
 Interventions
 Additional Sample Forms
Preface

According to a position paper issued by the Council for Exceptional Children (CEC, 2007), “the RtI process is designed to identify at-risk children early, to provide access to needed interventions, and to help identify children with disabilities.” [emphasis added] This process is implemented utilizing data regarding children’s responses to scientifically based interventions. There are two important things to note regarding the CEC’s definition of RtI. The first is that it is designed to identify children who are at-risk. Operationalizing the term “at-risk” is singularly important in this situation. The argument can be made that a child who is likely to perform below his/her ability, who is not challenged in the classroom and who, as a result, may form poor work habits is a child at-risk. RtI is designed to identify children early and to provide access to needed interventions. Secondly, the CEC notably uses the word and, rather than defining the purpose of RtI as exclusively a method to identify children with disabilities. Utilization of the RtI method with gifted students is a logical extension of the model.

RtI came about in reaction to perceived failings of the traditional “test and place” models of special education. Within the tiered approach, the problem-solving model is utilized at each level, and students are intended to move back and forth through the flexible, tiered levels of support. This is unlike the traditional exceptional child model in which the child is either classified to receive services or not. It represents one major improvement over the discrepancy model in that it provides services to those students who qualify for neither Intellectual Disability (because of a low average or borderline IQ score), nor Specific Learning Disability (because the discrepancy between Achievement and IQ is not deemed significant), but who generally struggle in school. Sadly, talented children often wind up in a similar situation. They may quickly master classroom lessons, or may have mastered them prior to entering the classroom, but do not meet the IQ or Achievement cut-score required for participation in gifted programs in over 30% of states (McClain & Pfeiffer, 2011).

Consider the case of a third-grade student named Miguel. Miguel transferred to Sunny Side Elementary School shortly after winter break. His teacher, Mrs. Simmons, noticed that Miguel often read his Accelerated Reader books during math instruction. She frequently reminded Miguel to put away his book and pay attention to the lesson, and he politely complied with her requests when they were issued, but after a short time returned to reading his book. Mrs. Simmons noticed, after a few weeks that, despite his lack of attention in class, Miguel consistently scored very highly on his weekly quizzes. Mrs. Simmons referred him to the school psychologist for a gifted evaluation. Prior to the evaluation, it came to light that Miguel suffered from severe ADHD which was managed using medication, and that he had recently been adopted. Before he was adopted, Miguel was removed from his parents’ custody for severe neglect, and had lived through several foster care placements. Miguel’s teacher rated him as “outstanding” on every characteristic of giftedness on a teacher checklist, but his IQ score was three points below the cut score required by the district (which does not consider confidence intervals or extenuating circumstances). Miguel was deemed “ineligible for services,” and the school suggested he be reevaluated the following year. In the meantime, his teacher often said, “Miguel, I know you already know this material, but you HAVE to put your book away and pay attention. If I let you read, I’d have to let the whole class read.”

This story illustrates that students on both ends of the ability continuum suffer due to inflexible laws related to special educational programs. Imagine if Miguel’s teacher implemented an
intervention that allowed Miguel to engage in productive work while the rest of the class learned material he had already mastered. RtI is currently being implemented across the country as a remedy for students on the low end of the continuum, to great success, but gifted student programs continue to lag behind.

RtI is unique in that it can be both intervention and assessment for classification. Researchers and educators in the gifted field have recommended a differentiated approach for gifted education for years. Indeed, many well-established gifted curricula are built upon the premise, including Renzulli’s Schoolwide Enrichment Model, and VanTassel-Baska’s Integrated Curriculum Model (see resources). These models fit perfectly with the RtI model, and can even be used in tandem with RtI. While teachers have been using targeted, differentiated instruction for years to assist both struggling and gifted students, RtI differs from traditional differentiated instruction in two major ways. First, RtI inserts formalized structure into the notion of differentiated instruction. It is both objective and data-based and it mandates specific stages at which decisions are made about intervention strategies. Second, the structure calls for universal screenings for all students, rather than assuming that students are performing to standard until they demonstrate otherwise (Brown-Chidsey & Steege, 2005). The early screening procedures are designed to identify and address problems before they significantly impact the student. For gifted students, this might mean providing challenging coursework early in school, before problematic work habits have a chance to develop. We know that poor effort with good outcomes leads students to believe that effort is not required, diminishing their level of intrinsic motivation (Rimm, 2008), and that gifted students have already mastered 33-50% of material to be studied in a school year before the year even starts (U.S. DOE, 1993). In addition, up to half of high-ability students underachieve (Pirozzo, 1982). In combination, these three pieces of evidence define our gifted students as at-risk, and in need of intervention.

This guide is designed to be used at the elementary school level, though many of the recommended interventions can be utilized at the middle school and high school level. In addition, the objective of this guide is not to recommend a radical change gifted education, but it is meant to augment traditional methods of identification, building a bridge between those who meet state-established criteria for gifted interventions and those highly motivated, bright students who may fall short, particularly underrepresented groups and students with disabilities or cultural differences that may mask gifts. It is designed to provide education that meets the needs of all students.

Philosophy Statement:
Students who demonstrate knowledge and abilities above that of their peers should be provided with an opportunity to accelerate and enrich their knowledge.

Curriculum Goals:
- Identify students who demonstrate advanced knowledge and/or skills as early as possible through universal screening, teacher recommendation, and parent recommendation
- Provide support for these students using a team-based problem-solving method for developing and implementing evidence-based interventions
- Document student progress and modify interventions as necessary to maximize student progress

*Note: the procedural guide offers many suggestions for intervention and a framework for decision-making, but is intentionally non-prescriptive, allowing for local RtI teams to make decisions appropriate to their varying student needs.
RtI Overview:

RtI is an effective system for identifying and addressing differing student needs. Meta-analytic studies have revealed strong effect sizes in terms of both student and systemic outcomes, by way of reduced special-education referral rates (Burns, 2005). It reflects a broad trend of utilization of a problem-solving approach to determine student weaknesses (traditionally) and to deliver structured, systematic, and scientifically based interventions to address each student’s individual educational needs. Though there are multiple models, RtI is often delivered via a 3-tier system, the first tier of which serves 80% of individuals in the general education classroom. If students fail to achieve at this level, interventions are added at the second tier, with provide more targeted, research-based intervention than general education, but less intensive than special education; these typically serve 10-15% of the student population. Students who continue to fail receive tier III interventions in addition to those interventions at tiers II and I. Tier III offers specially designed instruction and is typically delivered by special education teachers (CEC, 2007), reading/math specialists, ESL teachers, gifted teachers, or any specialist who is trained to deliver the most intensive interventions. Tier three usually serves the remaining 5% of students. Within the tiered approach, the problem-solving model (described below) is used at each level, and students are intended to move back and forth through the flexible, tiered levels of support, unlike the traditional exceptional child model in which the child is either labeled “special education” or not. Adaptation of this model to address student strengths instead of weaknesses is a logical next step in the development of RtI, and the powerful effects demonstrated in addressing student weaknesses is promising in terms of building student strengths. In a strength-based model, students who demonstrate mastery of material at a more rapid pace than their classmates are moved up tiers of acceleration and enrichment based on best practices in gifted curriculum and instruction.
The tiered system of support is typically depicted as a pyramid:

Tier III
- Approximately 5% of the student population
- Students receive intensive targeted interventions to meet their educational needs

Tier II
- 10-15% of the student population
- Students receive targeted interventions to support their educational needs

Tier I
- 80-90% of the student population
- Students receive differentiated instruction to meet educational needs

According to CEC-TAG (2009) and Hughes and Rollins (2009), key RtI/Gifted components are as follows:

1. Universal screening that examines both exceptionally high and exceptionally low student performance.
2. Early intervention to nurture the academic needs of all students.
3. Progress monitoring to assure that students receive the level of intervention most appropriate to their needs.
4. Tiered intervention services utilizing established procedural guides, implemented with fidelity.
5. Collaborative teams including both gifted and academic specialists to develop interventions appropriate to students’ needs and who encourage parental input and communication.
6. Problem solving approaches that are applied to students who are not progressing appropriately for their abilities.
The problem-solving model is typically depicted as a cycle:

DEFINE
What is the problem?

ANALYZE
Why is it occurring?

IMPLEMENT
What are we going to do about it?

EVALUATE
Is it working?

The Problem Solving Model:
The Problem Solving Model is engaged at each level of support. In order to engage the Problem Solving Model, one must ask oneself four questions (FLDOE, 2008):

1. Define: What is the problem?
2. Analyze: Why is it taking place?
3. Implement: What are we going to do about it?
4. Evaluate: Is it working?

In a gifted/RtI model, the questions might be answered in this way:

1. What is the problem? *On a 3rd grade science pretest, Samuel obtained a perfect score, indicating that he has already mastered the material offered in the standard science curriculum.*
2. Why is it occurring? *According to a parent conference, Samuel enjoys learning and spends time reading library books and encyclopedias at home, as well as designing and conducting his own science experiments.*
3. What are we going to do about it? *Research has indicated that content acceleration and curriculum compacting are effective methods for providing additional support for gifted students, so Samuel’s teacher will utilize the curriculum compacting intervention in science. In order to accurately assess Samuel’s current skill/knowledge level, she will administer tests above Samuel’s current mastery level at progressively more difficult skill levels until Samuel obtains a score lower than 90%, indicating room for growth. Based on Samuel’s current level of mastery two chapters beyond that of his peers, his teacher establishes a goal of mastering the material of chapter six in seven weeks (the rest of Samuel’s class will have mastered material contained in chapter three).*
4. Is it working? After seven weeks of small-group advanced instruction using the curriculum compacting intervention, Samuel has far exceeded his goal of mastering material in chapter six, and is currently working on material in chapter nine, the last chapter in the book. Because Samuel has progressed so rapidly, he is recommended for movement to Tier III intervention, and the intervention team agrees that Samuel would excel in science classes in the grade level above his own. The team agrees that Samuel should leave his regular classroom to attend science with a 4th grade teacher. Another meeting is scheduled for seven weeks later in order to continue monitoring Samuel’s progress.

