2009

Minimizing FIR Filter Designs Implemented in FPGAs Utilizing Minimized Adder Graph Techniques

Charles D. Howard
FLORIDA STATE UNIVERSITY
FAMU–FSU COLLEGE OF ENGINEERING

MINIMIZING FIR FILTER DESIGNS IMPLEMENTED IN FPGAS
UTILIZING MINIMIZED ADDER GRAPH TECHNIQUES

By
CHARLES D. HOWARD

A Thesis submitted to the
Department of Electrical & Computer Engineering
in partial fulfillment of the
requirements for the degree of
Master of Science

Degree Awarded:
Spring Semester, 2009
The members of the Committee approve the Thesis of Charles D. Howard defended on December 1, 2008.

Linda S. DeBrunner
Professor Directing Thesis

Victor DeBrunner
Committee Member

Bruce A. Harvey
Committee Member

The Office of Graduate Studies has verified and approved the above named committee members.
TABLE OF CONTENTS

List of Tables ... v
List of Figures ... vi
List of Listings ... ix
Abstract .. x

1. INTRODUCTION ... 1

2. OPTIMIZING FIR FILTER IMPLEMENTATIONS 3
 2.1 Digit-based Recoding .. 3
 2.2 Graph Based Approaches to Constant Multiplications 4
 2.3 Minimum Adder Graph Algorithms 6

3. BACKGROUND ... 8
 3.1 Delta-sigma Converters .. 8
 3.2 Loop Filter ... 10
 3.3 CSD Real-time Recoding ... 12

4. VHDLGEN, A VHDL GENERATOR 13
 4.1 VHDLGen Example Usage .. 13
 4.2 VHDL Filter Generation Using Other Implementation Schemes . 19
 4.3 Analysis ... 20
 4.4 Anatomy of the VHDLGen API 24

5. MINIMIZED ADDER GRAPHS IN FPGA DEVICES 38
 5.1 Inference Approach: Hybrid I ... 39
 5.2 Direct Instantiation Approach: Hybrid II 40
 5.3 Hybrid Filter Results ... 41

6. PROGRAMMABLE ADDER GRAPH .. 47
 6.1 Proposed Programmable Adder Graph 48
 6.2 Fundamental Modules .. 50
 6.3 Connection Matrix .. 52
 6.4 Programmer ... 57
6.5 Design Issues ... 59
6.6 Sizing .. 60
6.7 Applications ... 66

7. CONCLUSIONS AND FUTURE WORK 69

REFERENCES .. 71

BIOGRAPHICAL SKETCH .. 74
LIST OF TABLES

3.1 Double precision coefficients of previously designed sparse loop filter 11
5.1 Filters used in hybrid filter research . 42
LIST OF FIGURES

1.1 Block diagram of ΔΣ modulator used in radar system 2
2.1 Hardware implemtation of digit based encoding. 5
2.2 Adder Graph and implementation for multiplication of (2^9)10 6
2.3 Transposed FIR filter using an MCM multiplier block 6
3.1 Rudimentary first order ΔΣ modulator .. 9
3.2 Implementation of the rudimentary first order ΔΣ modulator in digital form. 9
3.3 The error-feedback structure of a ΔΣ modulator. 10
3.4 Frequency response of the sparse loop having only ten non-zero coefficients.. 11
4.1 Frequency response of the 8th order sample filter. 16
4.2 Research workflow .. 20
4.3 Filter response graphs of a sample filter .. 23
4.4 UML class diagram of VHDLGen ... 25
4.5 VHDLGen Flow Diagram ... 26
4.6 Circuit created when using the FIRFilterData filter data object 29
4.7 Circuit created when using the FIRFilterDataMCM filter data object 32
4.8 Circuit created when using the FIRFilterDataHybrid filter data object ... 34
4.9 Circuit created when using the FIRFilterDataHybridDSP filter data object . 36
5.1 Circuit created when using the FIRFilterDataHybrid filter data object. 40
5.2 Direct DSP48 primitive instantiation, Hybrid II. 41
5.3 Hybrid filter results of Filter A ... 44
5.4 Hybrid filter results of Filter B .. 45
5.5 Hybrid filter results of Filter C .. 46
6.1 Programable Adder Graph (PAG) Layout. 50
6.2 The Fundamental Module .. 51
6.3 Programmable hardware shift module .. 53
6.4 Four bit connection patterns to apply a left wire shift. 53
6.5 Four bit connection patterns to apply an arithmetic right wire shift. 54
6.6 Four bit, four node, one row connection matrix 55
6.7 Connection circuit using a CMOS transmission gates. 56
6.8 Connection circuit using a tri-state NOT gate. 56
6.9 PAG Programmer. ... 58
6.10 Dual PAG Module. ... 60
6.11 Highpass filter limits .. 65
6.12 Highpass filter limits with max depth of four 65
6.13 Bandstop filter limits. .. 67
6.14 Bandstop filter limits with max depth of four 67
6.15 Embedded PAG block ... 68
LIST OF LISTINGS

4.1 VHDLGen Run File 15
4.2 Filter Creation using *firpm* 16
4.3 Saving the coefficients to the run file manually 17
4.4 Creating the coefficient file in Matlab 18
4.5 VHDL entity statement created by the sample run file 19
4.6 Code snippet from a VHDL test bench 22
4.7 Matlab code to generate white noise 23
4.8 Matlab code to create the frequency plot data from filtered noise 24
4.9 The `CreateArchitectureHeader()` method in the `VHDL Circuit` class 27
4.10 The `setCoeffs()` method of the `FIRFilterData` class 29
4.11 Loading Coefficients from a File 30
4.12 The `quantizeCoeffs()` method of the `FIRFilterData` class 30
4.13 The `implementCoeff()` method of the `FIRFilterData` class 31
4.14 The `addVHDLFunctions()` method of the `FIRFilterDataMCM` class 33
4.15 The MCM Multiplication block 33
4.16 The `implementHybridCoeff()` method 35
6.1 Function to compute required PAG size 62
6.2 Function to count the required fundamentals 62
6.3 Function to create an FIR filter 63
6.4 Function to create a MAG given a filter 64
ABSTRACT

Multiple constant multiplications (MCM) is a graph based optimization technique that is well suited to DSP implementations. Using MCM, all coefficient multiplications are grouped into one efficient block of wired shifts and adds. One problem when using graph based optimizations is that most of the high-speed embedded blocks on modern FPGA devices are not used to help improve the design. We show that better results can be achieved using a hybrid technique to mix MCM and the embedded blocks in a single implementation. Another disadvantage of using MCM is the requirement of knowing the filter coefficients \textit{a priori}. Due to this limitation, MCM optimizations cannot be used in many applications. We propose a programmable adder graph (PAG) circuit that can implement multiplication using shift and add techniques without prior knowledge of the multiplier value. The PAG circuit allows any programmable device to be optimized using MCM for a wide range of DSP applications, including adaptive filters.
CHAPTER 1

INTRODUCTION

In response to the need for a demanding ∆Σ converter for a high performance radar system, we have focused on improving the implementation of the ∆Σ converter’s loop filter. As the loop filter is a key component of the ∆Σ converter, we will focus on a fast implementation that also has low area. Previous work on this project has focused on a design that has the potential for high performance, but that work does not consider the specific target implementation platform.

Figure 1.1 shows a block diagram of the ∆Σ converter used for the radar system. The implementation of the loop filter shown in the diagram is the single concern of this work, however, it is important to understand how it relates to the rest of the system. The remaining blocks shown are the usual suspects of a ∆Σ converter.

Due to the requirement that the system be implemented using FPGA devices, this work concentrates on the unexpected problems FPGA devices introduce when traditional filter optimization techniques are employed. This work concentrates on a very effective implementation technique: minimum adder graphs (MAG). While MAG optimization provides a considerable reduction of the circuitry needed to implement the required filter, it does not make the best use of the programmable area on the FPGA device. Specifically the high-speed embedded DSP building blocks available are not effectively used.

Hybrid filter implementations are proposed in this work to overcome this MAG limitation. By cleverly altering the filter coefficient multiplications in VHDL to use various implementations, more of the FPGA device can be utilized. The primary goal of the hybrid filter research is to move as much of the logic required to fully implement the coefficient multiplications into the high-speed embedded blocks. Once the embedded blocks have been fully utilized, the remaining logic is then implemented in the traditional programmable logic
of the FPGA device using the well established MAG optimizations.

The hybrid filter approach is not useful for FPGA devices that have enough embedded blocks to implement the entire filter. For this situation there is no need to use MAG optimizations. The embedded blocks are fixed and highly competitive, such as the DSP48 Slice found on Xilinx’s Vertex series FPGAs[1]. It is very difficult and most likely not feasible to outperform the embedded DSP blocks using the traditional programmable logic, even with MAG optimizations.

To allow future FPGAs to implement filters that can approach ASIC speeds, this work also proposes a new structure: the programmable adder graph (PAG). A PAG is a programmable circuit that can implement high-speed constant multiplications that have been converted into a MAG. Once the PAG is programmed, it simulates a hardware multiple multiplication block used in traditional MAG designs. A PAG enabled FPGA device is a more realistic implementation platform for the required loop filter. Aided by the PAG block, the loop filter would be able to obtain clock rates that are not currently possible on programmable devices.

The digital filter optimizations used in this work, most notably MAG optimizations, are reviewed in Chapter 2. Chapter 3 covers the areas of the previous research that are most important to this work. Chapters 4, 5 and 6 contain all original work. Chapter 4 introduces a custom tool designed specifically for the hybrid filter research: VHDLGen. Chapter 5 covers the hybrid filter research that blends traditional filter optimizations with the available embedded blocks of modern FPGAs. Chapter 6 finishes with the proposed PAG circuit which expands the number of situations in which MAG optimizations can be utilized.
CHAPTER 2

OPTIMIZING FIR FILTER IMPLEMENTATIONS

2.1 Digit-based Recoding

While traditional general purpose multipliers have an important place in circuit design, they can be inefficient for DSP applications. Multiplication in digital filter designs often involves multiplication by a constant. For example, in the case of an FIR filter with constant coefficients as shown in Figure 2.1. 2.1.

\[y[n] = \sum_{i=0}^{n} b_i x(n - 1) \]

(2.1)

Knowing the constants ahead of time, highly optimized constant multipliers can be designed to implement the coefficient multiplications.

The shift and add loop of traditional multipliers can be replaced with a set of high speed wire-shifts and then added in one quick step while still fulfilling the same binary multiplication shown in Equation 2.2.

\[K = \sum_{i=0}^{n} 2^i k_i \]

(2.2)

This optimization is sometimes referred to as “multiplierless” design, although the shift and add structure created does still implement a multiplier. Single constant multiplication (SCM) is also a term that is used to describe the optimized constant multipliers.

A straightforward way of obtaining the shift and add structure of an SCM is to first convert the constant multiplicand into its binary form. For example, the constant \((29)_{10}\) is converted to \((11101)_{2}\). Then to multiply \(x\) by \((29)_{10}\), shift \(x\) a set amount for each 1 digit in the binary encoding. The amount of the shift is determined by the order of magnitude of that particular bit position. For \((29)_{10}\), the MSB of the binary encoding is a 1, so \(x\) needs to
be shifted left by four because the MSB has the magnitude of 2^4. The final step is to then add all of shifted values to compute the product.

The number of 2-input additions necessary perform the constant multiplication is the number of nonzero digits of the binary representation minus one. The example coefficient $(29)_{10}$, $(11101)_2$, requires three adders to form a product because there are four nonzero digits. While this optimization for constant multiplications is useful, it is not optimal. As the number of zero digits increase the amount of logic required to implement the SCM decreases.

Specialized number encoding schemes can be employed to further optimize the SCM problem. Signed-digit (SD) is a common encoding representation preferable to the standard binary encoding[2]. SD adds an additional digit, $\overline{1}$, to represent a negative one value. Although an additional digit is added to the encoding, SD remains a radix two number system. The fact that SD is a binary numbering system with three digits allows multiple encodings for a single value. This non-uniqueness opens up the possibility to arrange an SD number into a representation that can be more preferable to another.

