You are here

Deformation Mechanisms at Atomic Scale

Title: Deformation Mechanisms at Atomic Scale: Role of Defects in Thermomechanical Behavior of Materials.
Name(s): Namilae, Sirish, author
Chandra, Namas, professor directing dissertation
Mtenga, Primus V, outside committee member
Van Dommelen, Leon, committee member
Kalu, Peter N, committee member
Department of Mechanical Engineering, degree granting department
Florida State University, degree granting institution
Type of Resource: text
Genre: Text
Issuance: monographic
Date Issued: 2004
Publisher: Florida State University
Florida State University
Place of Publication: Tallahassee, Florida
Physical Form: computer
online resource
Extent: 1 online resource
Language(s): English
Abstract/Description: The primary focus of the thesis is to understand the role of defects and interfaces in the deformation of nanoscale structures and systems. Various nanoscale systems such as symmetric tilt-grain boundaries (STGB) in aluminum, topological defects in carbon nanotubes (CNT), hybridization defects in carbon nanotubes and nanoscale interfaces in CNT based composites are investigated using molecular dynamics and statics. In order to further explore the effect of nanoscale interfaces on the macroscopic behavior of CNT based composites a multiscale model, which hierarchically employs molecular dynamics and the finite element method is developed. Carbon nanotubes are cylindrical structures of carbon wrapped from a planar hexagonal mesh of atoms. Topological defects are planar irregularities in this hexagonal mesh, while hybridization defects are formed when changes in bonding cause out of plane disturbance. The deformation characteristics of CNTs in presence of both these types of defects are modeled using Brenner's potential. The other material systems studied in this work are symmetric interfaces in aluminum. Symmetric tilt-grain boundaries are a type of grain boundaries with restricted degrees of freedom due to symmetry. The sliding behavior, energetics and effect of magnesium doping in these grain boundaries is investigated using embedded atom method (EAM) potentials in the molecular dynamics setting. Study of deformation has been traditionally under the purview of continuum mechanics; concepts such as stiffness, strength, damage, and fracture are best studied using continuum stress and strain measures. Because of the discrete nature of atoms, these concepts are not clearly understood in atomistic simulations. In this work, different stress measures are employed for Brenner's potential and the criterion for applicability in various conditions is examined. A new methodology to evaluate strains for nanotubes is developed. Local and global deformation characteristics in elastic and inelastic regimes in nanotubes with defects are examined and compared with defect-free nanotubes. It is found that there is a decrease in stiffness of nanotubes in presence of topological defects. The local elastic moduli are found to reduce to 60 % of that of defect-free nanotube. A simple model is developed to predict the reduction in stiffness in presence of a number of defects. In the case of hybridization defects caused by attachment of hydrocarbon functional groups, the elastic modulus is found to improve marginally. In addition, the onset of inelasticity and fracture occur at lower strains in functionalized nanotubes. Interfaces in composites affect the key mechanical properties such as stiffness, strength and fracture toughness. In this work, interfaces in nanotube based composites are modeled as hydrocarbon chemical attachments between the matrix and CNT. Molecular dynamics simulations of fiber pullout tests are then employed to understand the load transfer behavior and quantitatively determine the interface strength. These results are used to generate traction-displacement constitutive relation for a continuum description of interfaces in terms of cohesive zone model. A multiscale methodology is formulated using the atomically informed cohesive zone model to represent interfaces in a finite element formulation. Application of this approach is demonstrated by examining the effect of interface strength on the stiffness of nanotube based composites.
Identifier: FSU_migr_etd-2775 (IID)
Submitted Note: A Dissertation submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
Degree Awarded: Spring Semester, 2004.
Date of Defense: February 16, 2004.
Keywords: Interface, Defect, Grain Boundarie, Composite, Carbon Nanotube
Bibliography Note: Includes bibliographical references.
Advisory Committee: Namas Chandra, Professor Directing Dissertation; Primus V Mtenga, Outside Committee Member; Leon van Dommelen, Committee Member; Peter N Kalu, Committee Member.
Subject(s): Mechanical engineering
Persistent Link to This Record:
Use and Reproduction: This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.
Host Institution: FSU

Choose the citation style.
Namilae, S. (2004). Deformation Mechanisms at Atomic Scale: Role of Defects in Thermomechanical Behavior of Materials. Retrieved from