2003

Neo-Riemannian Transformations and Prolongational Structures in Wagner's Parsifal

Steven Scott Baker
THE FLORIDA STATE UNIVERSITY
SCHOOL OF MUSIC

NEO-RIEMANNIAN TRANSFORMATIONS AND PROLONGATIONAL
STRUCTURES IN WAGNER’S PARSIFAL

By
STEVEN SCOTT BAKER

A Dissertation submitted to the
School of Music
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Degree Awarded:
Spring Semester, 2003
The members of the Committee approve the dissertation of Steven Scott Baker defended on April 1, 2003.

Jane Piper Clendinning
Professor Directing Dissertation

Douglas Fisher
Outside Committee Member

Evan Jones
Committee Member

James R. Mathes
Committee Member

Matthew R. Shaftel
Committee Member

The office of Graduate Studies has verified and approved the above named committee members.
This document is dedicated to Dr. Jonathan May for instilling in me a love of music that has never wavered. I extend my deepest gratitude to him for believing that I could succeed in the field of music, and more importantly, for making me believe it.
ACKNOWLEDGEMENTS

My thanks and appreciation are extended to Prof. Jane Piper Clendinning for her constant support and advice during the preparation of this document. I am forever indebted to her for being the best and most enthusiastic advisor I could have asked for. I would also like to thank the members of my dissertation committee: Prof. Evan Jones, Prof. Matthew Shaftel, Prof. James Mathes, and Prof. Douglas Fisher for their outstanding work and insightful comments. They have truly inspired me throughout this project.

I would also like to acknowledge and thank Prof. Peter Spencer for giving me the opportunity to be a teaching assistant at Florida State University as well as for his constant support and tutelage, my colleagues in Prof. Jones’ Doctoral Seminar for their perceptive comments and questions, Prof. Michael Buchler for his advice during several informal conversations, Prof. Richard Kaplan whose helpful comments on my paper at SCSMT 2002 changed the course of this dissertation, and Danny Beard for all the lunches and phone conversations over the last five years.

Finally, I would like to thank my wonderful wife, Sarah, and our cats, Greg and Brad, for all the love and understanding they gave me every day while I was writing this document. Thanks also to Dad and Debbie, Mom, Darlene and Jimbo, my grandparents, and to all my other friends and family, who have been a constant source of love and support throughout my life. I would never have made it without them.
CONTENTS

List of Tables vii
List of Figures viii
List of Examples xi
List of Analytical Graphs xiv
Abstract xv

1. INTRO TO WAGNER’S PARSIFAL 1
 Wagner and the ‘Gesamtkunstwerk’ 1
 The Story of Wagner’s Parsifal 5
 The Legends of the Grail and Parsifal 8
 The Composition of Parsifal 10
 Performance History 11
 The Analysis of Opera 13
 Analytical Approaches 17

2. EXTENSIONS OF NEO-RIEMANNIAN THEORY 19
 Review of Neo-Riemannian Models 20
 Exploration of Parsimony and Displacement Classes 23
 Expansion of Triad Model 27
 Integration of Split Functions 30
 Expansion of Seventh-Chord Model 33
 Combination of Previous Models 36
 Analysis 37

3. EXTENSIONS OF THE SCHENKERIAN PARADIGM FOR LATE-ROMANTIC MUSIC 70
 Schenker and Chromaticism 72
 Prolongation 79
 Multivalence 83

4. LINEAR ANALYSIS OF FIVE SCENES FROM PARSIFAL 100
 Analysis of the Prelude to Act I 100
 Analysis of the Prelude to Act II 103
Analysis of the ‘Kiss’ Scene from Act II 106
Analysis of the ‘Baptisms’ Scene from Act III 109
Analysis of the “Amfortas’ Prayer” Scene from Act III 111

5. CONCLUSIONS AND PLANS FOR FUTURE STUDY 152

BIBLIOGRAPHY 156

BIOGRAPHICAL SKETCH 163
LIST OF TABLES

Table 1a: Triad to Triad – Displacement of 1 semitone 52
Table 1b: Seventh Chord to Seventh Chord – Displacement of 1 semitone 53
Table 1c: Triad to Seventh Chord – Displacement of 1 semitone 53
Table 2a: Triad to Triad – Displacement of 2 semitones 53
Table 2b: Seventh Chord to Seventh Chord – Displacement of 2 semitones 54
Table 2c: Triad to Seventh Chord – Displacement of 2 semitones 54
Table 3: Triad to Triad – Displacement of 1 semitone 56
Table 4: Triad to Triad – Displacement of 2 semitones 59
Table 5: Triad to Seventh Chord – Displacement of 2 semitones 60
Table 6: Seventh Chord to Seventh Chord – Displacement of 1 semitone 61
LIST OF FIGURES

