You are here

Quantifying Variance Due to Temporal and Spatial Difference Between Ship and Satellite Winds

Title: Quantifying Variance Due to Temporal and Spatial Difference Between Ship and Satellite Winds.
33 views
5 downloads
Name(s): May, Jackie Crystal, author
Bourassa, Mark A., professor directing thesis
Misra, Vasubandhu, committee member
Wu, Zhaohua, committee member
Smith, Shawn R., committee member
Department of Earth, Ocean and Atmospheric Sciences, degree granting department
Florida State University, degree granting institution
Type of Resource: text
Genre: Text
Issuance: monographic
Date Issued: 2010
Publisher: Florida State University
Place of Publication: Tallahassee, Florida
Physical Form: computer
online resource
Extent: 1 online resource
Language(s): English
Abstract/Description: Ocean vector winds measured by the SeaWinds scatterometer onboard the QuikSCAT satellite can be validated with in situ data. Ideally the comparison in situ data would be collocated in both time and space to the satellite overpass; however, this is rarely the case because of the time sampling interval of the in situ data and the sparseness of data. To compensate for the lack of ideal collocations, in situ data that are within a certain time and space range of the satellite overpass are used for comparisons. To determine the total amount of random observational error, additional uncertainty from the temporal and spatial difference must be considered along with the uncertainty associated with the data sets. The purpose of this study is to quantify the amount of error associated with the two data sets, as well as the amount of error associated with the temporal and/or spatial difference between two observations. The variance associated with a temporal difference between two observations is initially examined in an idealized case that includes only Shipboard Automated Meteorological and Oceanographic System (SAMOS) one-minute data. Temporal differences can be translated into spatial differences by using Taylor's hypothesis. The results show that as the time difference increases, the amount of variance increases. Higher wind speeds are also associated with a larger amount of variance. Collocated SeaWinds and SAMOS observations are used to determine the total variance associated with a temporal (equivalent) difference from 0 to 60 minutes. If the combined temporal and spatial difference is less than 25 minutes (equivalent), the variance associated with the temporal and spatial difference is offset by the observational errors, which are approximately 1.0 m2s-2 for wind speeds between 4 and 7 ms-1 and approximately 1.5 m2s-2 for wind speeds between 7 and 12 ms-1. If the combined temporal and spatial difference is greater than 25 minutes (equivalent), then the variance associated with the temporal and spatial difference is no longer offset by the variance associated with observational error in the data sets; therefore, the total variance gradually increases as the time difference increases.
Identifier: FSU_migr_etd-2645 (IID)
Submitted Note: A Thesis submitted to the Department of Earth, Ocean and Atmospheric Science in partial fulfillment of the requirements for the degree of Master of Science.
Degree Awarded: Fall Semester, 2010.
Date of Defense: October 25, 2010.
Keywords: QuikSCAT, Winds, SAMOS, Error variance, Collocation
Bibliography Note: Includes bibliographical references.
Advisory Committee: Mark A. Bourassa, Professor Directing Thesis; Vasubandhu Misra, Committee Member; Zhaohua Wu, Committee Member; Shawn R. Smith, Committee Member.
Subject(s): Oceanography
Atmospheric sciences
Meteorology
Persistent Link to This Record: http://purl.flvc.org/fsu/fd/FSU_migr_etd-2645
Owner Institution: FSU

Choose the citation style.
May, J. C. (2010). Quantifying Variance Due to Temporal and Spatial Difference Between Ship and Satellite Winds. Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-2645