Canonical signed digit (CSD) is a popular SD representation for SCM. CSD increases the number of zeros and restricts the possibility of having two adjacent nonzero digits[3, 4]. The example number used previously, $(29)_{10}$ or $(11101)_2$, becomes $(100\overline{1}01)_{CSD}$. In this example, an adder has been eliminated for an area savings of 30% when compared to using the standard binary encoding. On average, it has been shown that CSD offers a savings of 33%[5]. Figure 2.1(a) and 2.1(b) show a visual comparison between the hardware implementations of the coefficient $(29)_{10}$ using the traditional binary encoding verses CSD. Another popular SD representation is signed-powers-of-two[6].

2.2 Graph Based Approaches to Constant Multiplications

Better results for implementing multiplications by a constant are obtained using graph based approaches[7]. Graph based approaches use an entirely different technique of optimizing an SCM. Instead of representing the constant multiplicand into a convenient encoding scheme, graphing techniques represent the shift and add structure of an SCM into a graph of vertices interconnected by edges. All vertices of the graph are given an integer value called a fundamental. Each fundamental represents the multiple of the variable input x it represents.
All graphing techniques require a starting vertex having a value of 1. The value of 1 represents the unaltered input x (i.e. $x \times 1$). The edges that interconnect the vertices represent a shift amount applied to the vertex from which it branches.

A common constraint is to limit the fundamentals to having only two input graph edges, however this is not always the case[8]. This constraint allows the fundamentals to be implemented in hardware using a single adder. The value of the fundamental corresponds to the output of the adder, an integer multiple of the graph’s input x. To create an adder graph for the constant 29, three vertices are required: 1, 33 and 29. The first vertex is the starting point of the graph and represents the unmodified input, x, and as such does not require an adder to implement. The other two vertices represent the required fundamentals needed to form the final product. Both fundamentals require a single adder, giving an adder count of two. Figure 2.2 shows an adder graph along with its hardware implementation to achieve a constant multiplication of $(20)_{10}$.

As previously stated, graphing methods can achieve a more optimal SCM solution. Graphing techniques also open up the possibility to optimize multiple SCM’s into one adder graph. This process is known as multiple constant multiplications (MCM). When using MCM instead of SCM, an added savings can be accomplished by reusing fundamentals between
Figure 2.2: Figure of the adder graph for the constant multiplication of \((29)_{10}\) 2.2(a) along with the corresponding hardware implementation 2.2(b).

Figure 2.3: Transposed FIR filter using an MCM multiplier block

the constants. The MCM adder graph is attractive to digital filter designs because it solves a critical need. The transposed FIR structure is helpful for this optimization as it has one common input which needs to be multiplied by a series of constants as shown in Figure 2.3, the exact operation the MCM provides.

2.3 Minimum Adder Graph Algorithms

Determining what fundamentals to use and how to connect them to form a minimum adder graph (MAG) becomes a complex problem as the number of constant multiples and bit width increase. Several algorithms\([9, 10, 11, 12]\) have been proposed over the last three decades to accomplish this task, and even today work continues on finding ways to improve them.
Bull and Horrocks published a paper in 1991[9] that is heavily cited as a starting point in the MAG algorithm research. They proposed a number of algorithms, the most notable one that allows shifts, additions and subtractions in the same graph. That particular MAG algorithm has come to be known as Bull Horrocks Algorithm (BH). A few years after the BH algorithm was proposed Dempster and Macleod proposed a modification to the BH algorithm known as BHM[13].

The BHM algorithm provided a couple of improvements over the BH algorithm, most notably the restriction of only allowing odd fundamentals in the adder graph. The idea to only allow odd fundamentals stems from the assumption that the shifts have no impact on the circuit cost. This assumption is generally considered feasible because the shifts are static and can be implemented using a trivial wire shift. All even numbers have an LSB of 0 and can be shifted right at least one bit without losing any information of the signal. The same concept can be revised to say that odd numbers can be shifted right to form all numbers that are a power of two multiple larger. This observation allowed Dempster and Macleod to reduce the search space of the BH algorithm by adding the odd fundamental constraint. Only a year after publishing a paper on BHM, Dempster and Macleod further improved their work with the release of the RAG-\(n\) algorithm[10]. Research on MAG algorithms remained silent until Voronenko and Püschel added more algorithms to the list, most notably HCUB[11]. Recently Gustafsson has proposed a new algorithm, DiffAG, that can offer slight savings over HCUB for word lengths under 19bits[12].
CHAPTER 3

BACKGROUND

3.1 Delta-sigma Converters

The primary motivation behind this research is to find ways to build faster and more accurate analog to digital converters (ADCs) for highly demanding communication systems. To realize this goal, high order delta-sigma (ΔΣ) converters are used over conventional converters[14]. ΔΣ converters are clocked at much higher rates than conventional converters which are clocked at the Nyquist rate[15] of the input signal. Due to the high clock rate, which is above the Nyquist rate, ΔΣ converters are grouped into a category of converters known as oversampled ADCs. Similar to other oversampled converters, ΔΣ converters represent an analog signal in a high speed low resolution, usually one bit, signal. A decimation filter is required to convert the high speed low resolution signal into the high resolution Nyquist rate format expected from an ADC. By oversampling the input signal, the converter noise injected by ΔΣ’s low resolution quantizer and non-linear components is at a much higher frequency than the input signal and can be easily filtered. This technique is known as noise shaping. While Nyquist rate ADCs will not generate as much quantization noise, the noise cannot be filtered, because it is within the input signal’s bandwidth. Another key benefit to oversampled ADCs is the relaxation of the strict requirements for circuit components that Nyquist rate converters demand. Oversampled converters instead require high speed components which are available in VLSI circuits.

At the core of any ΔΣ converter lies a ΔΣ modulator which is responsible for doing the actual work of converting the input signal into the high speed low resolution signal. Figure 3.1 shows a rudimentary first order ΔΣ modulator. The active part of the modulator is a filter which for the first order modulator is simply an integrator. The noise produced by the modulator is represented by the signal $e(n)$. Due to the negative feedback loop, the output
signal $y(n)$ is on average equal to the input signal $x(n)$.

The circuit shown in Figure 3.1 is used for circuit analysis of $\Delta\Sigma$ converters and is not the actual implementation. The non-linear elements have been removed and represented with the noise signal. Figure 3.2 shows how a first order $\Delta\Sigma$ modulator can be constructed. A simple digital integrator is constructed using an adder, register and feedback path. The multi-bit output of the integrator is then quantized into a single bit signal. The quantizer, while sounding elaborate, is a simple comparator referencing zero. The one bit digital quantizer is realized simply by dropping all of the bits except the MSB (assuming the signal is encoded in 2’s complement representation). A digital to digital converter (DDC) is used to convert the single bit of the modulator’s output back into a multi-bit signal that can be subtracted from the modulator’s input. From Figure 3.2 it is easy to see how the term $\Delta\Sigma$ was coined. Since the $\Delta\Sigma$ modulators have the active filter in the forward path instead of the feedback loop, the signal is first subtracted and then added. The Greek letters delta(Δ) and sigma (Σ) are used because they are commonly used as mathematical operators for representing differences and summations respectively.

As the order of the loop filter is increased the theoretical noise shaping properties of the $\Delta\Sigma$ modulator are also improved. Unfortunately the complexity of the modulator quickly
increases along with the order. Due to the feedback nature of the modulator, instabilities are increasingly hard to eliminate in higher orders. A simplification used in ΔΣ digital to analog converters is shown in Figure 3.3. This alternative modulator architecture is known as the error-feedback structure. With the filter in the feedback loop, at first glance the circuit appears as delta modulator. With closer observation the filter is not in the traditional feedback loop but in altered feedback loop of an error signal, $e(n)$, rather then the modulator output, $y(n)$. This structure is simpler and allows FIR filters to be used to implement the loop filter, $g(n)$, albeit while limiting the use of the ΔΣ modulator to digital to analog converters only due to the demanding precision required from the loop filter and the limitations of analog filters.[14].

3.2 Loop Filter

A large amount of research has been focused on implementing a loop filter for an error-feedback ΔΣ [16, 17]. It is paramount for the loop filter to have a high throughput and yet still maintain a realistic implementation. The first step in creating a realizable loop filter has already been accomplished. A sparse loop filter[18] was designed by Naval Research Laboratory (NRL) with an order of 198 and only ten non-zero coefficients. The coefficients are shown as Table 3.1. With a large enough word length the sparse loop filter can reach attenuation levels of 90dB with only nine multipliers! Figure 3.4 shows the frequency response of the loop filter. Even though the loop filter design is very sparse, the implementation of the filter is still important. The bulk of the research covered in this work is directed toward implementation schemes for the previously designed loop filter using field programmable gate arrays (FPGAs).
Figure 3.4: Frequency response of the sparse loop having only ten non-zero coefficients.

Table 3.1: Double precision coefficients of previously designed sparse loop filter

<table>
<thead>
<tr>
<th></th>
<th>Coefficient Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>1.312500</td>
</tr>
<tr>
<td>12</td>
<td>0.18774121153873474236673741394770331680774688720703125000000000000000000000000000</td>
</tr>
<tr>
<td>14</td>
<td>-0.21530689754625867426973684359836624935269355739257812500000000000000000000000000</td>
</tr>
<tr>
<td>38</td>
<td>0.12594698576326704420047519761283183470368385314941406250000000000000000000000000</td>
</tr>
<tr>
<td>72</td>
<td>0.05259400350726062682057225947573897428810596466064453125000000000000000000000000</td>
</tr>
<tr>
<td>110</td>
<td>0.02609589652509324356199904570985381724312901496887207031250000000000000000000000</td>
</tr>
<tr>
<td>150</td>
<td>-0.01514283000938064678575489807592969097569584846496582031250000000000000000000000</td>
</tr>
<tr>
<td>182</td>
<td>0.01039960540337357339235602182725415332242846488952636718750000000000000000000000</td>
</tr>
<tr>
<td>198</td>
<td>-0.00427255251708819235034741979006867040880024433135986328125000000000000000000000</td>
</tr>
</tbody>
</table>
3.3 CSD Real-time Recoding

Although this work concentrates on the implementation of fixed coefficient FIR filters, some of our work is applicable to filters that have coefficients that change over time, such as adaptive filters. The graphing optimization techniques described in Section 2.2, while being superior for static filters, were previously not considered as viable options for adaptive filter implementations due to the real-time limitations.

To avoid these problems, the previous work reverted back to digit based optimization to deal with the variable coefficients of the adaptive filters. To perform the digit encoding, a real-time CSD recoder known as fastCSD was proposed [19]. Work has continued on the fastCSD design to show how high speed multipliers for adaptive filters could be implemented [20, 21, 22].
CHAPTER 4

VHDLGEN, A VHDL GENERATOR

For this research a specialized program, VHDLGen, was created that is capable of writing VHDL files. Currently VHDLGen is only used for creating transposed FIR filters, although it could be extended to support a wider range of filters. VHDLGen is an important part of this research, without it a great deal of time would have been required creating filters in VHDL. Creating just one VHDL filter by hand can be a tedious job, especially for high order filters. Creating the filters separately by hand also increases human error which can further delay the results. With VHDLGen, hundreds of filters can be generated of varying implementations in seconds.

VHDLGen is built using PHP\cite{23}. PHP is a general-purpose scripting language that has been popular for a decade\cite{24}. The name PHP is a recursive acronym that stands for PHP: Hypertext Preprocessor. Although PHP is most widely used for Web development, over the years it has become popular as a general purpose language, fulfilling the same needs as languages such as Perl and VBS. PHP is the technology of choice for VHDLGen for many reasons. PHP offers a relatively simple syntax similar to C and Perl. PHP is an open source technology, allowing PHP to be distributed and used free of charge. Similar to many other open source projects, PHP is also multi-platform allowing VHDLGen to be executed on Linux, BSD, Solaris, Mac OS and Microsoft Windows.

4.1 VHDLGen Example Usage

This section demonstrates how VHDLGen can be used to easily create a variety of VHDL circuit files. A small filter has been chosen and used throughout this section to keep the examples simple. In order to use VHDLGen, a run file must be written. Refer to Listing 4.1 to see the run file used for this example. Basic knowledge of PHP is required to write
a run file for VHDLGen, although when starting from the sample only minor programming experience should be required.