Key Gifted Curriculum and Instruction Components:

VanTassel-Baska and Stambaugh (2008) state that, while there is little evidence of effectiveness of interventions for the gifted, three distinct curriculum dimensions have emerged as having some proven success with gifted students. The first dimension, content mastery, encourages a student to master curriculum material as quickly as possible. This is also sometimes called content acceleration, accelerated learning, or curriculum compacting. A second dimension mentioned by Van-Tassel and Stambaugh (2008) includes higher-level processes and product development. This dimension involves the design of products involving in-depth examination of specific intellectual content and advance graphic organizers. The final dimension outlined by VanTassel-Baska and Stambaugh (2008) is the study of overarching, or epistemological theme like change. Students are taught to examine course content while looking for evidences of change, systems, and cause/effect relationships. This model allows students to approach standard curricula from a different perspective and promotes analytical thinking over rote memorization of facts. In addition, when developing interventions, a very important consideration is offering student choices. Students who feel that they are able to have some control in their educational experiences are more likely to remain engaged and motivated (Deci, Koestner, & Ryan, 2001; Moneta & Csikszentmihalyi, 1996; Shernoff, Csikszentmihalyi, Schneider, & Shernoff, 2003). Development of multiple options for students is central to the effectiveness of interventions.

The National Association for Gifted Children (2010) has issued Pre-K-12 gifted programming standards, including the following:

- **Standard 1** (Learning and Development) “Educators, recognizing the learning and developmental differences of students with gifts and talents, promote ongoing self-understanding, awareness of their needs, and cognitive and affective growth of these students in school, home, and community settings to ensure specific student outcomes.”

- **Standard 2** (Assessment) “Assessments provide information about identification, learning progress and outcomes, and evaluation of programming for students with gifts and talents in all domains.”

- **Standard 3** (Curriculum Planning and Instruction) Educators apply the theory and research-based models of curriculum and instruction related to students with gifts and talents and respond to their needs by planning, selecting, adapting, and creating culturally relevant curriculum and by using a repertoire of evidence-based instructional strategies to ensure specific student outcomes.”

- **Standard 4** (Learning Environments) “Learning environments foster personal and social responsibility, multicultural competence, and interpersonal and technical communication skills for leadership in the 21st century to ensure specific student outcomes.”

- **Standard 5** (Programming) “Educators are aware of empirical evidence regarding (a) the cognitive, creative, and affective development of learners with gifts and talents, and (b) programming that meets their concomitant needs. Educators use this expertise
systematically and collaboratively to develop, implement, and effectively manage comprehensive services for students with a variety of gifts and talents to ensure specific student outcomes.”

- **Standard 6** (Professional Development) “All educators (administrators, teachers, counselors, and other instructional support staff) build their knowledge and skills using the NAGC-CEC Teacher Standards for Gifted and Talented Education and the National Staff Development Standards. They formally assess professional development needs related to the standards, develop and monitor plans, systematically engage in training to meet the identified needs, and demonstrate mastery of standard. They access resources to provide for release time, funding for continuing education, and substitute support. These practices are judged through the assessment of relevant student outcomes.”

Chart 1: NAGC Programming Standards

<table>
<thead>
<tr>
<th>NAGC Programming Standard</th>
<th>How RtI helps to meet the standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning and Development</td>
<td>Emphasizes recognition of differences, increasing student awareness of individual needs, and specific student outcomes</td>
</tr>
<tr>
<td>Assessment</td>
<td>Emphasizes the importance of utilizing assessment to guide development of interventions and the evaluation of programming</td>
</tr>
<tr>
<td>Curriculum Planning and Instruction</td>
<td>Emphasizes the importance of utilizing theory and evidence-based intervention to ensure specific student outcomes</td>
</tr>
<tr>
<td>Learning Environments</td>
<td>Emphasizes the importance of personal and social responsibility, multicultural competence, and interpersonal and technical communication skills</td>
</tr>
<tr>
<td>Responsibility and Communication Skills</td>
<td>Programming</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>In addition, interventions can be designed specifically to meet the goals of increasing social responsibility and multicultural competence.</td>
<td>Emphasizes the importance of knowledge regarding student differences and curriculum options, and the use of this expertise to systematically and collaboratively develop, implement, and manage services for students with a variety of gifts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsibility and Communication Skills</th>
<th>Professional Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>RtI broadens the scope of services available to students by providing interventions for students demonstrating advanced knowledge/skills regardless of their classification as “gifted” or “not gifted.” In addition, it utilizes demonstrated student ability to develop a plan specifically designed to meet the needs of the student.</td>
<td>Emphasizes the need to formally assess professional development needs related to the NAGC standards, develop and monitor plans, systematically engage in training to meet the identified needs, and demonstrate mastery of standard.</td>
</tr>
</tbody>
</table>

Universal screenings for faculty can be conducted, and training can be conducted to meet the specific needs of the teacher population, echoing the RtI model with students (see appendices for a teacher assessment of needs). |

In addition to the NAGC standards, identifying differing conceptions of gifted curricula is an important aspect in designing and delivering differentiated instruction to gifted students. According to Van Tassel-Baska & Stambaugh (2006a), there are several conceptions of gifted curricula:

- **Curriculum as Development of Cognitive Process**- this model is content independent and focuses on higher-level thinking skills like critical thinking, creative thinking, and problem solving.
- **Curriculum as Technology**- this model relies heavily on student inputs and outputs in the form of performance objectives with measurable outcomes.
- **Curriculum as Personal Relevance**- this model tailors curriculum experiences to student needs and interests in order to make the curriculum engaging and provide experiences that invite growth at each student’s understanding level.
- **Curriculum as Social Reconstruction**- this model focuses on education as a vehicle for social change and utilizes topics that promote both collective and individual social responsibility.
- **Curriculum as Academic Rationalism**- this model is based upon the tradition of rational humanism and focuses on knowledge of great ideas and the ability to synthesize and analyze previous human endeavors.
Curriculum as Precursor to a Professional Career—this model includes a focus on practical and utilitarian skills and includes internship or mentorship components in which a student gains real-world knowledge and experience. Interventions at Tier II and Tier III could be tailored to any of these dimensions, or could cut across dimensions.

Professional Development & Getting Started

The importance of teacher training prior to implementation of a program like RtI with gifted students cannot be overstated. According to the Higher Education Opportunity Act (2008), teacher education programs are required to contain information about teaching the gifted, but Bain, Bourgeois, and Pappas (2003) emphasize that teachers are not able to obtain the skills and knowledge needed to meet the needs of gifted learners in one introductory course; ongoing training is required. Callahan, Cooper, and Glascock (2003) identified that gifted students are often found in general education classes. Therefore, all teachers require knowledge and skills that they can apply to understanding and supporting gifted students. Unfortunately, Robinson and Kolloff (2006) found that current teachers rarely adapt instructional practices to meet the needs of gifted students. If RtI with gifted students is to be successful, training regarding the specific needs of gifted learners, adaptation of the RtI model to meet the needs of a gifted population, and methods of differentiating instruction for all students is a required component. Additionally, training regarding interventions and implementing them with fidelity across the school (or district) is imperative. Schools may choose a few interventions that are likely to work with their student population and school structure, then should offer in-service training to all teachers, so that interventions are delivered consistently across the school. Fidelity checks can take place via administrator observation and/or discussion during the intervention team meeting. The NAGC-CEC has made recommendations regarding standards of education for all teachers.

Aspects of RtI, like Universal Screening and targeted instruction, can be used to assess the needs of teachers regarding gifted education. Administrators can work collaboratively with school psychologists and school counselors to develop and implement targeted pre-service and in-service trainings based on the NAGC-CEC standards. The standards were utilized to develop the Teacher Needs Assessment found in the Appendices of this document. This comprehensive assessment can be administered to teachers to identify high-need areas for staff development. If the assessment is too cumbersome in its present form, it can be adapted to meet the needs of the administrator and school. It is designed to assess a broad spectrum of needs that can be prioritized and developed into specific training sessions.

Who Serves on the Gifted RtI team?

CEC-TAG (2009) recommends that “special, general, and gifted educators” work together with student families to develop interventions for gifted students. Traditional RtI teams typically include:

- an administrator,
- the classroom teacher,
- a school psychologist, and
- a subject-matter expert (such as a reading coach)
- a parent or guardian

Other potential team members include the school counselor, a special education teacher, an RtI liaison, and community members. The team works together to help develop and monitor
interventions for gifted students. Gifted/RtI Intervention teams can be comprised of a combination of these individuals, plus a gifted teacher, in whichever combination best meets the needs of the school. It is important, however, that the team remain consistent from week to week.

Basic Structure of RtI with Gifted Students:

Though there are a number of definitions of giftedness, for the purpose of this procedural guide, *student excellence in a subject area is the only qualifying criteria.* Students who demonstrate knowledge and abilities above that of their peers should be provided with an opportunity to accelerate and enrich their knowledge. Students demonstrate this ability through universal screening assessments and through curriculum-based measures. Students who demonstrate evidence of advanced knowledge will receive additional support in the form of Tier II and Tier III interventions, which are described in more detail below. It is likely that students with high IQ (a more traditional conception of giftedness) and high motivation will self-select into the upper tiers of intervention and support. At tier III, students can be referred for formal gifted identification, based on state-mandated definitions of giftedness. The benefit of a tiered model of gifted assessment/intervention is that students who do not meet legislator-established criteria for gifted classification still receive support to build their strengths.

When a student is referred to the Gifted/RtI team, a folder is created for the student. This folder should include all documentation regarding the student’s intervention and progress. A checklist of the forms that should be included in the folder, along with reproducible copies of the forms can be found in the appendices if this document.

Movement Through Tiers:

Student progress must be monitored and documented, typically via CBMs or informal assessment (in the form of typical classwork, tests, or quizzes), in order for the process to work appropriately. During the initial gifted/RtI team meeting, a follow-up meeting is planned for 6-8 weeks after the intervention has been in place. During the follow-up meeting, student progress, in the form of graphed data points (data points are the pre-assigned CBM scores), is analyzed using the problem-solving model (see RtI Progress Monitoring form at the end of this document). Based on the data and progress toward the goal, the intervention team makes a recommendation regarding the intervention. Four intervention options include:

- **Remove** the intervention (if the student fails to maintain data points above those of his/her peers; this would represent a return to the standard curriculum or movement back to Tier I),
- **Maintain** the intervention (if the student’s data points are consistently higher than his/her peers and progress toward the goal is sufficient; this represents maintenance at Tier II),
- **Modify**, or changing the intervention at the current level of intensity (if the student’s data points are consistently higher than his/her peers, but progress toward the goal is not sufficient; this represents maintenance at Tier II),*
- **Intensify** the intervention (if the student’s data points are consistently higher than his/her peers, and he/she appears to progressing so rapidly that he/she will exceed the goal; this represents movement to Tier III)*

*It is important to note that as students advance through the different tiers of intervention, lower-level interventions are typically maintained *in addition* to higher-level interventions. For example, a student who receives an ability-level grouping intervention at Tier I, but who
is advanced to Tier II by the team, should receive his Tier II intervention (perhaps computer-based curriculum) as well as ability-level grouping.

