You are here

Experimental Forest Fire Threat Forecast

Title: Experimental Forest Fire Threat Forecast.
Name(s): Brolley, Justin Michael, author
O'Brien, James J., professor directing thesis
Bourassa, Mark A., committee member
Kim, Kwang-Yul, committee member
Department of Earth, Ocean and Atmospheric Sciences, degree granting department
Florida State University, degree granting institution
Type of Resource: text
Genre: text
Issuance: monographic
Date Issued: 2004
Publisher: Florida State University
Place of Publication: Tallahassee, Florida
Physical Form: computer
Physical Form: online resource
Extent: 1 online resource
Language(s): English
Abstract/Description: Climate shifts due to El Niño (warmer than normal ocean temperatures in the tropical Pacific Ocean) and La Niña (cooler than normal) are well known and used to predict seasonal temperature and precipitation trends up to a year in advance. These climate shifts are particularly strong in the Southeastern United States. During the winter and spring months, El Niño brings plentiful rainfall and cooler temperatures to Florida. Recent los Niños occurred in 1997-1998, one of the strongest on record, with another mild El Niño in 2002-2003. Conversely, La Niña is associated with warm and dry winter and spring seasons in Florida. Temperature and precipitation affect wildfire activity; interannual drivers of climate, like ENSO, have an influence on wildfire activity. Studies have shown a strong connection between wildfires in Florida and La Niña, with the more than double the average number of acres burned (O'Brien et al 2002; Jones et al. 1999). While this relationship is important and lends a degree of predictability to the relative activity of future wildfire seasons, human activities such as effective suppression, prescribed burns, and ignition can play an equally important role in wildfire risks. This study forecasts wildfire potential rather than actual burn statistics to avoid complications due to human interactions. This wildfire threat potential is based upon the Keetch-Byram Drought Index (KBDI). The KBDI is well suited as a seasonal forecast medium. It is based on daily temperature and rainfall measurements and responds to changing climate and weather conditions on time scales of days to months, and this index is high during dry warm weather patterns and low during wet cool patterns. The KBDI has been widely used in forestry in the Southeastern United States since its development in the 1970's, with foresters and firefighters have a good level of familiarity with the index and its applications. The KBDI is calculated daily and used as an index by wildfire managers. This study calculates wildfire potential using a statistical method known as bootstrapping. Many datasets contain approximately a half-century of data, and the limited dataset will introduce biases. Bootstrapping can remedy bias by simulating thousands of years of data, which retain the climatology for the past half-century. Bootstrapping preserves the mean but not the variance. By incorporating this method, this study will improve long-term forest fire risks that will become useful for those living or working near forests and assist in managing forests and wildfires. The Southeast Climate Consortium will also be issuing wildfire risk forecast for Florida and parts of Alabama and Georgia based on ENSO phase and the KBDI. Climate information and ENSO predictions are better served by incorporating them with known climate indices that are routinely used in the forestry sector. Wildfire managers and foresters operationally use the KBDI to monitor and predict wildfire activity (O'Brien et al. 2002). Meteorologists at the Florida Division of Forestry have demonstrated the validity of the KBDI as an indicator of potential wildfire activity in Florida (Long 2004). They showed that the value of the KBDI is not as important as the deviation from the monthly average. The wildfire risk forecast is based on the probabilities of KBDI anomalies and will present the probabilities associated with large deviations from the seasonal normal.
Identifier: FSU_migr_etd-3000 (IID)
Submitted Note: A Thesis submitted to the Department of Meteorology in partial fulfillment of the requirements for the degree of Master of Science.
Degree Awarded: Fall Semester, 2004.
Date of Defense: October 28, 2004.
Keywords: Forest Fire, El Nino, ENSO, Seasonal Forecast, KBDI, Keetch-Byram Drought Index, Bootstrapping
Bibliography Note: Includes bibliographical references.
Advisory Committee: James J. O'Brien, Professor Directing Thesis; Mark A. Bourassa, Committee Member; Kwang-Yul Kim, Committee Member.
Subject(s): Meteorology
Persistent Link to This Record:
Owner Institution: FSU