To mark the beginning of the run file or any PHP script\(^1\), the phrase “<?php” is required to denote the start of the script, every line after will be executed as PHP code until the phrase “?>” is reached. It is recommended that the next few lines of the script contain the required include statements to allow access to the VHDLGen libraries. The example run file in this section as well as the template file in the appendix, define the __autoload() function to perform all the necessary include statements in only a few lines of code. PHP 5 has a special use for the __autoload() function, and if defined it will be called every time a PHP class that has not yet been defined is instantiated. Without this function definition many lines of code would be required to include the VHDLGen class files.

Creating the FIRFilterData object is the next step to creating a run file. The implementation strategy of the resulting VHDL file is dependent on the type of FIRFilterData object created. The example run file in this section creates the base FIRFilterData object which will produce a VHDL FIR filter implementation using the standard VHDL multiplication operator ‘*’. Once the FIRFilterData object is instantiated, it needs to be correctly initiated with the filter-specific information such as the bit width and coefficient data.

VHDLGen assumes that the coefficients will be encoded as two’s complement fixed point numbers, although the FIRFilterData class could be extended to provide support for different encodings. As demonstrated in the example run file, the hardware limits for the fixed point numbers can be set using the setBitWidth() and setDecimalPlaces()\(^2\) methods.

4.1.1 Filter Creation

Next the coefficient data is loaded into the FIRFilterData object. Matlab provides a convenient environment to create filters via firpm, the Parks-McClellan optimal FIR filter design command but any filter design technique can be used. VHDLGen only requires a set of coefficients, which are assumed to be in transposed form.

\(^1\)The “<?php” and “?>” are actually not always required. If for some reason it is not preferable to have PHP’s open and close tags included, the PHP script could still be executed from the console with addition of the -r switch.

\(^2\)The setDecimalPlaces() might be better thought of as setBinaryPlaces() since it is actually setting the number bits that are considered to be fractional.
<?php
/*
 * Load VHDLGen API
 */
function __autoload($class_name) {
 require_once "lib/$class_name.class.php";
}

/*
 * Create and setup the
 * FIRFilterData Object
 */
$fir = new FIRFilterData();
$fir->setBitWidth(18);
$fir->setDecimalPlaces(16);
$fir->loadCoeffsFromFile(‘coeffs.txt’);

/*
 * Create and setup the
 * VHDLCircuitFIR Object
 */
$VHDLGenerator = new VHDLCircuitFIR($fir);
$VHDLGenerator->entityName = "example";
$VHDLGenerator->libraries = array(‘ieee’);
$VHDLGenerator->libUse [] = ‘ieee.std_logic_1164.ALL’;
$VHDLGenerator->libUse [] = ‘ieee.std_logic_signed.ALL’;
$VHDLGenerator->libUse [] = ‘ieee.numeric_std.ALL’;
$VHDLGenerator->libUse [] = ‘ieee.numeric_bit.ALL’;
$VHDLGenerator->libraries [] = ‘UNISIM’;
$VHDLGenerator->libUse [] = ‘UNISIM.vcomponents.all’;
$VHDLGenerator->ports [‘X’] = array(‘direction’ => ‘IN’, ’type’ =>
 ’STD_LOGIC_VECTOR(W-1 DOWNTO 0)’);
$VHDLGenerator->ports [‘CLK’] = array(‘direction’ => ‘IN’, ’type’ =>
 ’STD_LOGIC’);
$VHDLGenerator->ports [‘RST’] = array(‘direction’ => ‘IN’, ’type’ =>
 ’STD_LOGIC’);
$VHDLGenerator->ports [‘Y’] = array(‘direction’ => ‘OUT’, ’type’ =>
 ’STD_LOGIC_VECTOR(W-1 DOWNTO 0)’);

/*
 * Save the filter to a
 * VHDL file
 */
$VHDLGenerator->save();
?>
The sample filter that will be used throughout this section is an 8th order high-pass filter that transitions from stopband to passband between the normalized frequencies of 0.3 and 0.7. Listing 4.2 shows the Matlab script used to create the sample filter. The script could be written in one line, but has been written in such a way so that the code is self commenting. The first three lines store values in variables that are used in the fourth line where the actual call to firpm occurs. The first line sets a variable called order. The next two lines set the freqs and freq_powers variables which are vectors that together hold the attenuation levels for a set of frequencies. In this case freqs is set to [0 0.3 0.7 1] and freq_powers is set to [0 0 1 1] which set the filter design constraints to a high pass filter that will stop frequencies below 0.3 and pass frequencies above 0.7. Figure 4.1 shows the frequency response for the filter that is created by the script in Listing 4.2.
After executing the commands in Listing 4.2 all of the coefficients are stored in the vector \(b \). The next step is to export the coefficients into a format that can be read by VHDLGen. This can be accomplished in many ways. The simplest, albeit inefficient, method of exporting the coefficients is to manually type them into your run file. To dump the coefficients stored in Matlab to the console simply type \(b \) and then press the enter key. Matlab’s output format should be set correctly, since the default will quantize the coefficients heavily when printed to the console. For example Matlab’s output format can be changed by running `format long` which will display the coefficients in 15-digit fixed point format. The coefficients then need to be copied to the PHP run file that will use the VHDLGen API to generate the VHDL circuit files. The coefficients must be stored in an array and loaded into an `FIRFilterData` object. Refer to Listing 4.3 to see how this can be accomplished. Section 4.4.2 explains the `FIRFilterData` and the `setCoeffs()` methods in detail.

Listing 4.3: Saving the coefficients to the run file manually

```matlab
$fir->setCoeffs(
    array(
        0.00000000000000,
        0.06352200530103,
        0.00000000000000,
        -0.30065644924146,
        0.50000000000000,
        -0.30065644924146,
        0.00000000000000,
        0.06352200530103,
        0.00000000000000
    )
);
```

In most situations it is more convenient to export the coefficients to a coefficient file, which is the recommended method for loading the coefficient data into VHDLGen. Saving the coefficient files will help with situations such as handling large filters, requiring higher precision, the ability to easily reuse the filters and creating multiple filters in a single run. A coefficient file is a text file that has one number per line. VHDLGen will attempt to convert each line from a string to a numeric value. Any line that cannot be read as a number will be silently ignored and treated as a comment. This allows many different file formats to be read with VHDLGen, even fcf files exported from fdatools[25]. Listing 4.4 shows a set of Matlab
commands that will export vector b to a file named $coeffs\text{.txt}$. The coefficient file can then be loaded with VHDLGen using a statement like $\$$fir\rightarrow\text{loadCoeffsFromFile(}'coeffs\text{.txt}'\text{'}) provided that the $coeffs\text{.txt}$ file is in the same directory as the run file. If the coefficient file is in another directory, the correct relative or global path is required.

Listing 4.4: Creating the coefficient file in Matlab

```matlab
fid = fopen('coeffs.txt', 'w');
fprintf(fid, '%' -2.20f
', b);
fclose(fid);
```

4.1.2 VHDLCircuitFIR Object Creation

After the FIRFilterData object has been created and initialized with the coefficient data, it can then be loaded into an VHDLCircuitFIR object. The VHDLCircuitFIR class is responsible for building the VHDL circuit entity and outlining architecture statements while the FIRFilterData class is focused completely on the building the actual VHDL code located inside the architecture statement. As shown in the example run files, the VHDLCircuitFIR object is created using "$VHDLGenerator = new VHDLCircuitFIR($fir);", where $fir is the FIRFilterData object. The next step is to set the VHDL entity name by loading a value into the `entityName` property of the VHDLCircuitFIR. This is done in the example run file, Listing 4.1, by the following line of code, "$VHDLGenerator->entityName = "example";".

The run file is required to perform some setup tasks on the VHDLCircuit object before the VHDL files can be generated. All of the VHDL libraries and ports are required to be setup directly using the VHDLCircuitFIR object in the run file, currently the FIRFilterData object is not responsible for this task, although it expects particular port names to be defined and the required libraries to be loaded. Most of the work in Listing 4.1 fulfills this task, starting from the line that sets the `entityName` to just before the end of the script. The last line of the run file is where VHDLGen actually does all of its work. The call to the `save()` method calls the `toString()` method and then saves the returned value to the current output directory with a filename based off of the `entityName` property.

Listing 4.5 shows the VHDL entity statement that is created after executing the example run file. While the VHDLCircuitFIR class is responsible for this part of the VHDL file, it does provide hooks for the FIRFilterData object to alter the code under its control. This,
for example, allows the `FIRFilterData` object to setup the generic constant definitions also shown in Listing 4.5.

Listing 4.5: VHDL entity statement created by the sample run file

```vhdl
ENTITY example IS
  GENERIC(
    W : integer := 18;
    F_BITS : integer := 16;
    H_COUNT : integer := 4;
    ORDER : integer := 8
  );
  PORT(
    X : IN STD_LOGIC_VECTOR(W−1 DOWNTO 0);
    CLK : IN STD_LOGIC;
    RST : IN STD_LOGIC;
    Y : OUT STD_LOGIC_VECTOR(W−1 DOWNTO 0)
  );
END example;
```

Completing the process to this point, will result in a VHDL file being saved as `example.vhd` in the directory that the run file was executed. The VHDL file can now be opened, synthesized and simulated with Xilinx ISE just like any other VHDL file.

4.2 VHDL Filter Generation Using Other Implementation Schemes

Section 4.1 outlined the steps necessary to create a VHDL filter using the VHDLGen API. The filter that is created internally uses the standard VHDL multiplication operator because the `FIRFilterData` object was used. Very similar steps are used to create a filter that is optimized with MCM, only minor adjustments to the run file are required. Simply replacing the baseline `FIRFilterData` object with the `FIRFilterDataMCM` object is all that is required. Section 4.4.2 covers the `FIRFilterDataMCM` and other `FIRFilterData` classes in detail. Replacing the `FIRFilterData` object will change and all the necessary components of the VHDL circuit such as the generic constants, functions, types and signals. For example, to create a filter using the DSP48 slices in a Xilinx Virtex device, replace the `FIRFilterData` object with the `FIRFilterDataDSP48` object. Currently the `FIRFilterDataHybrid` and `FIRFilterDataHybridDSP48` classes require extra information to be set in the constructor.
4.3 Analysis

After generating a VHDL file, it is important to verify that the circuit performs correctly before relying on it for further research. The circuit must be verified in a VHDL simulator to ensure the VHDL code has been written properly. Unfortunately the step from verifying filters in a comfortable Matlab environment to verifying hardware simulations can be daunting, but it is critical.

Figure 4.2 outlines the steps required to verify the VHDL code using the Xilinx ISE VHDL simulator[26]. As shown in the figure, the circuit verification is a process requiring multiple steps. The preliminary steps have already been explained in the previous sections. Matlab is used to design an FIR filter and then used to export the filter coefficients into a portable file. After the coefficients have been exported into the coefficient file, the VHDLGen API
can then be used to generate VHDL files of varying implementation schemes. The VHDL files are then ready to be simulated in a VHDL simulator such as Xilinx ISE which was used in for this research.

All of the steps stated so far in the verification work flow are fairly straightforward. The process becomes a bit more complicated once the circuit is running and its output needs to be verified. In order to show that the VHDL filter is working as designed in Matlab, a large data set is required.

The first step in using a larger data set in a VHDL simulation is creating a VHDL test bench capable of streaming the data from an input file and then saving the simulated output into an output file. This can be accomplished using the VHDL file type. Listing 4.6 shows how the VHDL file type was used in this research. A single process block is designed to read the current output value Y and write it to the output file “output.txt” on the negative edge of the clock signal CLK. Then the next value is read from the input file “input.txt” and assigned to the input signal X. As shown in the VHDL listing, the current value of X is also saved in the output file for convenience.

Once the simulation is complete, the corresponding data files must be analyzed to verify the filter is running as expected. At this point the work flow returns to the Matlab environment in which human readable graphs can be created such as the step, impulse and frequency responses.