Tier I Interventions: evidence-based school-wide curricula

Tier I involves the school-wide adoption of evidence based curricula for different subject areas along with differentiated instruction that meets the need of most students in the classroom. Tier I typically serves approximately 80% of the student population, though if the top 15% of students are also identified to move to a strength-based Tier II, Tier I will only serve approximately 65%.

In a traditional RtI model, all students are assessed approximately three times per year in a process called Universal Screening. Examples of Universal Screening tools include Oral Reading Fluency measures (ORF), spelling measures, letter naming fluency, letter sound fluency, phoneme segregation fluency, nonsense word fluency, math computation, math facts (addition, subtraction, multiplication, division, mixed), Curriculum Based Measurements (CBMs), and Dynamic Indicators of Basic Early Literacy Skills (DIBELS) (SERC, 2011). AIMSweb (web address is listed in the Resources section of this document) offers a number of assessment tools that can be specified to the student’s grade and mastery level. In addition, states may develop and mandate their own Universal Screening Measures. For example, the state of Florida uses the Florida Assessments for Instruction in Reading (FAIR) instead of the DIBELS. Based on the screening, the lowest 15-20% of students are targeted for movement to Tier II for additional support. In the gifted RtI model, the top 15% of students, as measured by the Universal Screening Measures specific to the school, are also targeted for movement to Tier II for additional support/challenge (see example of Miguel in the “Making it Real Section” p. 68).

The Montana Office of Public Instruction (2009) has compiled a list of methods for differentiating instruction for all students, based on the work of Tomlinson (1999). This table is adapted below. Recall that VanTassel-Baska & Stambaugh (2006a) identified three dimensions with demonstrated effectiveness with gifted students: content mastery, high-level process and product development, and study of an overarching theme. Recall also, that student choice/control is another important factor in increasing student motivation.

Chart 2: Tier I Differentiated Instruction Methods (from Montana OPI, 2009)

<table>
<thead>
<tr>
<th>Differentiation Method</th>
<th>Curriculum Dimension Effective with Gifted Students?</th>
<th>Description of Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability Level Grouping</td>
<td>Content Mastery</td>
<td>Based on classroom performance, students are divided into three demonstrated proficiency level groups (low, mid, high), and instruction targets demonstrated ability level</td>
</tr>
<tr>
<td>Abstraction</td>
<td>Overarching Theme</td>
<td>Content that explores beyond surface detail and facts to underlying concepts, generalizations, and symbolism</td>
</tr>
<tr>
<td>Active Engagement</td>
<td>Student Choice/Control</td>
<td>Instructional strategies that result in relevance and engagement for students</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Agendas</td>
<td>Content Mastery</td>
<td>A personalized list of tasks that a particular student must complete in a specified time</td>
</tr>
<tr>
<td>Choice</td>
<td>Student Choice/Control</td>
<td>Provide opportunities for choices and flexibility. Many gifted students love the opportunity for choice and given the opportunity will construct individualized differentiated choices</td>
</tr>
<tr>
<td>Choice boards, tic-tac-toe</td>
<td>Student Choice/Control</td>
<td>Students make a work selection from a certain row or column. Teachers can provide for student learning needs while giving students choice</td>
</tr>
<tr>
<td>Compacting</td>
<td>Content Mastery</td>
<td>This strategy should be done at all levels to prevent repetition and re-teaching of content students have already mastered. To compact, the teacher must pre-test students in the content to be presented. Students mastering, or nearly mastering the content, then move on to an advanced level of difficulty</td>
</tr>
<tr>
<td>Conceptual Discussions</td>
<td>Overarching Theme</td>
<td>High level discussions of themes, concepts, generalizations, issues, and problems, rather than a review of facts, terms and details</td>
</tr>
<tr>
<td>Extensions</td>
<td>Content Mastery</td>
<td>Offer relevant extension options for learners who need additional challenges</td>
</tr>
<tr>
<td>Flexible Assessments</td>
<td>Student Choice/Control</td>
<td>Offer different assessment options that allow students to demonstrate their mastery of new concepts, content, and skills</td>
</tr>
<tr>
<td>Flexible Tasks</td>
<td>Product Development & Student Choice/Control</td>
<td>Allowing students to structure their own projects and investigations according to their strengths and interests</td>
</tr>
<tr>
<td>Flexible Project Deadlines</td>
<td>Student Choice/Control</td>
<td>Students negotiate for more or less time to complete a learning</td>
</tr>
<tr>
<td>Grouping</td>
<td>Regular opportunities to work in whole groups, small groups, with a partner, or in an independent setting</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Higher-Order Thinking Skills</td>
<td>Questioning in discussion or providing activities based on processing that requires analysis, synthesis, evaluation, or other critical thinking skills</td>
<td></td>
</tr>
<tr>
<td>Independent Study</td>
<td>Students research a teacher- or self-chosen topic, developing either traditional or non-traditional products to demonstrate learning</td>
<td></td>
</tr>
<tr>
<td>Jigsaw/Cooperative Learning</td>
<td>Each student is assigned a part of an assignment and like a jigsaw puzzle, each student’s part is essential for the full completion and full understanding of the final product</td>
<td></td>
</tr>
<tr>
<td>Learning Centers or Stations</td>
<td>Activity stations that demonstrate awareness of different academic needs and learning style preferences. Learning stations can be student-chosen or teacher-assigned</td>
<td></td>
</tr>
<tr>
<td>Learning Contracts</td>
<td>Students negotiate individually with teacher about what and how much will be learned and when product will be due; often connected with an individual or independent project</td>
<td></td>
</tr>
<tr>
<td>Learning Programs</td>
<td>Computer programs or websites to meet learners’ needs and allow students to work at their own pace</td>
<td></td>
</tr>
<tr>
<td>Mini-Lessons</td>
<td>Mini-lessons provide levels of scaffolding, support and challenge as needed for students of like ability/need</td>
<td></td>
</tr>
</tbody>
</table>
| Most Difficult First | Students can demonstrate a
<table>
<thead>
<tr>
<th>Open-Ended Assignments</th>
<th>Product Development</th>
<th>Providing students with tasks and work that do not have single right answers or outcomes. The tasks may have timelines and a sequence of activities to be accomplished, but outcomes will vary for each student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbital Study</td>
<td>Product Development</td>
<td>Independent investigations, generally of three to six weeks. They orbit or revolve around some facet of the curriculum. Students select their own topics for the orbital, and they work with guidance and coaching from the teacher to develop more expertise on the topic as well as learning the skills of an investigator</td>
</tr>
<tr>
<td>Pre-assessment</td>
<td>Content Mastery</td>
<td>An array of pre-assessment options can guide instruction. By regularly pre-assessing students, teachers can flexibly group students by ability and readiness levels. Pre-assessment is also essential for compacting</td>
</tr>
<tr>
<td>Problem-Based Learning</td>
<td></td>
<td>A student-centered instructional strategy in which students collaboratively solve problems and reflect on their experiences. Learning is driven by challenging, open-ended problems. Students work in small collaborative groups. Teachers take on the role as "facilitators" of learning</td>
</tr>
<tr>
<td>RAFT</td>
<td>Student Choice/Control</td>
<td>Provides students choice in a writing assignment varying Role, Audience, Format, and Topic</td>
</tr>
<tr>
<td>Subject Integration/Theme-</td>
<td>Overarching Theme</td>
<td>Unitig two or more disciplines</td>
</tr>
<tr>
<td>Activity</td>
<td>Objective</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>based Units</td>
<td>Content Mastery</td>
<td>and their content through a conceptual theme, such as "origins," "change" or "friendship"</td>
</tr>
<tr>
<td>Tiered Assignments</td>
<td>Content Mastery</td>
<td>Varied levels of tasks to ensure that students explore ideas and use skills at a level that builds on what they already know and encourages growth. All students explore the same essential ideas but work at different levels of depth and complexity.</td>
</tr>
<tr>
<td>Vary Levels of Complexity</td>
<td>Content Mastery</td>
<td>Books and instructional materials are provided at different levels of complexity and allow students to study the same concepts but at levels of depth and complexity to fit their learning needs.</td>
</tr>
<tr>
<td>Vary Pacing</td>
<td>Content Mastery</td>
<td>Accommodations comprised of varied pacing that allow students to move through content at a pace appropriate to their learning needs.</td>
</tr>
<tr>
<td>Vary Tasks</td>
<td>Content Mastery</td>
<td>Differing homework options, journal prompts, and questions, based on student needs.</td>
</tr>
</tbody>
</table>
Making it Real: Tier I

What might Tier I look like with a real student?

Recall the earlier example of Miguel. Miguel’s teacher identified that he was ahead using weekly quizzes, which are CBM’s. Miguel’s demonstrated mathematical ability led his teacher to complete a Referral for Gifted/RtI Team form:

Had he not transferred to Sunny Side Elementary in the middle of the school year, he may also have demonstrated academic mastery during the Universal Screening process, which at Sunny Side is comprised of STAR Math evaluation (see resources). Sunny Side Elementary utilizes an evidence-based mathematics curriculum, in which approximately 84% of the students demonstrate proficiency.
Tier II Interventions: consideration of developmental level

Students in the top 15% on the universal screening measures are referred to the gifted/RtI team. In addition, students performing very well in the classroom may be teacher-referred to the gifted/RtI team at any point during the school year. Parents may also recommend student review, but all reviews must be data-based (see the example of Miguel beginning on page 74 and the decision tree on page 81). Finally, student self-referrals are considered.

