You are here

Diagnostic Study of the Effects of Trough Interactions on Tropical Cyclone QPF

Title: A Diagnostic Study of the Effects of Trough Interactions on Tropical Cyclone QPF.
65 views
9 downloads
Name(s): Guimond, Stephen Richard, author
Bourassa, Mark, professor directing thesis
Hart, Robert, committee member
Cunningham, Philip, committee member
Fuelberg, Henry, committee member
Department of Earth, Ocean and Atmospheric Sciences, degree granting department
Florida State University, degree granting institution
Type of Resource: text
Genre: text
Issuance: monographic
Date Issued: 2007
Publisher: Florida State University
Place of Publication: Tallahassee, Florida
Physical Form: computer
Physical Form: online resource
Extent: 1 online resource
Language(s): English
Abstract/Description: A composite study is presented analyzing the influence of upper-tropospheric troughs on the evolution of precipitation in twelve Atlantic tropical cyclones (TCs) between the years 2000 – 2005. The TRMM Multi-Satellite Precipitation Analysis (TMPA) is used to examine the enhancement of precipitation within a 24 h window centered on trough interaction (TI) time in a shear-vector relative coordinate system. Eddy angular momentum flux convergence (EFC) computed from European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses is employed to objectively determine the initiation of a TI while adding insight, along with vertical wind shear, into the intensification of TC vortices. The relative roles of the dynamics (EFC and vertical wind shear) and thermodynamics (moist static energy potential) in TIs are outlined in the context of precipitation enhancement that provides quantitative insight into the "good trough"/"bad trough" paradigm. The largest precipitation rates and enhancements are found in the down-shear left quadrant of the storm, consistent with previous studies of convective asymmetries. Maximum mean enhancement values of 1.4 mm/h are found at the 200 km radius in the down-shear left quadrant. Results indicate that the largest precipitation enhancements occur with "medium" TIs; comprised of EFC values between 17 – 22 (m/s)/day and vertical wind shear Sensitivity tests on the upper vertical wind shear boundary reveal the importance of using the tropopause for wind shear computations when a TC enters mid-latitude regions. Changes in radial mean precipitation ranging from 29 – 40 % across all storm quadrants are found when using the tropopause as the upper boundary on the shear vector. Tests on the lower boundary using QuikSCAT ocean surface wind vectors expose large sensitivities on the precipitation ranging from 42 – 60 % indicating that the standard level of 850 hPa, outside of the boundary layer in most storms, is more physically reliable for computing vertical wind shear. These results should help to improve TC quantitative precipitation forecasting (QPF) as operational forecasters routinely rely on crude statistical methods and rules of thumb for forecasting TC precipitation.
Identifier: FSU_migr_etd-3922 (IID)
Submitted Note: A Thesis submitted to the Department of Meteorology in partial fulfillment of the requirements for the degree of Master of Science.
Degree Awarded: Spring Semester, 2007.
Date of Defense: January 25, 2007.
Keywords: Satellites, Precipitation, Tropical Cyclones, Troughs
Bibliography Note: Includes bibliographical references.
Advisory Committee: Mark Bourassa, Professor Directing Thesis; Robert Hart, Committee Member; Philip Cunningham, Committee Member; Henry Fuelberg, Committee Member.
Subject(s): Oceanography
Atmospheric sciences
Meteorology
Persistent Link to This Record: http://purl.flvc.org/fsu/fd/FSU_migr_etd-3922
Owner Institution: FSU