Depending on what type of analysis is planned, different data input files are required. The first analysis to perform is to verify that the impulse and step responses of the filter are correct. Both responses are time domain operations that are simple to perform and inspect, and as such are a quick first test of the filter circuits. Figures 4.3(a) and 4.3(b) show the impulse and step responses of the 8th order sample filter. Both figures show the input and output values from the data files. The impulse response corresponds to the filter coefficients. The step response can be used to verify the steady state value of the filter is as expected.

The step and impulse responses are useful tools to verify the correct output of filter circuits, but even if they are generated correctly, further analysis is still required. To determine the exact behavior of the filter, the frequency response is needed. Figure 4.3(c) shows the nominal frequency response generated in Matlab for the 8th order sample filter. Obtaining the frequency response in Matlab is a trivial process that occurs during the filter design process. The challenge is obtaining the frequency response from the VHDL filter
write_input: process (CLK)
 file fhHandleWrite: TEXT open WRITE_MODE is "output.txt";
 file fhHandleRead: TEXT open READ_MODE is "input.txt";
 variable my_input_line : LINE;
 variable my_output_line : LINE;
 variable readData: integer;
begin
 if CLK'event and CLK='0' then
 --read the current input
 readline(fhHandleRead, my_input_line);
 read(my_input_line, readData);

 --save the input
 write(my_output_line, readData-OFFSET);
 write(my_output_line, " ");

 --save the output
 write(my_output_line, to_integer(signed(Y)));

 --write to file
 writeln(fhHandleWrite, my_output_line);
 end if;
 X <= conv_std_logic_vector(readData,W);
end process;

To accomplish the task, zero-mean Gaussian white noise is used for the input file. In the frequency domain the white noise can be thought of as a constant value from which the filter can carve out its signature, the frequency response. Listing 4.7 shows the Matlab code used to create the white noise. An important setting in this code listing is adjusting the maximum value of the noise signal. The \texttt{randn} function does not return numbers bound by plus or minus one. This behavior can easily over saturate the filter and cause an erratic response. Care must be taken so that none of the values in the \texttt{noise} vector overrun the bounds of the filter.

Once the input noise file is created, it can be used by Xilinx ISE VHDL simulator to generate the output file. The output contains the filtered noise although it appears very similar to the white noise when viewed in the time domain. Now that both the input and output noise files have been created the frequency response of the actual simulated hardware
Figure 4.3: Impulse and step response from the 8th order sample filter. 4.3(a) Impulse response. 4.3(b) Step response. 4.3(c) Nominal frequency response. 4.3(d) Frequency response from simulated hardware using white noise.

Listing 4.7: Matlab code to generate white noise

```
bitwidth = 18;
noise_samples = 100000;
noise_raw = randn(noise_samples,1);
noise_max = max(abs(noise_raw));
noise = round(2^(bitwidth-1) * (noise_raw/noise_max));
fid = fopen('white_noise.txt','w');
fprintf(fid,'%-20.0f
',noise);
fclose(fid);
```
can be obtained by transforming both input and output signals into the frequency domain and then dividing the output by the input. This process is shown in Listing 4.8. Notice that the input values is saved in the first column of the output file for convenience.

Listing 4.8: Matlab code to create the frequency plot data from filtered noise

```matlab
fid = fopen('filtered_noise.txt', 'r');
a = fscanf(fid, '%d %d', [2 inf]);
input = a(:,1);
output = a(:,2);
fclose(fid)

freq_out = 20*log10(abs(fft(output)./fft(input)));

fid = fopen('freq_response.txt', 'w');
for i=1:length(sim_output)
    fprintf(fid, '%f
', output(i));
end
fclose(fid);
```

4.4 Anatomy of the VHDLGen API

Given a particular FIR filter, or more simply, a set of coefficients, VHDLGen can create an array of different circuit implementations. The type of filter circuit that VHDLGen creates depends on the type of filter data object used to load the coefficients. The filter data object contains the information needed to realize each coefficient into VHDL, along with any other types, signals, generics or functions needed. Currently, there are four types of FIR filter data objects. The first, `FIRFilterData`, only provides the information needed to create a straightforward transposed FIR filter using the VHDL multiplication operator “*”. The rest of the filter data objects extend `FIRFilterData` and override the methods necessary to construct a different FIR implementation. The `FIRFilterData` subclasses are `FIRFilterDataMCM`, `FIRFilterDataHybrid` and `FIRFilterDataHybridDSP48`.

Using object oriented design principles, VHDLGen’s core functionally is contained in base classes intended to be extended by other classes to implement specific tasks. The base class of VHDLGen is the `VHDLCircuit` class. `VHDLCircuit` is extended by the `VHDLCircuitFIR` class adding the necessary functionality needed to create transposed FIR filters. The `VHDLCircuitFIR` class adds the requirement of an `FIRFilterData` object in the class constructor. The `FIRFilterData` object is used to provide all filter specific information
needed to create the filter. Using the given FIRFilterData object the VHDLCircuitFIR class creates an array of FIRCoeff objects that represent the filter coefficients. The VHDLCircuitFIR then loops through the coefficient objects and joins them together into a coherent block of VHDL code. Figure 4.4 shows the basic outline of the entire VHDLGen API as a UML class diagram[27]. Only the FIRFilterData class needs to be extended to create different variations of transposed FIR filters; the VHDLCircuitFIR does not need to be extended any further as it is designed to work with all of the FIRFilterData types. Figure 4.5 shows a simple flow diagram of how these classes interact to create the required VHDL code.
4.4.1 VHDLCircuit Class

The VHDLCircuit class contains the most generic information needed for generating VHDL files. The two most important methods are the CreateArchitectureHeader() and createArchitectureBody() methods, both return a string containing the information needed to form the VHDL file. The createArchitectureBody() method is simply a placeholder for child classes to extend, while the CreateArchitectureHeader() method has a set structure that does not need any further extension. To see the exact structure of the CreateArchitectureHeader() method, refer to Listing 4.9.

CreateArchitectureHeader() relies on a set of associative arrays\(^3\) containing the necessary information needed to construct the header section of the VHDL architecture statement. The arrays are stored as public member data in the VHDLCircuit class and can be easily appended to when extended functionally is needed. The first array called by the CreateArchitectureHeader() method is the types array. The types array contains the VHDL types needed in the circuit. The keys of the array correspond to the VHDL type.

\(^3\)An associative array is a special PHP array that allows alpha-numeric names to be used as the keys of the array. This is similar to Perl’s hashes or VBS’s dictionary objects. Although in PHP there is not a special definition for associative arrays, they are defined the same way standard arrays are except the key is specified along with the value.
Listing 4.9: The `CreateArchitectureHeader()` method in the `VHDLCircuit` class

```
protected function createArchitectureHeader()
{
    $VHDLStr = '';

    // Create Types
    $i = 0;
    foreach ($this->types as $name => $value) {
        $VHDLStr .= $this->tab(1)."type $name is $value;\n";
        $i++;
    }
    if ($i) $VHDLStr .= "\n";

    // Create Signals
    $i = 0;
    foreach ($this->signals as $name => $type) {
        $VHDLStr .= $this->tab(1)."signal $name : $type;\n";
        $i++;
    }
    if ($i) $VHDLStr .= "\n";

    // Create Constants
    $i = 0;
    foreach ($this->constants as $name => $value) {
        $VHDLStr .= $this->tab(1)."constant $name : $value;\n";
        $i++;
    }
    if ($i) $VHDLStr .= "\n";

    // Create Functions
    foreach ($this->functions as $name => $body) {
        $VHDLStr .= $this->tab(1)."function ${name}{{$body}}".
                          $this->tab(1)."end function;\n\n"
    }
    return ($VHDLStr);
}
```

names. Each array key links to a value that contains the VHDL type assignment. For example, to generate the `reg_array` type used in the fir filters, the key is set to “reg_array” and the value is set to “array (0 to ORDER-1) of signed(W-1 downto 0)”. This entry in the `types` array produces “type reg_array is array (0 to ORDER=1) of signed(W−1 downto 0);” in the header of the VHDL architecture statement. The remaining arrays used by the `CreateArchitectureHeader()` method are the `signals`, `constants`, and `functions` arrays.
The arrays follow the same convention as the types array, each storing the VHDL name in the key of the array and body of the VHDL statement in the associated value. This manner of storing the VHDL definitions may seem strange, but it provides a simple yet powerful means of extensibility while conforming to a set structure. Using the arrays also eliminates the possibility of duplicate entries, both are important traits for a class that will be inherited by many classes not yet defined.

To obtain the complete VHDL circuit description, the VHDL Circuit class also contains the toString() and save() methods. As the name suggests, the toString() returns the entire VHDL circuit in a string variable which can be printed to the console or stored for later use. The toString() method has the responsibility of assembling the various parts of the VHDL circuit that are not included in the architecture statement such as the library, generics and port statements. Using the same techniques as the CreateArchitectureHeader() method, the toString() method uses associative arrays for statements that require multiple entries that also need to be extensible. The arrays used by toString() are the libraries, libUse, entityName, generics and ports array. The toString() method also uses the public property entityName for the title of the ENTITY statement in the VHDL file. The save() method saves the VHDL circuit to a file, an important functionality when generating many VHDL circuits in one run. The save() method also uses the entityName property to determine the file name to save to. Since both the toString() and save() method use the entityName property, the VHDL file name and the VHDL entity statement are forced to match, helping to avoid the confusing scenario that is caused when they do not. The save() method will save the VHDL file to the current working directory unless the outputDirectory property contains a value, if so it will be used instead.

4.4.2 FIRFilterData Classes

As previously stated the FIRFilterData contains the FIR filter specific information, such as the filter coefficients and extra VHDL functions, types and signals needed to implement the filter in VHDL. To give VHDLGen the ability to create different FIR circuit implementations, the FIRFilterData class is designed to be extended using methods that are easily overridden. The base FIRFilterData class is programmed to create a simple FIR filter circuit using the VHDL multiplication operator for all multiplications. Figure 4.6 shows the basic transposed FIR structure created by the base FIRFilterData class. Currently there are three classes
Figure 4.6: Circuit created when using the FIRFilterData filter data object

that extend FIRFilterData’s functionality, the FIRFilterDataMCM, FIRFilterDataHybrid and FIRFilterDataHybridDSP48 classes.

Listing 4.10: The setCoeffs() method of the FIRFilterData class

```php
public function setCoeffs($a){
    $a = $this->quantizeCoeffs($a);

    for($i=0; $i < count($a); $i++){
        $this->implementCoeff($a[$i]);
    }

    // set the Max settings for the indexes
    foreach($this->indexes as $index){
        $index->setMax($index->getIndex());
    }

    // recycle the indexes for circuit building use
    foreach($this->indexes as $index){
        $index->reset();
    }

    return($a);
}
```

The filter coefficients are loaded into the FIRFilterData using the setCoeffs() method. The setCoeffs() method has one parameter, an array of double precision coefficients. Refer to Listing 4.10 to see how the setCoeffs() method is constructed. The first step of the setCoeffs() method is quantizing the coefficients provided to the hardware limits. The hardware limits are set using the public methods setBitWidth() and setDecimalPlaces(), which store the information in the public variables bitWidth and decimalPlaces in the FIRFilterData class. The FIRFilterData also includes the
loadCoeffsFromFile() method which wraps the setCoeffs() method by reading the coefficients from a text file and then passing them to the setCoeffs() method. Listing 4.11 shows the loadCoeffsFromFile() method definition. Refer to section 4.1 for detailed information describing the format of the coefficient text file.

```php
Listing 4.11: Loading Coefficients from a File

```public function loadCoeffsFromFile($fileName) {
 $lines = file($fileName);
 foreach ($lines as $line) {
 if(is_numeric(trim($line))) {
 $linesFiltered[] = $line;
 }
 }
 $this->setCoeffs($linesFiltered);
}
```

The private quantizeCoeffs() method, Listing 4.12, is used to accomplish the task of quantizing the double precision coefficients. Quantization is accomplished using equation 4.1 where $fp$ is the number of fractional binary digits in the fixed point representation and $k$ is a vector of the double precision filter coefficients.

$$K_q = round(2^{fp}K)$$

(4.1)

It is important that the bitWidth and decimalPlaces are set before calling the setCoeffs() method to guarantee proper quantization. If not set, the bitWidth and decimalPlaces variables will default to 16 and 14 respectively.