Prior to referral, the teacher obtains student baseline data on an authentic assessment based on the core curriculum. Measures that are frequently obtained and can be graphed are called CBMs (Deno, 1985). CBMs vary widely depending on the grade level, subject area, and the time of the year. A CBM might be a weekly spelling test completed in the classroom, or it might be a standardized probe like a measure of Oral Reading Fluency taken every week (and measured using current reading assignments), or it might even be obtained using a set of math flash cards. CBMs provide a measure of student progress compared to his/her classmates, and are used as data points in progress monitoring. CBMs are typically composed of a set of standardized directions, a timing device, materials (like sheets, passages, or lists), scoring rules, standards for judging performance and record forms (Hosp, Hosp, & Howell, 2007). CBMs must have standard reliability and validity, and utilize performance sampling and repeated measurement of the same skill over time. Baseline performance requires a minimum of three data points and provides information regarding the target behavior pre-intervention (Brown-Chidsey & Steege, 2005).

CBMs like Oral Reading Fluency or math skills measurement may be appropriate for students in early grades, because if they demonstrate grade-level mastery, baseline and progress monitoring can be measured utilizing out-of-level testing (administering a fifth grade ORF passage to a second grade student—see below for a more thorough description). For older students, and subject areas with fewer technically adequate (valid and reliable) CBM measures (like science and/or social studies), informal assessment may be a good substitution. Teachers may utilize weekly quizzes of components covered in class. It is important, however, that the structure of the quizzes remain the same throughout the year (as an example, the weekly quiz may have 10 questions every week). If the structure remains the same, inter and intra-student comparisons are easier, and no score conversions are necessary.

The team comes together to analyze the student’s baseline performance, which has been documented by the teacher (see RtI Progress Monitoring Form in the Appendices). The team (including the parent) then selects a specific and measurable goal for the student, and selects/designs an intervention to help the student achieve this goal. A follow-up meeting is scheduled for 6-8 weeks after the initial meeting to evaluate student progress and to either continue, discontinue, or modify the existing intervention based on documented student performance. Before the follow-up meeting, the team may determine that it would be beneficial for the student to engage in self-reflection. To that end, an optional Student Self-Evaluation form can be located in the Appendices section.

A very important note regarding obtaining baseline data: Students who score perfectly or near-perfectly on these CBMs should receive additional assessments in concepts more sophisticated than the original CBM. Perfect or near perfect scores on CBMs are indicative of a student experiencing “ceiling effects.” Ceiling effects mean that the student’s true ability is not being
measured because the assessment does not contain enough difficult items to challenge the student. A student demonstrating ceiling effects should continue to receive more difficult CBMs (quizzes, probes, or worksheets designed for older students either within the same grade level, or in a grade level above). The process of testing a student in incrementally more difficult concepts is called out-of-level testing and allows teachers to identify concepts already mastered by the student in order to guide interventions at Tier II. *Any student demonstrating mastery on a CBM should be tested out-of-level until the student stops demonstrating mastery.* Educational goals should be established using challenging material for the student.

Tier II interventions are typically small-group interventions, of no more than 3-5 students, which are designed to meet the mastery level of those student members. It is very important that Tier II interventions be research based. A list of Resources is available at the end of this document to help guide selection of research-based interventions. For students receiving accelerated curriculum services, traditional RtI interventions/activities designed for older students may be helpful (for example, a precocious 1st grade math student may benefit from 4th grade math assignments from Intervention Central). Websites like Intervention Central and the Florida Center for Reading Research offer a number of interventions for students of all ages. Small group interventions for academically gifted students under the RtI model differ from traditional pull-out gifted services in that interventions specifically target individual academic areas. In this way, students who excel in one subject area, but who do not meet district-level criteria for gifted services are still supported with curriculum challenges that meet their ability levels. Small group interventions must take into consideration the child’s developmental level and can be designed to align with VanTassel-Baska & Stambaugh’s (2006a) six conceptions of gifted education. Sample interventions are as follows:

Chart 3: Tier II Interventions

<table>
<thead>
<tr>
<th>Conception</th>
<th>Sample Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curriculum as Technology</td>
<td>o At very early ages (PK-2), when children are just beginning to learn number concepts, curriculum compacting (conducted by the classroom teacher) might be the most appropriate Tier II intervention, though exceptions could be made for children who master the material very quickly.</td>
</tr>
<tr>
<td></td>
<td>o In addition to implementation at Tier I, computer-based curricula like Odyssey Math (see resources) could be utilized at Tier II as a way for students to accelerate their learning.</td>
</tr>
<tr>
<td></td>
<td>o Cluster or ability grouping allows small groups of high-ability students to work together on projects, and is an efficient method of delivering compacted curriculum.</td>
</tr>
<tr>
<td></td>
<td>o Mixed-level classes allow students to...</td>
</tr>
</tbody>
</table>

...
leave their grade-level classroom to attend a class in a higher grade that better matches their individual educational needs

| Curriculum as Development of Cognitive Process | • Students in pull-out, small-group sessions learn about an epistemological theme like change. Students are taught to examine standard course content while looking for evidences of change, systems, and cause/effect relationships. Within subsequent small-group sessions, students discuss examples of the weekly themes from their standard curriculum lessons. Theme-finding activities can be supported using worksheets and writing activities.
• Great Books is a curriculum emphasizing critical reading skills |

| Curriculum as a Precursor to a Professional Career | • Advanced curricula like Mentoring Mathematical Minds (M3-see resources) are designed for the unique needs of the mathematically gifted student. The M3 curriculum emphasizes creativity, critical thinking skills, and respectful discourse structured on the discussions of professional mathematicians.
• Students can be matched to mentors in career fields in which they are interested |

| Curriculum as Social Reconstruction | • Small group interventions can be designed in conjunction with the needs of local charitable organizations. The International Baccalaureate organization (see resources) has a longstanding tradition of linking educational endeavors to the needs of the community, and early-intervention projects focusing on science or mathematics could be designed following their example. One sample intervention might include testing local water sources and implementing |
| Curriculum as Personal Relevance | Students in small groups might be presented with a number of the options listed above as potential objectives of small group instruction, or might be allowed to develop their own projects during the small-group instruction.
Renzulli’s Schoolwide Enrichment model (see resources) allows students to pursue academic endeavors that they consider personally relevant. |
| --- | --- |
| Curriculum as Academic Rationalism | Students might spend time in pull-out sessions learning about theoretical mathematicians or famous scientists and why their contributions were important. In designing an intervention of this type, two considerations are important. The first is to match the lesson to the developmental level of the learner (i.e., do not discuss the discovery and importance of 0 with most early elementary-school learners), and the second is to link historical discoveries to current applications. For example, if the students were learning about the telegraph, it would be important to trace the history from the telegraph to modern communication technology (VanTassel-Baska & Stambaugh, 2006).
Online resources like Northern Kentucky’s Math Education program offer additional math resources (see resources). |
| Other Tier II Interventions | Extracurricular activities and competitions such as Math Olympiad, Future Problem-Solving, Destination Imagination, JASON Project and Odyssey of the Minds (see resources)
After-school and weekend advanced curriculum activities |
Making it Real: Tier II

Prior to Miguel’s RtI/Gifted Intervention Team meeting, Mrs. Simmons was very clear that she did not believe that Miguel had encountered any mathematical activities that had challenged him since he had been enrolled in her class. The school psychologist, recognizing the need to utilize out-of-level testing in order to establish challenging goals, administered CBMs to Miguel until he scored less than 80% on three separate measures. These scores served as Miguel’s baseline, and goals were established from this point. Miguel demonstrated mastery of material a full grade-level beyond his 3rd grade class. Based on this baseline data, and on Mrs. Simmons’ observations of Miguel in class, the team elected for an intensive Tier II intervention: mixed-grade level classwork (all math is delivered at the same time of day at Miguel’s elementary school). Miguel will attend Mrs. Jones’ 4th grade classroom for math instruction. A follow-up meeting is scheduled for 4/19/11 (six weeks after the initial meeting) to evaluate Miguel’s progress.

Intervention Planning

Tier II

Adapted from Brown-Chidsey, Bronbaugh, & McGraw (2009)

To be completed by the Gifted/RtI Intervention Team:

Student: Miguel Rodriguez **Date:** 3/7/11

Teacher: Mrs. Simmons

Tier II Intervention:

- [] Curriculum compacting
- [] Computer-based curriculum
- [] Cluster group
- [x] Mixed grade-level instruction
- [] Pull-out group
- [] Extracurriculars (specify:)
- [] Advanced curriculum group (like Mentoring Math Minds)

Specific, Measurable Goal: Miguel will obtain scores of 80% or above on 4th grade math quizzes

Data Points to be obtained from the following assessments (circle one):

- [] Class Quizzes
- [] CBM Probes

Materials or assistance needed:

Miguel needs a desk and a textbook in Mrs. Jones’ class

Start date for intervention: 3/8/11

How often will the intervention be used? Daily

Follow-up Meeting Date (typically 6-8 weeks): 4/19/11

Team Member Signatures:

- [] Teacher
- [] Gifted Coordinator
- [] Principal

[Administrator will conduct a classroom observation in order to verify fidelity to intervention design]

Observation Date: 4/5/11 **Administrator Initials:** [TVL]
The intervention calendar documents that Miguel has received his Tier II intervention for an adequate amount of time per session, and for a sufficient length of time, and that it has not been significantly impacted by external factors like absenteeism.

At the follow-up meeting on 4/19, Mrs. Jones provides documentation regarding Miguel’s math performance. Miguel is more engaged in mathematics instruction, as he has not yet learned the material, but he still consistently performs at the top of his class on math quizzes. Based on Mrs. Jones’ report, and the data documented here and on the following page, the team determines that Miguel should be advanced to Tier III for additional intervention.
The Progress Monitoring Form provides documentation that Miguel is responding positively to the intervention, but that in order to provide an adequate level of challenge, additional intervention is necessary.

