You are here

Modeling the Effect of Eddies and Advection on the Lower Trophic Ecosystem in the Northeast Tropical Pacific

Title: Modeling the Effect of Eddies and Advection on the Lower Trophic Ecosystem in the Northeast Tropical Pacific.
107 views
4 downloads
Name(s): Samuelsen, Annette, author
O'Brien, James J., professor directing dissertation
Erlebacher, Gordon, outside committee member
Dewar, William K., committee member
Marcus, Nancy H., committee member
Iverson, Richard L., committee member
Hofmann, Eileen E., committee member
Department of Earth, Ocean and Atmospheric Sciences, degree granting department
Florida State University, degree granting institution
Type of Resource: text
Genre: text
Issuance: monographic
Date Issued: 2005
Publisher: Florida State University
Place of Publication: Tallahassee, Florida
Physical Form: computer
Physical Form: online resource
Extent: 1 online resource
Language(s): English
Abstract/Description: A medium complexity, nitrogen-based ecosystem model is developed in order to simulate the ecosystem in the northeast tropical Pacific. Several physical processes have major impact on the ecosystem in this region, most importantly intense wind jets along the coast and upwelling at the Costa Rica Dome (CRD). The ecosystem model is run "offline", using a realistic physical ocean model hindcast as input. The physical model is a subdomain of the global Navy Coastal Ocean Model, which is a hybrid sigma-z level model. The model assimilates Modular Ocean Data Assimilation System temperature and salinity profiles derived from altimetry and sea surface temperature data. The model is forced by daily heat and momentum fluxes, and therefore captures short-term wind events such as the Tehuantepec jet. Because the model has high horizontal resolution (~1/8 degree) and assimilates sea surface height data, it has a realistic representation of eddies and mesoscale variability. The ecosystem model includes two nutrients (nitrate and ammonium), two size-classes of phytoplankton, two size-classes of zooplankton, and detritus. The model is run for 4 years from 1999 to 2002, with analyses focused on 2000-2002. The model is validated using SeaWiFS data and ship-based observations from the STAR-cruises (Stenella Abundance Research Project) of 1999 and 2000. The northernmost and most intense of the wind jets along Central America is the Tehuantepec jet. The Tehuantepec jet is responsible for upwelling large amounts of nutrient rich water south of the Gulf of Tehuantepec. The jet also occasionally produce large anti-cyclonic eddies that transport organic matter away from the coast. Because organic matter that is transported into the open ocean will eventually sink to the deep ocean, this has implications for the carbon export in this region. The model results are used to calculate cross-shelf fluxes in this region in order to estimate how much organic material is transported across the shelf break. Results show that at the Gulf of Tehuantepec there is high offshore export of organic material, particularly during eddy generation events, but also in fall. The highest export is on the order of 10 Mg C per meter of coastline per day and happens during eddy events. During these events there is a comparable onshore flux to the south of the gulf. Typically there is onshore flux to the south of the gulf during the summer. The model estimated transport away from the coast at the Gulf of Tehuantepec is 167 Tg C/year, and the onshore transport to the south of the gulf is 704 Tg C/year. The second subject of interest is the CRD. In this region, upwelling at the surface is caused by Ekman upwelling during the summer, although the dome is thought to be present at depth throughout the year. The doming of the isotherms below the thermocline is a result of vortex stretching and is decoupled from the wind-driven processes at the surface. A mass-balance budget is calculated at the CRD, and the horizontal and vertical fluxes are related to the abundance of plankton at the dome. There is upwelling (7.2X10-2 Sv ) at the dome throughout the year, but around the location of the dome (90° W), the upwelling is largest in the winter. Further west, input of nutrients from below is larger in the fall and summer. The results suggest that about 80% of the nitrate that is supplied to the dome during summer is actually brought up to the west of the dome and transported eastward by the North Equatorial Counter Current.
Identifier: FSU_migr_etd-2099 (IID)
Submitted Note: A Dissertation Submitted to the Department of Oceanographyin Partial Fulfillment of Therequirements for the Degree ofdoctor of Philosophy.
Degree Awarded: Spring Semester, 2005.
Date of Defense: March 14, 2005.
Keywords: Physical-Biological Interactions, Marine Ecosystem Modeling, Pacific Ocean, Gulf Of Tehuantepec, Costa Rica Dome, Cross-Shelf Transport, Eddies
Bibliography Note: Includes bibliographical references.
Advisory Committee: James J. O'Brien, Professor Directing Dissertation; Gordon Erlebacher, Outside Committee Member; William K. Dewar, Committee Member; Nancy H. Marcus, Committee Member; Richard L. Iverson, Committee Member; Eileen E. Hofmann, Committee Member.
Subject(s): Oceanography
Atmospheric sciences
Meteorology
Persistent Link to This Record: http://purl.flvc.org/fsu/fd/FSU_migr_etd-2099
Owner Institution: FSU

Choose the citation style.
Samuelsen, A. (2005). Modeling the Effect of Eddies and Advection on the Lower Trophic Ecosystem in the Northeast Tropical Pacific. Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-2099