You are here

Quikscat-Derived Near-Surface Vorticity during Tropical Cyclogenesis

Title: Quikscat-Derived Near-Surface Vorticity during Tropical Cyclogenesis.
31 views
4 downloads
Name(s): Minter, Elizabeth, author
Reasor, Paul D., professor directing thesis
Bourassa, Mark A., committee member
Cunningham, Philip, committee member
Department of Earth, Ocean and Atmospheric Sciences, degree granting department
Florida State University, degree granting institution
Type of Resource: text
Genre: Text
Issuance: monographic
Date Issued: 2007
Publisher: Florida State University
Florida State University
Place of Publication: Tallahassee, Florida
Physical Form: computer
online resource
Extent: 1 online resource
Language(s): English
Abstract/Description: Traditional surface and upper-air observations are often absent over the tropical oceans. This lack of routine in-situ measurement, outside of special field programs, has limited the observational study of tropical cyclogenesis. Remote sensing from satellites, however, can provide information in regions where surface-based observing networks are not present. This study utilizes infrared satellite imagery and QuikSCAT-derived near-surface vorticity from the 2005 hurricane season in the North Atlantic to examine the relationship between deep convection and low-level vorticity during tropical cyclogenesis. QuikSCAT-derived cyclonic relative vorticity is identified in association with developing easterly wave disturbances tracked using NHC products and 3-hourly infrared satellite imagery. Area-averaged vorticity near mesoscale regions of convection within the easterly wave envelope is then computed. In most of the 19 cases examined, the low-level vorticity followed the convective evolution, decreasing or remaining nearly constant during periods of inactive convection and increasing as convective activity increased. A composite of North Atlantic easterly wave disturbances was constructed to characterize the average evolution of near-surface vorticity during tropical cyclogenesis. 48 hours prior to genesis, the average tropical disturbance has a region of cyclonic relative vorticity about 125 km in diameter with peak magnitude of approximately 1x10-4 s-1. During its subsequent evolution, the vorticity of the composite disturbance increases as convection increases until a tropical cyclone forms. These results are considered in the context of prior and future numerical simulations of tropical cyclogenesis.
Identifier: FSU_migr_etd-2394 (IID)
Submitted Note: A Thesis Submitted to the Department of Meteorology in Partial Fulfillment of the Requirements for the Degree of Master of Science.
Degree Awarded: Spring Semester, 2007.
Date of Defense: December 8, 2006.
Keywords: Quikscat, Seawinds, Tropical Disturbance, Tropical Cyclogenesis, Vorticity
Bibliography Note: Includes bibliographical references.
Advisory Committee: Paul D. Reasor, Professor Directing Thesis; Mark A. Bourassa, Committee Member; Philip Cunningham, Committee Member.
Subject(s): Meteorology
Persistent Link to This Record: http://purl.flvc.org/fsu/fd/FSU_migr_etd-2394
Use and Reproduction: This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.
Host Institution: FSU

Choose the citation style.
Minter, E. (2007). Quikscat-Derived Near-Surface Vorticity during Tropical Cyclogenesis. Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-2394