Rti Progress Monitoring Form

Student: Miguel Rodriguez Teacher: Mrs. Simmons/Mrs. Jones
Grade: 3 Tier: II Starting Date of Intervention: 3/8/2011
Academic Skill Targeted: Math Enrichment
Progress Monitoring Instrument: Weekly quizzes
Intervention: Placement to a 4th grade classroom for math
Frequency: Daily Duration: Regular Math Block (50 minutes)
Baseline data: 78% Date Taken: 3/8/11
Short-term Goal: Obtain scores of 80% or above on 4th grade quizzes

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Score %</th>
<th>Goal %</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th Grade CBM</td>
<td>98% (Avg: 95)</td>
<td>NA</td>
<td>3/10/11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Points</th>
<th>Score %</th>
<th>Goal %</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Quiz</td>
<td>93%</td>
<td>85%</td>
<td>3/8/11</td>
</tr>
<tr>
<td>2. Quiz</td>
<td>94%</td>
<td>80%</td>
<td>3/10/11</td>
</tr>
<tr>
<td>3. Quiz</td>
<td>93%</td>
<td>80%</td>
<td>3/12/11</td>
</tr>
<tr>
<td>4. Quiz</td>
<td>93%</td>
<td>80%</td>
<td>3/14/11</td>
</tr>
<tr>
<td>5. Quiz</td>
<td>93%</td>
<td>80%</td>
<td>3/16/11</td>
</tr>
<tr>
<td>6. Quiz</td>
<td>97%</td>
<td>80%</td>
<td>3/18/11</td>
</tr>
<tr>
<td>7. Quiz</td>
<td>97%</td>
<td>80%</td>
<td>3/20/11</td>
</tr>
</tbody>
</table>

Progress Monitoring—Please mark both student progress and goal

Adapted from Wakulla County Schools. Florida RTI Handbook 2010-2011

Intervention Action (circle one): Remove Maintain Modify Intensity

42
Tier III Interventions: Intensive Intervention

If a student has exceeded the specific/measurable academic goals established at Tier II in the follow-up meeting 6-8 weeks after the initial Tier II meeting, interventions should be intensified, and Tier III interventions should be added (see example of Miguel on page 79 and the decision tree on page 81).

Interventions at Tier III may be very similar to interventions offered at Tier II, but they differ from Tier II in that they are designed to meet the needs of specific students and they represent an increase in intensity (either via more frequent delivery, a smaller student/teacher ratio, or more in-depth instruction regarding topics). Tier III interventions represent an additional 20-30 minutes per week of smaller-group (2-3 students or one-on-one attention) intervention three-five days per week in addition to Tier I and Tier II interventions. Alternatively, Tier III interventions may be delivered outside the regular school day in the form of additional accelerated evening or weekend classes or activities. Tier III may also include a referral for traditional gifted evaluation/classification, based on state identification requirements. Similar to an ESE referral in traditional RtI, a referral for gifted classification is appropriate if the intensity of the intervention is too difficult to maintain (time-wise or financially) without the support of the gifted label. Regardless of classification status, Tier III interventions should be highly interactive and should include an increased student response (oral and written). Tier III interventions for the gifted student require close collaboration with parents and careful construction based on demonstrated student strengths. Again, Tier III interventions may be an intensified version of the Tier II interventions mentioned earlier, or they may be an entirely different intervention. Examples of other Tier III interventions are as follows:

<table>
<thead>
<tr>
<th>Chart 4: Tier III Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curriculum as Development of Cognitive Process</td>
</tr>
<tr>
<td>o In a product development model, students demonstrate high levels of critical thinking and task commitment by organizing and executing development of a self-selected product. Examples include the Schoolwide Enrichment Model. The Integrated Curriculum Model includes a process-product dimension as well as a concepts dimension, and an advanced content dimension (see resources)</td>
</tr>
<tr>
<td>o Distance learning courses may be explored for students with needs</td>
</tr>
<tr>
<td>Curriculum as Technology, Curriculum as Precursor to a Professional Career, & Curriculum as Development of Cognitive Process</td>
</tr>
<tr>
<td>Other Tier III Intervention</td>
</tr>
<tr>
<td>Intensification/Multiplication of Tier II Interventions</td>
</tr>
</tbody>
</table>
Making it Real: Tier III

At the follow-up meeting on 4/19, Mrs. Jones reports that Miguel is attentive and very eager to learn during class sessions. He masters the material quickly in the 4th grade classroom and remains at the top of the class, in terms of quiz scores. The team, including both Miguel and his parents, agrees that additional enrichment would benefit Miguel, and Tier III interventions are added. The team elects to maintain his Tier II intervention and to recommend Miguel to join the after school Mentoring Math Minds (M3) group. The group is made up of the highest performing mathematics students from around the county and meets at a nearby elementary school three days per week after school. Miguel’s parents agree to provide transportation. This intervention is scheduled to last through the end of the school year, and a follow-up meeting is scheduled for the summer, prior to Miguel’s entry into the 4th grade. The team agrees that unless an immediate need arises, they will not meet again this school year. In addition to
the M3 intervention, Miguel’s parents are provided information about summer programs that may support Miguel’s academic strengths.

Conclusions and Final Recommendations

Too often, students like Miguel are passed over for enrichment experiences because they do not meet state established criteria for gifted status. While differentiated instruction has been recommended and utilized for a number of years in gifted education, RtI inserts a formal framework and decision-points into the process, and offers a bridge for students who are bright and highly motivated, but who do not meet state-established criteria for giftedness. RtI allows all students who may benefit, to gain access to enrichment opportunities and can be utilized in tandem with more traditional methods of gifted education.

Prior to initiating an RtI program for gifted students, teachers must be assessed and trained; however, training should not be a one-time event. Follow-up trainings on identification of talented students, fostering student talent through differentiated education, the value of gifted students, and intervention delivery should be ongoing. In addition, supportive administration and active involvement of the school community are essential. For example, some of the interventions listed in this guide require financial support (computer-based curricula, Mentoring Math Minds, and/or transportation to extracurricular events), and grant-seeking may benefit students. Programs like donors choose (see resources) may be able to help. Additionally, interventions like mixed grade level instruction in a specific subject area require strategic master schedule planning on the part of the administration. Implementing a program to meet the learning needs of all students must be a school wide effort.

A final note regarding implementing a program like differentiated instruction for talented students. It is important to foster social interaction among students, particularly among students who may have difficulty relating to peers who move more slowly through material. Ability-level grouping and social projects (like Jigsaws) foster interaction in the classroom. In addition, school counselors or school psychologists may find it beneficial to run groups on what it means to be gifted, and the importance of taking academic risks. Fostering emerging leadership potential, creativity, and a sense of community among all students is as important, if not more, than building specific academic skills in talented students.

There is no distinct line between “gifted” and “not gifted,” and RtI allows educators to bridge the gap between students who are allowed to receive gifted services and those who are not. It is not meant to replace traditional gifted education, but merely to supplement programs that already exist.
Gifted/RtI Decision Tree
Glossary of Terms

Authentic Assessment- assessments conducted in the child’s natural environment, focusing on behaviors that are valid, and which rely in the observations of a variety of caregivers, rather than just one school psychologist (Snyder et al., 2008)

Baseline- The baseline serves two functions. It describes the current level of performance and describes extent of the student’s strengths objectively. It also provides a foundation for predicting behavior or performance if the intervention is not implemented (Brown-Chidsey & Steege, 2005)

Curriculum-Based Measures- tasks, based on core curriculum, that allow frequent, graphable assessment of skills (Deno, 1985)

Intervention- “Provided by general and special educators, based on training, not title. Designed to help a student improve performance relative to a specific, realistic and measureable goal. Interventions are based upon valid information about present levels of performance relative to grade-level expectations, realistic implementation with fidelity, and may include modifications and accommodations. Interventions are multi-tiered, research-based, target-specific skills, time-limited, and parent inclusive” (Montana OPI, 2009)

Out-of-level Testing- the process of testing a student in incrementally more difficult concepts until they stop demonstrating mastery

Universal Screening- universal screening is a type of assessment that is characterized by the administration of quick low-cost, repeatable testing of age-appropriate skills to all students (SERC, 2011)

Resources for Interventions

Please note that resources are added and revised constantly. Internet searching interventions/resources may be another method for identifying resources.

AIMSweb:
http://www.aimsweb.com/
*(From their website) “AIMSweb is a benchmark and progress monitoring system based on direct, frequent and continuous student assessment. The results are reported to students, parents, teachers and administrators via a web-based data management and reporting system to determine response to intervention.”

Calculus Without Tears
http://www.berkeleyscience.com/
*A free program for teaching utilitarian calculus for students in grade 4 and up-offers weekly webinars.

Curriculum Compacting:
*Straightforward PowerPoint outlining reason and method for curriculum compacting

Destination Imagination:
http://www.idodi.org/
*A team-based “challenge” program. From their website: “Destination ImagiNation, our core program, is an educational program in which student teams solve open-ended Challenges and present their solutions at Tournaments. Teams are tested to think on their feet, work together and devise original solutions that satisfy the requirements of the Challenges.”

Donors Choose:
http://www.donorschoose.org/
*Website linking teachers with financial need to donors willing to fund classroom projects.

Education Oasis
http://www.educationoasis.com/resources/Articles/teaching_gifted_math.htm
*Articles on, among other things, structuring math classes to meet the needs of gifted students

Education Program for Gifted Youth
http://epgy.stanford.edu/courses/math/
*Program through Stanford University offering resources for meeting the needs of gifted students

Florida Center For Reading Research:
http://www.fcrr.org/curriculum/SCAindex.shtm
*Provides research and instructional materials for teachers regarding early reading skills, particularly in the context of RtI.

Future Problem Solving:
http://www.fpspi.org/
*(From the website) “FPSPI stimulates critical and creative thinking skills, encourages students to develop a vision for the future, and prepares students for leadership roles. FPSPI engages students in creative problem solving within the curriculum and provides competitive opportunities.”

Great Books:
http://www.greatbooks.org/
*Nonprofit educational organization offering reading and discussion programs (for purchase).

Integrated Curriculum Model:
http://cfge.wm.edu/curriculum.htm
*Comes from the Center for Gifted Education at William and Mary - (From the website) “Center materials are grounded in the Integrated Curriculum Model (VanTassel-Baska, 1986, 1995, 2002), which is designed to respond to gifted learners' characteristics of precocity, intensity, and complexity through its three dimensions of advanced content, higher level processes and product development, and interdisciplinary concepts, issues, and themes.”

International Baccalaureate:
http://www.ibo.org/
*A school-based curriculum that (from the website) “aims to develop inquiring, knowledgeable and caring young people who help to create a better and more peaceful world through intercultural understanding and respect.”

Intervention Central:
http://www.interventioncentral.org/
*Source for RtI Resources including academic and behavior interventions

JASON Project:
http://www.jason.org/public/whatis/start.aspx
*A science resource that (from the website) “connects students with scientists and researchers in real- and near-real time, virtually and physically, to provide mentored, authentic and enriching science learning experiences.”

Math Olympiad:
http://www.moems.org/
*Math contests for students in grades 4-8

Mentoring Mathematical Minds:
http://www.kendallhunt.com/m3/
*A math curriculum available for purchase that (from the website) is “a research-based mathematics program for gifted and talented students in grades 3, 4, and 5.