```php
Listing 4.12: The quantizeCoeffs() method of the FIRFilterData class

```protected function quantizeCoeffs($aCoeffs) {
  $decimalPlaces = $this->decimalPlaces;
  $aIntCoeffs = array();
  $shiftAmount = pow(2, $decimalPlaces);
  foreach ($aCoeffs as $coeff) {
    $aIntCoeffs[] = round($coeff * $shiftAmount);
  }
  return ($aIntCoeffs);
}
After quantization, each coefficient is used in turn with the private method `implementCoeff()`. The `implementCoeff()` method is responsible for instantiating the `FIRCoeff` coefficient objects and initializing them with the proper information. Listing 4.13 shows the `implementCoeff()` method. The base `FIRFilterData` class provides the ability to create a standard FIR filter using only the `FIRCoeffZero` and `FIRCoeffSimple` coefficient objects, which will be described further in section 4.4.3. The input to the `implementCoeff()` method is the quantized integer coefficients that the `FIRCoeff` objects will need to represent. After creating one of the `FIRCoeff` objects, the `implementCoeff()` method stores it in the `coeffs` array. The classes that extend the base `FIRFilterData` class override the `implementCoeff()` to support additional `FIRCoeff` objects. For example, the `FIRFilterDataMCM` class adds support for MCM coefficients by instantiating the `FIRCoeffMCM` class instead of the `FIRCoeffSimple`. This assigns the important job of deciding which type of `FIRCoeff` object to instantiate for each of the filter coefficients solely to the `implementCoeff()` method. In this light, `implementCoeff()` is the method that determines the behavior of a `FIRFilterData` class.

Listing 4.13: The `implementCoeff()` method of the `FIRFilterData` class

```pascal
protected function implementCoeff($value){
 $this->indexes['main']->increment();
 if($value == 0){
 $this->indexes['zero']->increment();
 $coeffTemp = new FIRCoeffZero(
 $value, $this->indexes['main'], $this->indexes['zero']
);
 } else{
 $this->indexes['simple']->increment();
 $coeffTemp = new FIRCoeffSimple(
 $value, $this->indexes['main'], $this->indexes['simple']
);
 }
 $this->coeffs[] = $coeffTemp;
 $coeffTemp = null;
}
```

MCM support for VHDLGen is made possible by the `FIRFilterDataMCM` class. The `FIRFilterDataMCM` class optimizes the FIR filter by extracting all of the multiplications into a single multiplication block that can be heavily optimized shown in Figure 4.7. The
Figure 4.7: Circuit created when using the FIRFilterDataMCM filter data object

more coefficients the FIR filter has, the greater the possibility of circuit reduction. The FIRFilterDataMCM class overrides the addVHDLFunctions() method to accomplish this task since the MCM multiplication block is coded using a VHDL function. The VHDL function created is a combination logic block of simple shifts and adds, a “multiplierless” implementation. To obtain the data needed to create the multiplication block, the MCMSynth class is used to create the shift and add logic.

MCMSynth is a wrapper class for the acm program from the SPIRAL project[28]. The constructor of the MCMSynth class requires an array of quantized integer coefficients and the hardware limits of the target circuit. Using this information, MCMSynth runs the acm program with the default HCUB algorithm when its run() method is called. MCMSynth scans the output of acm for the section of generated C code and then parses it into a simple data structure of associative arrays. Once the output has been fully parsed, the toVHDLFunction() method can be called to transform the parsed data into VHDL code.

The addVHDLFunctions() method of the FIRFilterDataMCM class uses the above steps to create the VHDL function that is responsible for handling all of the multiplications needed by the FIR filter. Listing 4.14 shows the addVHDLFunctions() method. The first step is to collect all of the MCM coefficient objects in the FIRFilterDataMCM object. All other coefficient types that might be present are ignored, for the FIRFilterDataMCM class the only other possible coefficient object type is FIRCoeffZero. Remember the decision making process of which FIRCoeff object to use for a given coefficient is performed by the implementCoeff() method which is assumed to have already been indirectly called by the setCoeffs() method.

The principal goal of the VHDLGen API is the ability to easily interchange and mix digital filter implementation topologies. The FIRFilterDataHybrid class is first class
public function addVHDLFunctions()
{
    $functions = array();
    $aMCM = array();
    foreach ($this->coeffs as $coeff)
    {
        if ($coeff->getType() == 'mcm')
        {
            $aMCM[] = $coeff->getValue();
        }
    }
    //CREATE AND RUN THE MCM OBJECT
    $mcm = new MCMSynth($aMCM, $this->bitWidth, $this->decimalPlaces);
    $mcm->run();
    $functions['MCM_BLOCK'] = $mcm->toVHDLFunction();
    return ($functions);
}

function MCM_BLOCK(t0 : signed) return mcm_out is
    type mcm_internal is
        array (0 to 110) of signed(2*W-1 downto 0);
    variable t : mcm_internal;
    variable result : mcm_out;
begin
    t(0) := (others => t0(t0 'LEFT));
    t(0)(W-1 downto 0) := t0;
    t(75) := SHIFT_LEFT(t(0),2);
    t(69) := t(75) - t(0);
    . . .
    . . .
    t(50) := t(2);  —— (MCM OUTPUT:: -361 * t0)
    t(51) := t(1);  —— (MCM OUTPUT:: -87 * t0)
    for i in 1 to MCM_MAX loop
        result(i) := t(i)(W+F_BITS-1 downto F_BITS);
    end loop;
    return result;
end function;
The actual decision of which coefficients to implement as simple multiplication is made in the `setCoeffs()` method. The `setCoeffs()` method is similar to the one in the `FIRFilterData` class, the main difference being a call to the `implementHybridCoeff()` method. The `implementHybridCoeff` method loops through all of the coefficients that have been set in the `setCoeffs()` methods and replaces them with an MCM coefficient object if certain conditions are met. Listing 4.16 shows the `implementHybridCoeff()` method.

Similar to the `FIRFilterDataHybrid` class the `FIRFilterDataHybridDSP48` class merges
Listing 4.16: The `implementHybridCoeff()` method

```java
protected function implementHybridCoeff()
{
 $mid = $this->middleCoeff;

 if($this->coeffs[$mid]->getType() != 'zero'){
 $this->replaceMCMwSimple($mid);
 }