National Association of School Psychologists Resources:
*RtI resources generated by the National Association of School Psychologists, written for a variety of audiences.

National Center on Response to Intervention (including STAR Math):
*Clearinghouse for RtI resources including tables evaluating evidence base for interventions and progress monitoring methods.

National Center on Progress Monitoring
http://www.studentprogress.org
*Detailed information on progress monitoring

Neag Center for Gifted Education and Talent Development/National Center for Gifted Research
http://www.gifted.uconn.edu/
*Compiles research and resources for working with gifted and talented students.

Northern Kentucky Math Resource
http://www.nku.edu/~mathed/gifted.html
*Offers links to worksheets, problems, online programs, etc. for gifted math students

Odyssey Math:
http://www.compasslearning.com/tour.htm
*Overview of an online math curriculum (available for purchase) allowing for movement at the student’s own pace.

Odyssey of the Minds:
http://www.odysseyofthemind.com/
*(From the website) “Odyssey of the Mind is an international educational program that provides creative problem-solving opportunities for students from kindergarten through college. Team members apply their creativity to solve problems that range from building mechanical devices to presenting their own interpretation of literary classics. They then bring their solutions to competition on the local, state, and World level.”

Progress Monitoring Resource:
*Resource mentioned earlier outlining evidence base for both interventions and progress monitoring strategies

RtI Action Network:
http://rtinetwork.org
*Resource for those interested in learning more about RtI research and implementation. Offers professional development opportunities and the ability to connect with others implementing RtI.

Schoolwide Enrichment Model:
http://www.gifted.uconn.edu/sem/
*Resource for overview, research, and implementation of the Schoolwide Enrichment Model.

What Works Clearinghouse:
http://ies.ed.gov/ncee/wwc/
*Resource for interventions by subject area; includes evidence base for interventions
References

Council for Exceptional Children & The Association for the Gifted (2009). *Response to intervention (RtI) for gifted children.* The Association for the Gifted, a Division of the Council for Exceptional Children: Author.

Appendices
Gifted/RtI Folder Checklist
(This form should be copied and included in each Referral Folder)

Tier I:
- Tier I should be in place for the entire student body. Folders are not necessary at Tier I.

Tier II: (initial meeting)
- Referral Form (Teacher, Parent, or Self)
- Intervention Planning Form (Tier II)

Tier II: (follow-up meeting)
- RtI Progress Monitoring Form
- Intervention Calendar
- [optional] Student Self-Evaluation
- [optional] Work Samples

Tier III: (initial meeting)
- All Tier II documentation
- Intervention Planning (Tier III)

Tier III: (follow-up meeting)
- RtI Progress Monitoring Form
- Intervention Calendar
- [optional] Student Self-Evaluation
- [optional] Work Samples
Referral for Gifted/RtI Team

Teacher

Adapted from Brown-Chidsey, Bronaugh, & McGraw (2009)

Please complete this form and place it into the school psychologist’s box. You will be notified of the time/date for the scheduled team meeting.

Teacher: __

Student: __

Date: __________________________

Reason for Referral: __

__

__

Tier I interventions (including class wide differentiated instruction) in place?
Y N

Strategies already attempted (be as specific as possible)

__

__

__

Most recent scores in area of academic success (CBM refers to curriculum-based measurement):

<table>
<thead>
<tr>
<th>Date</th>
<th>CBM or Quiz</th>
<th>CBM or Quiz</th>
<th>CBM or Quiz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Score: ____________ ____________ ____________

Class Average: ____________ ____________ ____________

Date of last parent contact ____________ (circle one) Phone In Person

Topics Discussed: __

Best Times/Days to meet: __

Signature: __________________________ Date: __________________________

156
Referral for Gifted/RtI Team
Parent
Adapted from Brown-Chidsey, Bronaugh, & McGraw (2009)

Please complete this form and return it to your student’s teacher. You will be notified of the time/date for the scheduled team meeting.

Student: __

Parent: __________________________ Phone Number: __________________________

Teacher: __

Date: __________________________

Reason for Referral including goals:
__
__
__

Extracurricular activities and additional independent study (be as specific as possible)
__
__
__

Specific areas of student strength:
__
__

Date of last teacher contact _________ (circle one) Phone In Person

Topics Discussed __

Best Times/Days to meet: ___

Signature: __________________________ Date: ______________________
Referral for Gifted/RtI Team
Self

Please complete this form and return it to your teacher.

Student: __

Parent: ____________________________ Phone Number: __________

Teacher: __

Date: _____________________________

Why do you want the team to meet about you?

__
__

What types of things do you like to do outside of school?

__

What are you really good at doing?

__

How do you learn best?

__

What’s the hardest subject for you?

__

What motivates you the most?

__

Signature: ____________________________ Date: ____________________________
Student Self-Evaluation

1. What is your goal?

2. How will you know when you’ve reached your goal?

3. So far, how much effort have you put into achieving that goal?
 NONE A LITTLE SOME MORE THAN AVERAGE LOTS

4. What strategies have you used that have worked well in achieving that goal?

5. What strategies have not worked well in achieving the goal?

6. What would you tell other students who are trying to achieve similar goals?
Intervention Planning
Tier II
Adapted from Brown-Chidsey, Bronaugh, & McGraw (2009)

To be completed by the Gifted/RtI Intervention Team:

Student: ______________________________________ Date: ____________________

Teacher: __

Tier II Intervention:

◯ Curriculum compacting
◯ Computer-based curriculum
◯ Cluster group
◯ Mixed grade-level instruction
◯ Pull-out group
◯ Extracurriculars (specify: ______________________________________)
◯ Advanced curriculum group (like Mentoring Math Minds)

Specific, Measurable Goal: __

__

Data Points to be obtained from the following assessments (circle one):

Homework Class Quizzes CBM Probes

Materials or assistance needed:

__

Start date for intervention: ________________________________

How often will the intervention be used? ________________________________

Follow-up Meeting Date (typically 6-8 weeks): ________________________________

Team Member Signatures:
__
__
__

*An administrator will conduct a classroom observation in order to verify fidelity to intervention design

Observation Date: ____________________ Administrator Initials: ____________________
RtI Progress Monitoring Form

Student__________________________________ Teacher____________________________________
Grade____________ Tier_______________ Starting Date of Intervention___________________
Academic Skill Targeted_____________________________ __
Progress Monitoring Instrument___________________________ ________________________________
Intervention__
Frequency__________________________________ Duration_____________________________________
Baseline data__________________________ Date Taken__
Short-term Goal__

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Score %</th>
<th>Goal %</th>
<th>Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Data Points</th>
<th>Score %</th>
<th>Goal %</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Progress Monitoring—Please mark both student progress and goal

Intervention Action (circle one): Remove Maintain Modify Intensify
Intervention Calendar
This calendar documents intervention duration/frequency and student attendance

Student Name ___

Start Date __

Implemented by __

Intervention Description ___
__

Session Length ____________________________

Please document the date and duration of the intervention:

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Notes/Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Wakulla County Schools, Florida RfI Handbook 2010-2011
To be completed by the Gifted/RtI Intervention Team:

Student: ______________________________ Date: __________________________

Teacher: __

Tier III Intervention:

- Product Development
- Grade skipping
- Online coursework
- Distance Learning
- Summer/Weekend Program (specify: ________________________________)
- Extracurriculars (specify: __)
- Advanced curriculum group (specify: _____________________________________)

Specific, Measurable Goal: __

Data Points to be obtained from the following assessments (circle one):

<table>
<thead>
<tr>
<th>Homework</th>
<th>Class Quizzes</th>
<th>CBM Probes</th>
</tr>
</thead>
</table>

Materials or assistance needed:

__

Start date for intervention: _________________________________

How often will the intervention be used? __________________________

Follow-up Meeting Date (typically 6-8 weeks): __________________________

Team Member Signatures:

*An administrator will conduct a classroom observation in order to verify fidelity to intervention design

Observation Date: _____________________ Administrator Initials: _______________
1. Please rate your overall familiarity with the **Foundations** of gifted education including the following (circle any that you feel would be especially important in training):
 - Historical foundations of gifted and talented education including points of view and contributions of individuals from diverse backgrounds
 - Key philosophies, theories, models and research that supports gifted and talented education
 - Local, state/provincial and federal laws and policies related to gifted and talented education
 - Issues in conceptions, definitions, and identification of individuals with gifts and talents including those of individuals from diverse backgrounds
 - Impact of the dominant culture’s role in shaping schools and the differences in values, languages, and customs between school and home
 - Societal, cultural, and economic factors, including anti-intellectualism and equity vs. excellence, enhancing or inhibiting the development of gifts and talents
 - Key issues, trends, including diversity and inclusion, that connect general, special and gifted and talented education

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>No familiarity</td>
<td>Some familiarity</td>
<td>Fairly Familiar</td>
<td>Familiar</td>
<td>Very familiar</td>
</tr>
</tbody>
</table>

2. Please rate your overall familiarity with gifted **Development and Characteristics of Learners** including the following (circle any that you feel would be especially important in training):
 - Cognitive and affective characteristics of individuals with gifts and talents, including those from diverse backgrounds, in intellectual, academic, creative, leadership, and artistic domains
 - Characteristics and effects of culture and environment on the development of individuals with gifts and talents
 - Role of families and communities in supporting the development of individuals with gifts and talents
 - Advanced developmental milestones of individuals with gifts and talents from early childhood through adolescence
 - Similarities and differences within the group of individuals with gifts and talents as compared to the general population

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>No familiarity</td>
<td>Some familiarity</td>
<td>Fairly Familiar</td>
<td>Familiar</td>
<td>Very familiar</td>
</tr>
</tbody>
</table>

3. Please rate your overall familiarity with gifted **Individual Learning Differences** including the following (circle any that you feel would be especially important in training):
- Influences of diversity factors on individuals with gifts and talents
- Academic and affective characteristics and learning needs of individuals with gifts, talents, and disabilities
- Idiosyncratic learning patterns of individuals with gifts and talents, including those from diverse backgrounds
- Influences of different beliefs, traditions, and values across and within diverse groups on relationships among individuals with gifts and talents, their families, schools, and communities
- Integrate perspectives of diverse groups into planning instruction for individuals with gifts and talents

4.
Please rate your overall familiarity with gifted **Instructional Strategies** including the following (circle any that you feel would be especially important in training):
- School and community resources, including content specialists, that support differentiation
- Curricular, instructional, and management strategies effective for individuals with exceptional learning needs
- Apply pedagogical content knowledge to instructing learners with gifts and talents
- Apply higher-level thinking and metacognitive models to content areas to meet the needs of individuals with gifts and talents
- Provide opportunities for individuals with gifts and talents to explore, develop, or research the areas of interest or talent
- Preassess the learning needs of individuals with gifts and talents in various domains and adjust instruction based on continual assessment
- Pace delivery of curriculum and instruction consistent with needs of individuals with gifts and talents
- Engage individuals with gifts and talents from all backgrounds in challenging, multicultural curricula
- Use information and/or assistive technologies to meet the needs of individuals with exceptional learning needs

5.
Please rate your overall familiarity with gifted **Learning Environments and Social Interactions** including the following (circle any that you feel would be especially important in training):
- Ways in which groups are stereotyped and experience historical and current discrimination and implications for gifted and talented education
- Influence of social and emotional development on interpersonal relationships and learning of individuals with gifts and talents
- Design learning opportunities for individuals with gifts and talents that promote self-awareness, positive peer relationships, intercultural experiences, and leadership
- Create learning environments for individuals with gifts and talents that promote self-awareness, self-efficacy, leadership, and lifelong learning
- Create safe learning environments for individuals with gifts and talents that encourage active participation in individual and group activities to enhance independence, interdependence, and positive peer relationships
- Create learning environments and intercultural experiences that allow individuals with gifts and talents to appreciate their own and others' language and cultural heritage
- Develop social interaction and coping skills in individuals with gifts and talents to address personal and social issues, including discrimination and stereotyping

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>No familiarity</td>
<td>Some familiarity</td>
<td>Fairly Familiar</td>
<td>Familiar</td>
<td>Very familiar</td>
</tr>
</tbody>
</table>

6. Please rate your overall familiarity with gifted **Language and Communication** including the following (circle any that you feel would be especially important in training):
- Forms and methods of communication essential to the education of individuals with gifts and talents, including those from diverse backgrounds
- Impact of diversity on communication
- Implications of culture, behavior, and language on the development of individuals with gifts and talents
- Access resources and develop strategies to enhance communication skills for individuals with gifts and talents including those with advanced communication and/or English language learners
- Use advanced oral and written communication tools, including assistive technologies, to enhance the learning experiences of individuals with exceptional learning needs

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>No familiarity</td>
<td>Some familiarity</td>
<td>Fairly Familiar</td>
<td>Familiar</td>
<td>Very familiar</td>
</tr>
</tbody>
</table>

7. Please rate your overall familiarity with gifted **Instructional Planning** including the following (circle any that you feel would be especially important in training):
- Theories and research models that form the basis of curriculum development in instructional practice for individuals with gifts and talents
- Features that distinguish differentiated curriculum from general curricula for individuals with exceptional learning needs
- Curriculum emphases for individuals with gifts and talents within cognitive, affective, aesthetic, social, and linguistic domains
- Align differentiated instructional plans with local, state/provincial, and national curricular standards
o Design differentiated instructional plans with local, state/provincial, and national curricular standards
o Design differentiated learning plans for individuals with gifts and talents, including individuals from diverse backgrounds
o Develop scope and sequence plans for individuals with gifts and talents
o Select curriculum resources, strategies, and product options that respond to cultural, linguistic, and intellectual differences among individuals with gifts and talents
o Select and adapt a variety of differentiated curricula that incorporate advanced, conceptually challenging, in-depth, distinctive, and complex content
o Integrate academic and career guidance experiences into the learning plan for individuals with gifts and talents

1 2 3 4 5
No familiarity Some familiarity Fairly Familiar Familiar Very familiar

8. Please rate your overall familiarity with gifted Assessment including the following (circle any that you feel would be especially important in training):
 o Processes and procedures for the identification of individuals with gifts and talents
 o Uses, limitations, and interpretation of multiple assessments in different domains for identifying individuals with exceptional learning needs, including those from diverse backgrounds
 o Uses and limitations of assessments documenting academic growth of individuals with gifts and talents
 o Use non-biased and equitable approaches for identifying individuals with gifts and talents, including those from diverse backgrounds
 o Use technically adequate qualitative and quantitative assessments for identifying and placing individuals with gifts and talents
 o Develop differentiated curriculum-based assessments for use in instructional planning and delivery for individuals with gifts and talents
 o Use alternative assessments and technologies to evaluate learning of individuals with gifts and talents

1 2 3 4 5
No familiarity Some familiarity Fairly Familiar Familiar Very familiar

9. Please rate your overall familiarity with gifted Professional and Ethical Practice including the following (circle any that you feel would be especially important in training):
 o Personal and cultural frames of reference that affect one’s teaching of individuals with gifts and talents, including biases about individuals from diverse backgrounds
 o Organizations and publications in the field of gifted and talented education
1. Assess personal skills and limitation in teaching individuals with exceptional learning needs
2. Maintain confidential communication about individuals with gifts and talents
3. Encourage and model respect for the full range of diversity among individuals with gifts and talents
4. Conduct activities in gifted and talented education in compliance with laws, policies, and standards of ethical practice
5. Participate in the activities of professional organizations related to gifted and talented education
6. Reflect on personal practice to improve teaching and guide professional growth in gifted and talented education

1 2 3 4 5
No familiarity Some familiarity Fairly Familiar Familiar Very familiar

10. Please rate your overall familiarity with gifted **Collaboration** including the following (circle any that you feel would be especially important in training):

- Culturally responsive behaviors that promote effective communication and collaboration with individuals with gifts, talents, their families, school personnel, and community members
- Respond to concerns of families of individuals with gifts and talents
- Collaborate with stakeholders outside the school setting who serve individuals with exceptional learning needs and their families
- Advocate for the benefit of individuals with gifts and talents and their families
- Collaborate with individuals with gifts and talents, their families, general, and special educators, and other school staff to articulate a comprehensive preschool through secondary educational program
- Collaborate with families, community members, and professionals in assessment of individuals with gifts and talents
- Communicate and consult with school personnel about the characteristics and needs of individuals with gifts and talents, including individuals from diverse backgrounds

1 2 3 4 5
No familiarity Some familiarity Fairly Familiar Familiar Very familiar

Please list any additional questions/concerns/suggestions regarding upcoming trainings about gifted students:

__
__
__

168
INDIVIDUAL EDUCATIONAL PROGRAMMING GUIDE

The Compactor

<table>
<thead>
<tr>
<th>NAME</th>
<th>AGE</th>
<th>TEACHER(S)</th>
<th>Individual Conference Dates And Persons Participating in Planning Of IEP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>GRADE</th>
<th>PARENT(S)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CURRICULUM AREAS TO BE CONSIDERED FOR COMPACTING

Provide a brief description of basic material to be covered during this marking period and the assessment information or evidence that suggests the need for compacting.

PROCEDURES FOR COMPACTING BASIC MATERIAL

Describe activities that will be used to guarantee proficiency in basic curricular areas.

ACCELERATION AND/OR ENRICHMENT ACTIVITIES

Describe activities that will be used to provide advanced level learning experiences in each area of the regular curriculum.

Check here if additional information is recorded on the reverse side.

Copyright © 1976 by Creative Learning Press, Inc. P.O. Box 320 Mansfield Center, CT 06250. All rights reserved.
Referral for Gifted/RtI Team
Parent
Adapted from Brown-Chidsey, Bronaugh, & McGraw (2009)

Please complete this form and return it to your student’s teacher. You will be notified of the time/date for the scheduled team meeting.

Student: Sally Joiner
Parent: Ellie Joiner Phone Number: 555-4327
Teacher: MS. Lansford
Date: 9/20/2011

Reason for Referral including goals:
Sally already knows her letters and basic word sounds, but her kindergarten class are just learning letter sounds.

Extracurricular activities and additional independent study (be as specific as possible)
We visit the library at least twice per week.

Specific areas of student strength:
Sally loves books

Date of last teacher contact 9/15/11 (circle one) Phone In Person
Topics Discussed Sally’s advanced reading skills
Best Times/Days to meet: Friday Mornings
Signature: Ellie Joiner Date: 9/20/11
Intervention Planning
Tier II
Adapted from Brown-Chidsey, Bronaugh, & McGraw (2009)

To be completed by the Gifted/RtI Intervention Team:

Student: Sally Joiner Date: 9/30/2011
Teacher: Ms. Lansford

Tier II Intervention:
- Curriculum compacting
- Computer-based curriculum
- Cluster group
- Mixed grade-level instruction
- Pull-out group
- Extracurriculars (specify:)
- Advanced curriculum group (like Mentoring Math Minds)

Specific, Measurable Goal: Sally will demonstrate reading proficiency at a 2nd grade level

Data Points to be obtained from the following assessments (circle one):

Homework Class Quizzes CBM Probes ORF

Materials or assistance needed:

2nd grade ORF probes

Start date for intervention: 10/3/2011

How often will the intervention be used? Pull-out group daily at lunch

Follow-up Meeting Date (typically 6-8 weeks): 11/11/2011

Team Member Signatures:

Amy Ammann Fred George
Ellie Joiner Albie Oliphant
Ms. Lansford

An administrator will conduct a classroom observation in order to verify fidelity to intervention design

Observation Date: 10/18/11 Administrator Initials: GA
RtI Progress Monitoring Form

Student: Sally Joiner
Teacher: Lonsford

Grade: K
Tier: II
Starting Date of Intervention: 10/31/2011

Academic Skill Targeted: Advanced Reading (out-of-level)
Progress Monitoring Instrument: ORT (2nd Grade)

Intervention: Pull-out reading groups

Frequency: Daily
Duration: 20 minutes

Baseline data:
Date Taken: 10/31/11

Short-term Goal: Demonstrate reading proficiency at 2nd grade level

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Score %</th>
<th>Goal %</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70</td>
<td>90</td>
<td>10/3/2011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Points</th>
<th>Score %</th>
<th>Goal %</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Passage 1</td>
<td>72</td>
<td>90</td>
<td>10/7</td>
</tr>
<tr>
<td>2. Passage 2</td>
<td>74</td>
<td>90</td>
<td>10/9</td>
</tr>
<tr>
<td>3. Passage 3</td>
<td>73</td>
<td>90</td>
<td>10/14</td>
</tr>
<tr>
<td>4. Passage 4</td>
<td>71</td>
<td>90</td>
<td>10/19</td>
</tr>
<tr>
<td>5. Passage 5</td>
<td>81</td>
<td>90</td>
<td>10/21</td>
</tr>
<tr>
<td>6. Passage 6</td>
<td>98</td>
<td>90</td>
<td>10/26</td>
</tr>
<tr>
<td>7. Passage 7</td>
<td>83</td>
<td>90</td>
<td>10/30</td>
</tr>
<tr>
<td>8. Passage 8</td>
<td>84</td>
<td>90</td>
<td>11/2</td>
</tr>
</tbody>
</table>

Progress Monitoring—Please mark both student progress and goal

[Graph showing student progress against goal]

Adapted from Wakulla County Schools, Florida RtI Handbook 2010-2011

Intervention Action (circle one): Remove
Maintain
Modify
Intensify
Intervention Calendar

This calendar documents intervention duration/frequency and student attendance.