 $i = 1;
 while($this->multCount > 0 && $i < count($this->coeffs)){
 if(($mid + $i) < count($this->coeffs) && ($mid - $i) > 0){
 if($this->coeffs[$mid + $i]->getType() != 'zero'){
 $this->replaceMCMwSimple($mid + $i);
 }
 }
 if($this->coeffs[$mid - $i]->getType() != 'zero'
 && $this->multCount > 0){
 $this->replaceMCMwSimple($mid - $i);
 }
 $i++;
 }
}
```

two implementation topologies together to form a single filter. Instead of using the `FIRFilterData` class for the baseline structure however, the `FIRFilterDataHybridDSP48` class is based on the `ccFIRFilterDataMCM`. Then, a select set of coefficients are implemented using the DSP48 slices available on the Xilinx Vertex FPGA devices. The `FIRFilterDataHybridDSP48` class also has an `implementHybridCoeff()` method decide which coefficients should be replaced with DSP48 slices as shown in Figure 4.9. The main difference in `implementHybridCoeff()` besides using DSP48 slices is that even zero coefficients are replaced by DSP48 slices. Previously this was not done because zero coefficients could be implemented with only a single register. When using DSP48 slices however, it is helpful to connect all of the DSP48 slices together in a coherent chain. If gaps are introduced into the DSP48 chain the VHDL compiler will be forced to route the signals into the traditional programmable logic to implement the gap and then route back to the DSP48 chain.

35
The `DSP48Slice` class contains the needed information to create the VHDL needed to directly instantiate a DSP48 Slice primitive. After the `DSP48Slice` class has been instantiated and fully initialized with the correct data the `toString()` method is called to return the VHDL code needed to use a single DSP48 Slice. The `FIRFilterDataHybridDSP48` class actually only uses the `DSP48Slice` class to generate three DSP48 slice primitive calls. Two of these are used for the start and end of the DSP48 slice chain, the other is used in conjunction with a VHDL generate statement to form the middle segment.

### 4.4.3 FIRCoeff Classes

The `FIRCoeff` class is a vital component to the VHDLGen API that has only briefly been mentioned. The idea behind using the `FIRCoeff` design is to allow the higher logic in the `FIRFilterData` class to rearrange the different coefficient objects as needed and rely on the `FIRCoeff` objects to independently determine the VHDL needed to implement the filter coefficient they represent. This type of design is arguably too elaborate for filters only having a single implementation scheme, but when using multiple implementation schemes this design simplifies the programming needed. The `FIRCoeff` class itself is considered to be purely abstract and is not intended to be used directly. Instead there are currently four concrete classes that extend the `FIRCoeff` class. The primary extension point to the `FIRCoeff` class is the `toVHDL()` method. This method returns the VHDL needed to realize the represented filter coefficient into VHDL code.
The **FIRCoeffSimple** class is used to implement a filter coefficient that relies on the VHDL multiplication operator. Using the multiplication operator is the most straightforward method for creating the FIR filter, hence the name “Simple”. The **FIRCoeffZero** class is another simplistic coefficient class. It is intended to be used for coefficients having a value of zero. This allows further simplifications in the filter, because only a register is needed for zero coefficients, the adder and bulky multiplier can be removed.

The other two coefficient classes are used to implemented coefficients having speical implementation schemes, the **FIRCoeffMCM** and **FIRCoeffDSP48** classes. Just as the previously stated coefficient classes, the **FIRCoeffMCM** and **FIRCoeffDSP48** classes have the responsibility of generating the corrected VHDL based on their location and type.
CHAPTER 5

MINIMIZED ADDER GRAPHS IN FPGA DEVICES

The loop filter introduced in Section 3.2 is very sparse and well suited for traditional ASIC implementations. However, while an FPGA design can correctly operate in lieu of an ASIC design, without some adjustments the circuit may not perform as well as expected.

The VHDLGen API described in Chapter 4 was created to aid in finding the best implementation topology available for the loop filter when implemented in an FPGA. This work introduces using MAG techniques along with the abundant embedded DSP blocks available on many FPGA devices. In this work, we refer to our approach as a hybrid implementation[29].

Traditional MAG optimizations provide obvious advantages in ASIC designs, but when implemented in FPGAs the advantages become blurred. First, it is important to note that modern VHDL compilers do a fair job at optimizing constant multiplications without any extra effort on the part of the circuit designer. This can be easily shown by using VHDL signals or variables instead of constants when declaring the coefficients of an FIR filter. In addition, most modern FPGA devices have specialized embedded hardware blocks that provide additions, multiplications and other arithmetic operations. VHDL compilers can infer this specialized hardware automatically so that many VHDL designs are improved without any extra effort from the VHDL programmer.

Unfortunately MAG designs are not well-suited to the automatic inference of specialized hardware. The compiler cannot convert the shift-and-add structure into a multiplication operation. However, VHDL compilers have knowledge of what is intended by the VHDL multiplication operator “∗” and can properly infer special hardware such as the DSP48 Slices on the Virtex-4 FPGA devices. This lack of support for MAG designs provided by VHDL compilers can lead to the situation in which a simple multiplier-based FIR implementation
can be implemented using fewer resources of the FPGA than a MAG design.

With a limited number of specialized hardware blocks (e.g. multipliers) on a given device, the VHDL synthesizer must construct the remaining coefficients using the traditional programmable logic of the FPGA device. The idea behind our hybrid filter implementation research is to use MAG optimizations for the logic in the traditional FPGA programmable logic where this approach can still improve the implementation. If the FIR filter is of sufficient size, worthwhile improvements can be accomplished with the remaining coefficients being implemented with an MCM block. The hybrid implementations can be thought of as a way of reducing the traditional FPGA programmable logic required; the hybrid research is focused on this design factor.

5.1 Inference Approach: Hybrid I

Since VHDL synthesizers understand the standard VHDL multiplication operator “*”, this operator can be used to implement some of the coefficient multiplications to provide the VHDL compiler the freedom to infer embedded multipliers where applicable. This concept is the principle behind the first proposed hybrid circuit approach. The circuit is similar to MAG filter implementations, except for a given number of non-zero coefficients, $n$, that are removed from the MCM block. The selected coefficients are then replaced with the multiplication operator as shown in Figure 5.1.

Depending on the order of the filter being implemented and the number of embedded multipliers available on the FPGA, the best choice for $n$ varies. Using a smaller set moves more of the coefficients into the MCM block where they can be highly optimized, but using too few does not provide the VHDL compiler with the freedom to implement enough embedded multipliers for the hybrid design to be beneficial. To demonstrate how different values of $n$ can change the outcome of the design, we created many different Hybrid I circuits with varying sizes of multiplications replaced by the VHDL multiplication operator.

Due to the fixed nature of the embedded multipliers, there is no benefit or loss incurred by multiplying by differently-sized operands, up to the size of the multipliers. Therefore, the embedded multipliers (rather than the MCM block) should be used to implement the multiplications resulting in products with the greatest number of bits, unless additional bits are required. In an attempt to follow this concept in a general sense, the subset of replaced coefficients was selected from the center of the filters in the expectation that the center
coefficients will be the largest and thus require more bits. Filters that have their largest coefficients away from the center will not benefit from this hybrid technique as much. With some minor adjustments to the FIRFilterDataHybrid class in the VHDLGen API we could increase the flexibility of assigning multiplications to multipliers. Instead of reserving the centers coefficients for hardware inference by the VHDL compiler, either the left or right coefficients could be reserved depending on the filter coefficients.

5.2 Direct Instantiation Approach: Hybrid II

While using the standard multiplication operator to infer embedded multipliers can be beneficial, better results can be obtained by directly instantiating the multiplier primitives. Relying on the VHDL compiler to infer the embedded multipliers can lead to many filter coefficients implemented without any of the intended optimizations. The synthesizer does not always infer the use of an embedded multiplier for each standard multiplication operator.

Our second proposed approach, denoted Hybrid Approach II, focuses on directly instantiating the DSP48 slices embedded in the Xilinx Virtex-4 FPGA devices. Instead of replacing the center non-zero coefficients with the VHDL multiplication operator, the center multiplications of the circuit has been replaced by a chain of DSP48 slices, as shown in

Figure 5.1: Circuit created when using the FIRFilterDataHybrid filter data object.
Figure 5.2. This approach guarantees a one-to-one correlation, so the number of coefficients that are removed from the MCM block is set to be the number of DPS48 slices available on the target FPGA.

The DSP48 slices are grouped in pairs to form XtremeDSP tiles. The tiles are interconnected so that they can create larger structures without relying on any of the traditional programmable logic on the FPGA. The DSP48 slices include an 18x18 multiplier along with a three input 48-bit adder. The slices are highly configurable and even allow internal timings to be adjusted by programmable registers. One limitation when using the DSP48 slices in our hybrid design is that even zero coefficients consume an entire DSP48 slice. This limitation comes from the way that the DSP48 are tiled in pairs. [1]

5.3 Hybrid Filter Results

To study the effects of the hybrid filter implementations two baseline circuits and two hybrid circuits were generated for three FIR filters of varying sizes and synthesized using Xilinx XST[30]. Unlike the other circuits, the Hybrid I design requires multiple VHDL circuits to be generated so that a varying amount of coefficient subset sizes could be simulated. The Hybrid II design has a fixed number of DSP48 slices requiring only one circuit per filter and FPGA device.

The hybrid filter results of the filters in Table 5.1 are shown in Figures 5.3, 5.4 and 5.5. Figure 5.3(a) shows a special case; it gives the results from Filter A. In this case the SX25
Table 5.1: Filters used in hybrid filter research

<table>
<thead>
<tr>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter A</td>
<td>100\textsuperscript{th}-order Bandstop FIR Filter</td>
</tr>
<tr>
<td>Filter B</td>
<td>250\textsuperscript{th}-order Bandstop FIR Filter</td>
</tr>
<tr>
<td>Filter C</td>
<td>300\textsuperscript{th}-order Bandstop FIR Filter</td>
</tr>
</tbody>
</table>

FPGA contains 128 DSP48 slices, which is more than the number of filter coefficients (101). None of the Hybrid I designs obtain better results than the simple baseline circuit using the standard VHDL operator. The Hybrid II circuit is not defined in this case, because the filter can be implemented entirely with DSP48 slices. The circuit for this filter is no longer a hybrid, but is instead a chain of DSP48 slices.

Due to the nature of the Hybrid I implementation approach, there is no predefined number of coefficients to replace. The Hybrid I implementation relies on the synthesizer to infer hardware when needed; therefore it is reasonable to replace more or less coefficients than the amount of embedded hardware available. To demonstrate the effect the number of replaced coefficients has on the filter implementation, multiple VHDL filter circuits are studied in every scenario with varying numbers of replaced coefficients. The number of coefficients that have been replaced is denoted by an integer value after the Hybrid I label in the result graphs. For example, the section of the graph labeled “Hybrid I (40)” contains the results for the Hybrid I filter implementation where 40 coefficients are replaced. This extra information is not required for the Hybrid II implementations because the number of replaced coefficients is always equal to the number of DSP48 slices available on the target FPGA device.

Figure 5.3(b), showing the results of when Filter A is implemented on an LX15, strays from the expected. With fewer DSP48 slices then the SX25, it was expected that the hybrid filter implementations would perform better. Upon closer review, half of the filter’s coefficients are zero after quantization down to eighteen bits, leaving only 50 multiplications needed. Figures 5.4(a) and 5.5(a) both show improvements in FPGA utilization when using the Hybrid II approach. The Hybrid I circuits, on the other hand, still do not provide any improvements over the simple baseline circuit.

The LX15 only has 32 DSP48 slices leaving a large portion of the filter’s coefficients implemented with the traditional slices and LUTs of the FPGA. This reduction of DSP48
slices provides a better opportunity for the MCM optimizations to reduce FPGA utilization. As expected, the results in Figure 5.4(b) and Figure 5.5(b) show all the hybrid designs, and even the MCM design, outperform the simple baseline circuit.
Figure 5.3: Hybrid filter results of Filter A
Figure 5.4: Hybrid filter results of Filter B
Figure 5.5: Hybrid filter results of Filter C
CHAPTER 6

PROGRAMMABLE ADDER GRAPH

The hybrid research is focused on making the best use of an FPGA device by utilizing the embedded multipliers as well as MCM optimizations in the standard programmable area. There are two important design issues that are not fully considered in hybrid implementation research. First, the maximum clock speed was not an important metric for the research, primarily because the embedded hardware blocks have a fixed maximum clock speed. Also, given the maximum clock rate of a single LUT, it is difficult to compete with the embedded hardware blocks.

The second glaring issue turns into more of a paradox; what if there are enough embedded hardware blocks to completely implement the required design? No hybrid design exists for this situation because the goal of the research was to save as much of the standard programmable logic as possible by shifting the burden over to the available high speed embedded hardware blocks. If the design can be fully implemented using the embedded fixed hardware, then MCM can no longer provide any space savings because the process of using MCM uses more of the programmable area of the chip.

MCM designs in general have limitations when compared to designs that utilize the embedded hardware blocks. Given the well organized structure of common filters, the fixed hardware blocks benefit from reduced routing problems. As stated in Section 5.2, Xilinx’s DSP48 slices are designed to be connected in long chains with no extra routing required from the LUT logic in the FPGA device. Even if a DSP48 slice in the chain was designated to implement a zero coefficient, it is arguable to “waste” that slice’s internal multiplier to avoid the expensive situation of routing the signal to an external register and then back. When using the standard programmable logic of the FPGA device to implement a filter, there will be a greater chance of having longer connections in the circuit.
Another benefit to using the embedded DSP blocks is the ability to change the coefficients over time. Both the Altera DSP Blocks[31] and the Xilinx DSP48 slices use high speed general purpose multipliers. Both inputs of the multiplier can change every clock cycle. In the standard MCM approach, all of the coefficients need to be known in the design phase of the filter, which in most cases is not an issue since the coefficients are usually constant over the entire life of the filter.

The previous work performed at the Naval Research Laboratory to develop a sparse filter that can be implemented with MCM, does not take into account the underlying FPGA structure, particularly the availability of the embedded blocks. No matter how novel the design, filters designed in FPGAs that do not leverage the additional support of the embedded hardware will have to contend with previously stated problems. In today’s environment where there are many high speed DSP FPGA devices that come standard with building blocks for digital filters, how can the added development time of a highly specialized MCM filter be justified? If at best the highly customized filter can only perform at the same level as a much simpler design which leverages the power of the complete FPGA device. This argument can be further extended to say there is a financial benefit to purchasing specialized FPGA devices that provide the needed DSP functionality to fully implement the required filter. FPGA manufactures have already committed large portions of their development to DSP applications in order to stay competitive; it would be wise not to take them for granted. As the FPGA manufacturers compete for the DSP market, the chances of finding a specialized chip to fulfill the design requirements will only increase.

6.1 Proposed Programmable Adder Graph

There is no doubt that MAG optimizations are powerful for digital filter implementations in ASICs and custom VLSI, especially for transposed FIR filters, but what about FPGA implementations? With the abundance of FPGA devices that come standard with high speed embedded DSP blocks, the optimizations that MAG techniques provide may not be beneficial to the design as a whole. While this may be true when MAGs are used to implement filters in the traditional programmable logic of an FPGA device, it however does not apply to the situation where MAGs could be used to optimize the FPGA’s hardwired embedded blocks. If the general purpose multipliers in the DSP blocks are replaced with multipliers
optimized for constant multiplications, DSP blocks having a greater clock rate in less area while consuming less power could be achieved.

The obvious problem to overcome when using an MCM block to construct a general purpose multiplier useful in an FPGA device is MCM’s requirement to have the constant operands known before circuit can be designed. Without the knowledge of the constants ahead of time, the MCM algorithm cannot be run and the corresponding adder graph constructed. This same requirement has also eliminated MCM optimization techniques from being used for adaptive filter implementations. To overcome this limitation and obtain the ability to move MAG optimizations into an FPGA embedded block, we propose a programmable adder graph (PAG) block[32]. The PAG block is capable of being programmed with the constant multiples at any time to create the required constant multipliers.

The proposed programmable adder graph (PAG) block is made possible by a shift-and-add platform that can be programmed to implement the required design. The platform is divided into two partitions: fundamental modules responsible for performing the addition operations and a shift/connect matrix that binds the fundamental modules into an adder graph. Figure 6.1 shows how the PAG block is constructed. The ability to connect the addition operations together through programming allows an MCM block to be constructed after circuit fabrication, eliminating MCM’s primary limitation.

As the name suggests, a fundamental module (FM) represents one fundamental in the adder graph. The FMs are similar to $A$-operations in HCUB[11] without the shifts. The way in which the FMs are connected determines the overall multiplier that is constructed from the PAG block. As stated earlier, FMs satisfy the addition requirements of the adder graph and as such primarily consist of a single adder. Any adder can be used in this design, but it is important that additions be performed as fast as possible, since they contribute the largest factor of the critical path. The adders must also support subtraction so that an FM can generate a fundamental value from the sum or difference of previous fundamentals.