Student Name: Sally Joiner
Start Date: 10/3/2011
Implements by: Ms. Lansford
Intervention Description: 3 students receive pull-out reading instruction during lunch—they read and discuss books
Session Length: 20 minutes

Please document the date and duration of the intervention:

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Notes/Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>Loves books!</td>
</tr>
<tr>
<td>10/4</td>
<td>5</td>
<td>6 (20 min)</td>
<td>7 (20 min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/5</td>
<td>6</td>
<td>7 (20 min)</td>
<td>8 (20 min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/6</td>
<td>7</td>
<td>8 (20 min)</td>
<td>9 (20 min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/7</td>
<td>8</td>
<td></td>
<td>10 (20 min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/8</td>
<td>9</td>
<td>10 (20 min)</td>
<td>11 (20 min)</td>
<td></td>
<td>Great work</td>
</tr>
<tr>
<td>10/10</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/11</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/12</td>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
<td>Student reads in all class space time.</td>
</tr>
<tr>
<td>10/13</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>10/14</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>10/15</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>10/16</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>10/17</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10/18</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>Working hard</td>
</tr>
<tr>
<td>10/19</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>10/20</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>10/21</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>10/22</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>10/23</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>10/24</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>Intervention works well for her!</td>
</tr>
</tbody>
</table>

Adapted from Waculla County Schools, Florida RTI Handbook 2010-2011
APPENDIX 7

IRB Approval and Informed Consent Letters

Office of the Vice President For Research
Human Subjects Committee
Tallahassee, Florida 32306-2742
(850) 644-8673 · FAX (850) 644-4392

APPROVAL MEMORANDUM

Date: 5/2/2011

To: Stephanie Robertson

Address: [redacted]
Dept.: EDUCATIONAL PSYCHOLOGY AND LEARNING SYSTEMS

From: Thomas L. Jacobson, Chair

Re: Use of Human Subjects in Research
Expert Validation of a Procedure for Implementing Response to Intervention with Gifted Elementary School Students

The application that you submitted to this office in regard to the use of human subjects in the proposal referenced above have been reviewed by the Secretary, the Chair, and one member of the Human Subjects Committee. Your project is determined to be Expedited per per 45 CFR § 46.110(7) and has been approved by an expedited review process.

The Human Subjects Committee has not evaluated your proposal for scientific merit, except to weigh the risk to the human participants and the aspects of the proposal related to potential risk and benefit. This approval does not replace any departmental or other approvals, which may be required.

If you submitted a proposed consent form with your application, the approved stamped consent form is attached to this approval notice. Only the stamped version of the consent form may be used in recruiting research subjects.

If the project has not been completed by 4/26/2012 you must request a renewal of approval for continuation of the project. As a courtesy, a renewal notice will be sent to you prior to your expiration date; however, it is your responsibility as the Principal Investigator to timely request renewal of your approval from the Committee.

You are advised that any change in protocol for this project must be reviewed and approved by the Committee prior to implementation of the proposed change in the protocol. A protocol change/amendment form is required to be submitted for approval by the Committee. In addition, federal regulations require that the Principal Investigator promptly report, in writing any unanticipated problems or adverse events involving risks to research subjects or others.

By copy of this memorandum, the Chair of your department and/or your major professor is reminded that he/she is responsible for being informed concerning research projects involving human subjects in the department, and should review protocols as often as needed to insure that the project is being conducted in compliance with our institution and with DHHS regulations.
This institution has an Assurance on file with the Office for Human Research Protection. The Assurance Number is FWA00000168/IRB number IRB00000446.

Cc: Steven Pfeiffer, Advisor
HSC No. 2011.6251
Dear Participant:

My name is Stephanie Robertson and I am a doctoral candidate in the College of Education at Florida State University. I am conducting an initial validation study of a procedural guide for implementation of RtI with gifted students. I am interested in making this procedural guide as helpful as possible to practitioners and school professionals.

You were selected because of your unique contribution to this field. I am inviting current school professionals, professors, and experts in the field of RtI and gifted curriculum and instruction to participate in this process. I am requesting your participation in Phase I of this study, which is a focus group in which I hope to receive your feedback on the procedural guide. Focus group participation will require approximately one hour, and as compensation for your time, I will provide breakfast for participants. I appreciate your participation in this study. The results of the study will help in the development of a new intervention to support gifted students.

Your participation is voluntary. I will not ask for any identifying information nor will any identifying information be necessary to participate in any capacity. Your responses will be fully confidential; participation does not require that you provide any identifying information. This study presents no risks beyond those encountered in everyday life. Although there is no direct benefit to those who participate in the study, there very likely is indirect benefit to the profession of school psychology. The information that the participants provide will inform the profession of school psychology and gifted field about a specific procedure for engaging and supporting talented students. The information may provide important insights into unmet student needs and effective interventions for gifted students.

Feel free to contact me to ask any questions you may have. You can contact me directly at [redacted]. If you have any questions or concerns about your rights as a research participant, you may contact the FSU Institutional Review Board (IRB) at (850) 644-8633 or you may access their website at http://www.fsu.research.edu.

Thank you for your time and consideration. I hope that you participate in the study!
Sincerely,
Stephanie G. Robertson, M.Ed.
Doctoral Candidate
Florida State University

Dear Participant:

My name is Stephanie Robertson and I am a doctoral candidate in the College of Education at Florida State University. I am conducting an initial validation study of a procedural guide for implementation of RtI with gifted students. I am interested in making this procedural guide as helpful as possible to practitioners and school professionals.

You were selected because of your unique contribution to this field. I am inviting current school professionals, professors, and experts in the field of RtI and gifted curriculum and instruction to participate in this process. I am requesting your participation in Phase II of this study, which is a focus group in which I hope to receive your feedback on the Multidimensional Rating Scale. Focus group participation will require approximately one hour, and as compensation for your time, I will provide participants with a $5 Starbucks gift card. I appreciate your participation in this study. The results of the study will help in the development of a new intervention to support gifted students.

Your participation is voluntary. I will not ask for any identifying information nor will any identifying information be necessary to participate in any capacity. Your responses will be fully confidential; participation does not require that you provide any identifying information. This study presents no risks beyond those encountered in everyday life. Although there is no direct benefit to those who participate in the study, there is very likely is indirect benefit to the profession of school psychology. The information that the participants provide will inform the profession of school psychology and gifted field about a specific procedure for engaging and supporting talented students. The information may provide important insights into unmet student needs and effective interventions for gifted students.

Feel free to contact me to ask any questions you may have. You can contact me directly at [contact information]. If you have any questions or concerns about your rights as a research participant, you may contact the FSU Institutional Review Board (IRB) at (850) 644-8633 or you may access their website at http://www.fsu.research.edu.

Thank you for your time and consideration. I hope that you participate in the study!

Sincerely,
Stephanie G. Robertson, M.Ed.
Doctoral Candidate
Florida State University

Dear Participant:

My name is Stephanie Robertson and I am a doctoral candidate in the College of Education at Florida State University. I am conducting an initial validation study of a procedural guide for implementation of RtI with gifted students. I am interested in making this procedural guide as helpful as possible to practitioners and school professionals.

You were selected because of your unique contribution to this field. I am inviting current school professionals, professors, and experts in the field of RtI and gifted curriculum and instruction to participate in this process. I am requesting your participation in Phase III of this study. I will mail you a paper copy of the procedural guide, along with instructions for accessing the online multidimensional rating scale, which will allow you to provide feedback on the procedural guide. Participation in phase III should require approximately one to one and a half hours of your time. I will make a donation to a charity of your choosing, in your honor, as compensation for your time. I appreciate your participation in this study. The results of the study will help in the development of a new intervention to support gifted students.

Your participation is voluntary. I will not ask for any identifying information nor will any identifying information be necessary to participate in any capacity. Your responses will be fully confidential; participation does not require that you provide any identifying information. This study presents no risks beyond those encountered in everyday life. Although there is no direct benefit to those who participate in the study, there very likely is indirect benefit to the profession of school psychology. The information that the participants provide will inform the profession of school psychology and gifted field about a specific procedure for engaging and supporting talented students. The information may provide important insights into unmet student needs and effective interventions for gifted students.

Feel free to contact me to ask any questions you may have. You can contact me directly at [email_address]. If you have any questions or concerns about your rights as a research participant, you may contact the FSU Institutional Review Board (IRB) at (850) 644-8633 or you may access their website at http://www.fsu.research.edu.

Thank you for your time and consideration. I hope that you participate in the study!
Sincerely,
Stephanie G. Robertson, M.Ed.
Doctoral Candidate
Florida State University

Kanevsky, L., & Keighley, T. (2003, Fall). To produce or not to produce? Understanding boredom and the honor in the underachievement. Roeper Review, 26(1).

182

The Association for the Gifted (2009). Position on response to intervention (RtI) for Gifted Children.

BIOGRAPHICAL SKETCH

Stephanie Glenn Robertson graduated from Berry College in 2001 with a Bachelor’s Degree in Studio Art. She earned her Master’s Degree in School & Community Counseling from Winthrop University in Rock Hill, South Carolina. Following graduation from Winthrop, Robertson worked as a school counselor for three years at Hunter Huss High School in Gastonia, North Carolina. She has researched and presented on topics ranging from abuse advocacy to threat assessment in schools. Her current research focuses on gifted education. Robertson recently won the Hollingworth award from the National Association for Gifted Children for her research on utilization of the RtI model with gifted students. Robertson is a candidate for Doctor of Philosophy in Counseling Psychology at Florida State University.