Along with selecting the appropriate bus connections, all of the shifting requirements of the adder graph are also fulfilled by the circuitry that interconnects the FMs, referred to as the connection matrix. This technique allows a fundamental to be selected and the value shifted using the same circuitry. Shift registers are not used. Shift registers, while being able to correctly implement the shifting function, are not in MAG designs because they require multiple clock cycles to implement a single shift, along with using a relatively large amount
of area and power. Instead the connection circuitry implements a hardware wired shift by making the correct connections in a grid formed from the inputs crossed over the outputs. Refer to Figure 6.3 to see how a programmable wired shift is constructed.

6.2 Fundamental Modules

Fundamental modules (FMs) are one of the core building blocks of the proposed PAG. The circuitry of FMs are divided into two sections, an arithmetic unit which computes the output of the FM and a control unit that governs it. The FM is shown in Figure 6.2. The two sections are signified by dashed lines. Every FM has two inputs and one output, not
including the control and programming signals. The two inputs in the figure, Input A and Input B, are connected to the outputs of other FMs via the connection circuitry. The other input shown in the figure, the programming interface, connects to the circuit responsible for programming the PAG.

The arithmetic unit is the left most section shown in Figure 6.2. Through the use of two multiplexers, the arithmetic unit has the ability to implement different functions. The simplest function is to set both of the multiplexers to zero to implement pure addition. Setting the output multiplexer to one diverts the output of the adder through a register. This setting allows the PAG to be pipelined. These two settings are the most important as they fulfill the primary need in an adder graph, addition. Using the pipelined setting the throughput can be increased.

The other multiplexer is used as an adder bypass. While setting one of the inputs to zero would simulate an adder bypass without requiring any additional control logic, it still requires the signal to pass though the adder. The adder adds a significant delay from input to output of the FM along with increased energy use. Instead, if the adder is not needed for the function the FM is to perform, the signal is routed around the adder instead of through. This also allows the adder to be omitted to reduce power consumption. The bypass is an important function of the FMs. Since the PAG block is a fixed circuit, there will undoubtedly
be areas in the adder graph where there are more FMs than needed. The bypass allows the outputs of the adder graph to be quickly routed through the remaining FMs to the output of the PAG.

The last remaining setting is where both multiplexers are set to one, which causes the FM to implement a pipeline bypass we will refer to as a shim. Shims are used in the pipelined adder graphs when outputs of FMs in lower depths need to be routed to higher FMs. If the FMs have a difference in depth greater than one, it is critical that the path the signal travels takes the same amount of time as the rest of the data in the adder graph. Shims can be used to resolve this timing issue.

The other section of the FM is the control unit, the right section of Figure 6.2. As shown in the figure, there is one input and three internal signals that govern the arithmetic unit. The first control signal shown in Figure 6.2, +/-, instructs the adder to perform either addition or subtraction of the two inputs. The \textbf{BYPASS} and \textbf{PL} control signals operate the two multiplexers in the arithmetic unit that perform the adder bypass and pipelining functions.

The input, programming interface, could have many different forms which are not yet fully considered in this work since they could vary from implementation to implementation. For example, the programming interface could use the classic computer architecture design having an address and data bus. Each FM would be assigned a unique address and would only respond to the signal in the data bus when the address bus was set to its address. This approach would minimize the logic needed within each FM, but would require large buses to be routed throughout the PAG block. A more modern approach of using a serial protocol such as RapidIO\cite{33} could be used as the programming interface instead of the slower parallel buses. While requiring each FM to support the serial protocol, the programming instructions would be sent through a switched network that would simplify the programming network.

### 6.3 Connection Matrix

The connection matrix of the PAG block is made up of connectable buses that run perpendicular to each other. The buses form a grid with a connection circuitry at every node similar to a crossbar switch. This grid, or matrix, provides a workable and organized solution to the routing issue, albeit while taking large area of the circuit layout. As stated earlier, all shifts are applied in the connection matrix of the PAG block. Instead of merely connecting the correct buses together like a crossbar switch, the connection circuits must
also connect the buses in such a way that a wired shift is applied. This technique allows a fundamental to be selected and shifted all within the connection matrix, minimizing the circuitry needed to realize the PAG block.

Wired shifts are usually not thought of as being programmable, but with careful manipulation of how the input bits are connected to the output bits, a wired shift of any value can be applied when connecting two buses. To avoid shifting, each input bit must be connected to its corresponding output bit, $y_n = x_n$, as is expected in a standard crossbar switch. A left shift by one is applied by connecting each input bit to the next more significant output bit, $y_n = x_{n-1}$. Figure 6.4 shows this concept visually. A right wired shift can be perform in the same manner as shown in Figure 6.5.

As with any binary left shift operation, the lower order bits that have been evacuated need to be filled with zeros. Some extra logic is required in the bus connection circuitry to accomplish this task. This requirement is the reason for the extra four connection circuits per node in four bit shifter figures. A column, permanently tied to logical zero, allows the
Figure 6.5: Four bit connection patterns to apply an arithmetic right wire shift.

A shifter to fill zeros when needed. Figure 6.6 also shows this extra zero signal and how it interacts with the rest of the connection matrix. However, due to the constant nature of the zero fill signal, only a single MOSFET is required. Right shifts normally do not require any zero filling as arithmetic right shifts are most commonly used for our application. Performing an arithmetic right shift is actually quite simple as shown in Figure 6.5. Instead of filling evacuated bits with zero, they are filled with the value of the most significant bit. This allows two’s complement numbers to maintain the proper sign during shifting operations. Using this bus interconnection technique in the connection matrix of the PAG block, any wire shift can be implemented in a programmable manner.

A detailed drawing of the connection matrix is shown in Figure 6.6. The figure shows a four by four, four bit matrix having sixteen nodes. A node in the connection matrix is considered the crossing of two buses, not bits. Since four bit buses are used sixteen connection circuits are needed per node, plus an extra four connections for the zero fill logic. The circuitry that controls the connection circuits is referred to as the matrix driver and is shown in the figure. The matrix driver on the right of the figure selects which output bus an input bus is connected to. The matrix driver on the top of the figure selects which of the bits in the selected node are activated based on the shift amount needed. The data signals are represented by thicker lines, the thin lines designate the control signals needed to operate the connection circuits. To see how the connection matrix is used within the PAG block refer back to Figure 6.1. Figure 6.1 requires three connection matrices designated by dashed lines.

Two connection circuit designs are proposed for use in the connection matrix. Figure 6.7 shows the first proposed connection circuit, using only two transistors per connectable bit. The principal concept is nothing new; it is simply a CMOS transmission gate that
Figure 6.6: Four bit, four node, one row connection matrix selecting node two and incurring a left shift of one.
Figure 6.7: Connection circuit using a CMOS transmission gates.

Figure 6.8: Connection circuit using a tri-state NOT gate.
has been twisted to conform to the grid pattern. The figure shows the transmission gate connections circuits needed to construct a two bit connection matrix node. The second proposed connection circuit is shown in Figure 6.8. Instead of using a transmission gate, the second method uses a tri-state NOT gate to construct a two bit connection matrix node. Both solutions provide useful benefits and depending on the design requirements either one could be a better choice.

The first connection solution, using a single transmission gate, has the obvious advantage of only requiring two transistors per node. Lowering the total number of transistors per node could very easily become a critical factor as the size of the connection matrix is increased. Every bit of every bus that crosses in the matrix will need one of these connection circuits, along with the addition control signals.

The second connection solution using a tri-state NOT gate only passes a clean digital signal at the cost of using more transistors. The tri-state gates also help strengthen the signals instead of attenuating them like the transmission gates. As the wire runs and fan-outs become larger the NOT gates could become a critical aspect in the design acting as a buffer to overcome the increased capacitance and resistance. Tri-state buffers are not considered in this work since they increase the transistor count by two per connection circuit, an increase of 50 percent. To deal with the inverted signals, the output of the connection must be inverted before entering the next FM layer.

6.4 Programmer

In order to use the PAG block, it first needs to be programmed to implement the required multiplications. As proposed, the PAG block needs to be programmed every time the circuit is powered up. For adaptive filter designs, the PAG block will also need to be programmed with new coefficients from time to time. To accomplish this task, some sort of programming circuit is required along with the PAG block to complete design. The programmer obtains data about the adder graph and then fits the adder graph to the PAG block. The process of programming the PAG block is an iterative task requiring every FM and connection matrix to be set with the correct values. The programming process will take a lengthy amount of time compared to the data rate of the data path. While the programming time could cause problems, it is only a short period of time when compared to overall operating time of the PAG block. After the PAG block is programmed, it mimics a fixed MCM design with only
the connection circuitry and additional routing to hinder the maximum clock rate.

There are two methods considered for the programmer to obtain the adder graph data, a preprogrammed flash memory block or a coprocessor design that can compute any set of coefficients on the fly. The flash programmer has many advantages over the coprocessor design. It reduces the complexity of the final PAG block by moving more of the work to the design process. All of the filter coefficients are required to be known before the PAG block can be utilized. However, it is important not to confuse this restriction with the classic adder graph restriction of having to know the coefficients before circuit fabrication. The coefficients are only required to be known before the PAG block can be programmed, not before the fabrication of the PAG block. The adder graph data used to program the PAG block would most likely be computed by the same software that was synthesizing the rest of the HDL design to take advantage of the readily available computing power of the modern PC. The flash memory programmer could also work for adaptive designs by storing multiple sets of pre-computed coefficients that can be used to reprogram the PAG block when needed.

The other proposed method for programming the PAG block, a coprocessor design, allows the possibility for the surrounding logic to set the coefficients without being bound to a set of pre-computed values. An embedded processor is used to do all of the computations needed to properly program the PAG block. To make this possible, the MAG algorithm has to be run first to obtain the shift-and-add logic. More work is required to move the MAG algorithm to an embedded processor. In this situation it might be best to use the simplest heuristics to avoid a lengthy programming time. This method of programming the PAG block takes more memory, power and time to program, but if it is not feasible to limit the coefficients

Figure 6.9: PAG Programmer.
to a predefined set, it is required. The coprocessor method would most likely be beneficial to adaptive filters designs that need to set the coefficients of a filter based on their current environment, static filters have no need for an embedded processor. It is possible for some cases that dedicated hardware can be used to perform the adaptation calculations rather than a more general embedded processor.

6.5 Design Issues

One concern that might arise is the apparent “waste” of hardware. For any given adder graph that is loaded into the PAG block, there may be many FMs that are not used, especially for smaller designs. With every FM that is unused, there is a high speed adder, shifting logic and control logic that is abandoned. While this sounds alarming, it is not a new concept to FPGA manufactures. All FPGAs, being programmable devices, have hardware that will ultimately be wasted when the HDL synthesis tool does not find a use for it. It is important to remember, however, that unused FMs can be deactivated and bypassed to save power and avoid significantly increasing the critical path.

Another concern with the PAG design, and perhaps the most challenging, is the uncertainty of the multiplier output during a coefficient change. Reprogramming the PAG block is a lengthy process when compared to its clock rate, allowing many multiplications to take place before the PAG block is correctly reprogrammed. This is only a concern during circuit power up or coefficient changes for adaptive filter designs. While the reprogramming is taking place erroneous multiplication will occur due to the invalid intermediate adder graph. When the PAG block is used to compute the multiplications for a digital filter the erroneous output from the multiplier could lead to serious side effects.

Temporarily muting the output of the filter is one way to deal with the programming latency. While being a very simple option, muting is a viable solution for static filter designs that only need to worry about the programming latency during circuit initiation. Muting, however, will not work for adaptive filters along with designs requiring a continuous output from the PAG block during coefficient updates. The proposed solution in this case is to use two PAG blocks in place of one to form a dual PAG (DPAG) block.

The dual PAG (DPAG) block is capable of producing a continuous output even during reprogramming. Figure 6.10 shows how the DPAG block is constructed. It comes at the cost of doubling the required logic, but depending on the size of a single PAG block it might
still be practical. Even with the doubled size, the DPAG block can still reduce the overall circuit size. Remember that a single PAG block will service every constant multiplication needed for the entire circuit. The DPAG block works by multiplexing the output of the two PAG blocks. At any given time, the output of the PAG block will be sourced from only one of the paired PAG blocks. When a coefficient change is required, the disconnected PAG block is first reprogrammed to avoid the erroneous output while reprogramming. When the disconnected PAG block has been fully reprogrammed and its output is valid the multiplexer is toggled and the DPAG block now outputs the multiplications of the new coefficients in one quick switch.

6.6 Sizing

Due to the fixed nature of the PAG block, the MAG algorithm that is computing the adder graph will also need some information about the hardware limits of the PAG. Without knowing the hardware limits the adder graph produced might not fit into the PAG. To make the best use of resources the PAG block needs to be sized to accommodate many different adder graphs while using the least amount of circuitry possible. This moves the research to attempt to answer the question of what the depth and width a general purpose PAG block should be.

The depth of the PAG refers to the number of FM layers there are and is synonymous
with the depth of an adder graph. The depth determines the latency of the adder graph. The width of the PAG refers to how many FMs are in a single layer. The wider an adder graph is the more computations can be produced in one clock cycle. However, adder graphs with larger depths have more opportunity to reuse the fundamentals allowing the adder to be implemented with less logic. Depending on the design requirements an adder graph could be optimized for speed or reduced circuitry and the PAG required to implement the filter would need a large width or depth respectively. In order to determine a working solution for both situations, the PAG needs to be correctly sized while maintaining a realistic implementation.

Using Matlab and a MAG algorithm, the PAG sizes can be determined given an FIR filter. All of the Matlab code to achieve this is shown in this section. Listing 6.1 shows a Matlab function that computes the depth and width requirements of a given filter. The function first sets the filter requirements, as it is shown in the code listing. In this situation a high pass filter will be analyzed due to the values set in the `freqs` and `freq_powers` vectors. The next line sets the `bitwidth` variable that will determine how the filter coefficients are quantized. Next the filter loops over a set range of orders denoted by the variable `i`. For every order the script calls the `paglimits` function using the filter requirements previously set. The data returned from the `paglimits` function is then reorganized into a format that is graph friendly. This reorganizing is performed by another for loop that loops over the depths that will be graphed (using the variable `j` to denote the depth).

The `paglimits` function is shown in Listing 6.2. This function returns a vector that contains the number of fundamentals in every depth of the adder graph created from the given filter. To accomplish this task, the script first initializes the vector that will hold the counts, `depthcount`, for every depth, and defaults the value to zero. Next the `createfir` function is called to produce the integer coefficients. The coefficients are then passed to the `createmag` function to compute the adder graph. Most of the information returned by the `createmag` function is ignored, only the depth is needed for each of the fundamentals returned. Finally a loop iterates over each fundamental to obtain its depth and then increments the correct index of the `depthcounts` vector. Once the loop has finished the function will return the `depthcounts` vector which will now contain the correct counts.

Listing 6.3 shows the `createfir` function. This function is quite simple and is mostly a wrapper function for Matlab’s `firpm` filter creation tool. This function is also responsible for quantizing the coefficients into fixed point integers. The quantization is performed on
Listing 6.1: Function to compute required PAG size.

```matlab
function depthcounts = pag_limit_grapher()
freqs = [0 0.4 0.6 1];
freq_powers = [0 0 1 1];
bitwidth = 18;
depthcounts = [];
gdata = [];
for i=10:2:130
 depthcounts = [depthcounts ; i
 .paglimits(i, freqs, freq_powers, bitwidth)];
 for i=1:size(depthcounts,1)
 for j=2:1:16
 gdata = [gdata ; depthcounts(i,1) j-1 depthcounts(i,j)];
 end
 end
end
gdata
```

Listing 6.2: Function to count the required fundamentals

```matlab
function depthcount = paglimits(order, freqs, freq_powers, bitwidth)
depthcount = zeros(1,20);
b = createfir(order, freqs, freq_powers, bitwidth);
%funds = [fund depth op1 shift1 neg1 op2 shift2 neg2]
funds = createmag(b);
for i=1:size(funds,1)
 depth = funds(i, 2);
 depthcount(depth) = depthcount(depth) + 1;
end
```

The last custom function is shown in Listing 6.4. This function is responsible for obtaining the information needed to create the adder graph given the integer filter coefficients. The first two lines of the function clean up the given coefficients by removing all duplicate and zero values. Zeros are left out because multiplication by a constant zero is trivial. Duplicate coefficients will be implemented identically in the adder graph so only unique values are needed. The remaining lines of this function deal with calling the `synth` program[28], which uses HCUB to determine the fundamentals of the adder graph. The most complicated part of this process is parsing the returned text into a data structure that is more convenient to work with.
Listing 6.3: Function to create an FIR filter

```matlab
function bint = createfir(order, freqs, freq_powers, bitwidth)
b = firpm(order, freqs, freq_powers);
bint = round((2^bitwidth−1)∗b);
```

The first set of results from the PAG limit research is shown in Figures 6.11 and 6.12. Both figures show the results for an eighteen bit high pass filter design with orders varying from 10 to a 120. The figures demonstrate how the PAG usage varies as the order of the filter increases. The results are displayed as three-dimensional graphs showing the variations of the width and depth requirements as the order of the high pass filter is increased. The two horizontal axes show the filter order and required depth of the corresponding filter. The vertical axis shows the number of fundamentals needed in the adder graph at each depth and filter order. Three-dimensional graphs were used in favor of multiple two-dimensional graphs to display the results in a concise manner. The points in the graphs represent the number of fundamentals required at a given depth and filter order.

Figure 6.11 shows the results obtained from the default HCUB algorithm. The advantages of MCM can be seen in this single graph. Notice how the number of fundamentals, or adders, only slightly increases as the order of the filter increases. The number of fundamentals remains an order of magnitude less than the filter order. Also, as the filter order is increased, the additional number of adders required is reduced. This is due to the MAG algorithm having more fundamentals to work with, therefore allowing a higher degree of fundamental reuse. Another interesting result from this graph is that the required depth of the filter only slightly increases as the order is increased. Since both the number of fundamentals and the depth do not increase at the same rate as the order of the filter, realistically sized PAG blocks can be designed even for large filters.

Figure 6.12 shows the results from the same filter, but for this graph HCUB was confined to use a maximum depth of four using a modified version of HCUB[34]. Surprisingly this graphs shows only a slight increase in the number of fundamentals needed even though the depth of the MAG has been reduced by half. Figures 6.13 and 6.14 show the results for a different filter design. These graphs were generated from a more demanding band stop filter generated with the filter specifications shown in Listing 6.5. It is clear from the graph that while the results are similar and have the same magnitude, this filter does require more from
function funds = createmag(coeffs)
coeffs = unique(coeffs);
coeffs = coeffs(coeffs˜=0);
command = './synth';
for k=1:length(coeffs)
    command = sprintf('%s %d',command,coeffs(k));
end;
command = [command, '-ga'];
% Switch the following line with
% the line above to constrain depth to four
%command = [command, '-maxdepth 4 -ga'];
[err, outstr] = unix(command);
if err
    error(sprintf('error %d from unix() call to synth\n%s',... err, outstr));
end;
t = regexp(strtrim(outstr), expr, 'tokens');
funds = [];
for k=1:length(t)
    vals = t(k);
    fund = str2num(vals{1}{1});
    op1 = str2num(vals{1}{2});
    op2 = str2num(vals{1}{3});
    neg1 = vals{1}{4};
    shift1 = str2num(vals{1}{5});
    neg2 = vals{1}{6};
    shift2 = str2num(vals{1}{7});
    depth = str2num(vals{1}{8});
    if strcmp(neg1,'-')
        neg1 = 1;
    else
        neg1 = 0;
    end
    if strcmp(neg2,'-')
        neg2 = 1;
    else
        neg2 = 0;
    end
    funds = [funds;fund depth op1 shift1 neg1 ...
             op2 shift2 neg2];
end;
Figure 6.11: Highpass filter limits

Figure 6.12: Highpass filter limits with max depth of four
the PAG block. First notice that in Figure 6.13 the number of fundamentals increases by a factor of two through the range of orders shown. Also in Figure 6.14, when constrained to a maximum depth of four, the number of fundamentals increases greatly, almost to thirty for two of the depths at the highest order.

Listing 6.5: Band stop filter specifications

```plaintext
freqs = [0 0.4 0.6 1];
freq_powers = [0 0 1 1];
bitwidth = 18;
```

These graphs are used to help determine the best size for a general purpose PAG block. Using the results from this research, 16x16 is a realistic size for a PAG block. This means a PAG block having only sixteen layers of sixteen fundamentals could implement most common filters. Alternatively, a PAG block having two hundred and fifty-six adders along with the required registers, routing and control logic. The results also show that the width is more critical than the depth. Another PAG block size oriented towards high speed designs could have a width of thirty-two and a depth of eight. While requiring the same number of adders, faster MAGs could be constructed as long as the MAG algorithm can constrain the maximum depth to eight.

### 6.7 Applications

The target application for the PAG block in this research is an embedded FPGA block. Similar to other high speed DSP building blocks found on today’s FPGA devices, a PAG block could be a beneficial part to many FPGA designs. No longer would the MCM blocks for high performance filters need to be implemented in the traditional programming logic of the FPGA. Instead, any circuit that can benefit from adder graph optimization techniques could use the embedded PAG block to obtain near ASIC speeds.

Figure 6.15 shows the embedded PAG block design. As the figure shows, not only is a PAG block is required, but also a multiply and accumulate (MAC) chain is also needed. The MAC chain allows the output values of the PAG block to be handled by fixed high speed adders and registers along a simple routing path, thereby avoiding the bottleneck of using the traditional programming logic. This design could also be implemented on a single integrated circuit and used as a customizable high speed FIR filter chip.
Figure 6.13: Bandstop filter limits.

Figure 6.14: Bandstop filter limits with max depth of four
The PAG block might also prove to be useful for adaptive filter designs as a way to implement high speed filters using MAGs while still remaining changeable. As previously stated, the primary problem with using PAGs for adaptive filters is the relatively lengthy programming delay. Either the adaptive algorithms need to calculate large changes infrequently or further PAG research is needed to investigate methods of performing incremental changes to the adder graph to accomplish the required coefficient changes. Adaptive filters with slower adaptation rates are thus better suited to PAG implementations than those that have very fast updates.
CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This work has proposed two new approaches of implementing MAG optimized digital filters in FPGA devices along with a programming API for creating FIR filters in VHDL. FIR filter implementations are of particular interest, because they are essential in creating a high performance ΔΣ converter. Without a high performance loop filter, the ΔΣ converter will not perform to the required specification.

The first proposed approach in this work shows that varying the coefficient implementations in a single filter, referred to as a hybrid filter implementation, can achieve slight savings. Unfortunately these savings are dependent on the FPGA device that is used. Hybrid filters can also lead to increased routing issues due to the need to route the signals to and from the embedded blocks of the FPGA device. The proposed hybrid filter implementations also provide no speed or power consumption improvements over traditional designs, however if the space usage is reduced sufficiently there is more possibility to increase the throughput by parallelizing the design.

VHDLGen is a programming API created to aid the hybrid filter research. While being primarily focused on creating filters with varying coefficient implementations, it has proven useful for other research projects. More specifically, projects that require many FIR filters to be created in VHDL before results can be obtained have found VHDLGen considerably useful.

In order to achieve the necessary clock rates, the slower programmable logic must be dealt with. The possibility of using many FPGA devices in a parallel fashion to overcome the slow FPGA clock speeds was not considered. Instead a more elegant approach was asserted: use the proposed PAG block to fully implement the loop filter on a single chip. This is the second proposed approach. This work shows the basic concept of how the PAG block is
structured. Future work is needed to create the actual circuit which can be simulated and then fabricated for actual testing. Future work is also needed to make MAG algorithms aware of the PAG block constraints. It is critical that the MAG algorithms are bound to the actual hardware limits of the target PAG block.

Although the PAG is still only a theoretical circuit, and as such requires more research and adoption by FPGA manufacturers before it is a viable option, it demonstrates how the required loop filter could be implemented to have the required clock rate while still remaining on an inexpensive programmable device.
REFERENCES


[34] Yevgen Voronenko, “HCUB with depth limitation,” personal communication, 2006. 6.6
Charles D. Howard was born October 18th, 1980, in Tallahassee, Florida. He received the Bachelor of Science in Electrical Engineering from Florida State University in 2003. He obtained his Masters degree in the Spring semester of 2009 under the advisement of Dr. Linda S. DeBrunner. He has published papers in the Asilomar Conference on Signals, Systems and Computers in 2007 and in the 2009 Digital Signal Processing and Education Workshop. He is interested primarily in device programming. Any type of programming, from high level languages such as PHP and Matlab to the lowest level of programming, assembly programming of devices such as PIC microcontrollers. He started his career at the National High Magnetic Field Laboratory in 1996 where he worked as a graphics technician, web developer and photomicrographer and today continues a career in computers as a Java programer and web developer.