Figure 1.1: *Parsifal* Leitmotifs 18

Figure 2-1: Douthett and Steinbach’s Parsimonious Relations 42

Figure 2-2: Hyer’s *Tonnetz* 42

Figure 2-3a: Douthett and Steinbach’s Chicken-wire Torus 43

Figure 2-3b: Douthett and Steinbach’s Cube Dance 43

Figure 2-4a: Douthett and Steinbach’s Towers Torus 44

Figure 2-4b: Douthett and Steinbach’s Power Towers 44

Figure 2-5: Callender’s use of the split (S) function 45

Figure 2-6: Arrow tables demonstrating one-semitone displacement from C major triad. 45

Figure 2-7: Graphic illustration of one-semitone displacement from a) CM triad and b) C7 chord 45

Figure 2-8: DC2 relations 45

Figure 2-9: Algebraic model for major triad 46

Figure 2-10: Complete arrow table transformations among major triads 47

Figure 2-11: Displacement class tables 48

Figure 2-12: Arrow table transformations illustrating a) Xm – (X+9)ø7, a) XM7 – (X+2)dom7, and c) Lewin’s upshift and downshift voice-leading principles applied so that each member of the first sonority has a discrete corresponding member in the second. 52

Figure 2-13: *Tonnetz* functions 55

Figure 2-14: -L and R* functions 55
Figure 2-16: PR-cycle generated octagons
Figure 2-17a: Octatonic Propeller graph
Figure 2-17b: L-relations
Figure 2-17c: -L relations
Figure 2-17d: R* relations
Figure 2-18: Two possible intermediate sonorities between C major and E major
Figure 2-19: Arrow table demonstration of the two DC1 splits
Figure 2-20: Arrow tables demonstrating all thirteen DC2-related split functions
Figure 2-21: Arrow tables demonstrating the eight DC1-related seventh-chord functions.
Figure 2-22: 3-D Power Towers
Figure 2-23: Starburst graph
Figure 2-24: Connection of triad and seventh chord models
Figure 2-25: Final graph
Figure 2-26: Transformational path of Example 2-1
Figure 2-27: Transformational path of Example 2-2
Figure 2-28: Transformational path of Example 2-3
Figure 2-29: Transformational path of Example 2-4
Figure 3-1: Schenker’s list of diatonic and chromatic Stufe from Harmonielehre
Figure 3-2: Brown’s realization of Schenker’s list
Figure 3-3: Schenker, Der freie Satz, Fig. 40.6: arpeggiation of minor thirds
Figure 3-4a: Schenker, *Der freie Satz*, Fig. 30b: substitution of \(^3\) caused by mixture in tonic triad

Figure 3-4b: Schenker, *Der freie Satz*, Fig. 154.4: substitution of \(^5\) caused by mixture in mediant triad

Figure 3-5: Mitchell’s graph of *Tristan* Prelude

Figure 3-6: Three possible resolutions F7

Figure 3-7a: Schenker *Free Composition*, Fig. 100.3a: graph of Chopin Op. 28, no. 2

Figure 3-7b: Stein’s Directional tonality reading of Chopin Op. 28, no. 2

Figure 3-8: Schenker, *Der freie Satz*, 62.5 and 62.4: prolongations of V7

Figure 3-9: Darcy’s expansion of mediant in *Das Rheingold*

Figure 3-10: McCreless’ composing out of V7/B in *Götterdämmerung*

Figure 3-11: Krebs’ dual analysis of ‘Der Wanderer’

Figure 3-12: Darcy’s reduction of *Das Rheingold* – Act I, Scene I, Episode 6

Figure 3-13a: Alternation of m2 interval with alternate prolongational suggestions

Figure 3-13b: Harmonization of 3-13a in cadential formula

Figure 3-13c: Final measures of Bach, Partita in Bb, Sarabande

Figure 3-13d: Benjamin’s overlapping prolongations

Figure 3-14: Haydn, Piano Sonata in C Major, Hob. XVI/35, I, mm. 1-8 with Wagner’s reduction illustrating alternate unfolding

Figure 3-15: Salzer, *Structural Hearing* Fig. 183: double voice exchange in Mozart, Piano Sonata in D Major, K. 311, II, mm. 1-4
LIST OF EXAMPLES

Example 2-1: Wagner, *Parsifal*, Act II mm. 1032-1041 65

Example 2-2: Wagner, *Parsifal*, Act II mm. 1076-1078 66

Example 2-3: Wagner, *Parsifal*, Act II mm. 1102-1107 66

Example 4-1: Wagner, *Parsifal*, Act I, mm. 1-6: Opening Communion motive 116

Example 4-6: Wagner, *Parsifal*, Act I, a) mm. 80-82; b) mm. 85-87; c) mm. 90-92: Communion motives supported by dissonances 120

Example 4-7: Wagner, *Parsifal*, Act I, mm. 128-132: Tonal and melodic closure 121

Example 4-8: Wagner, *Parsifal*, Act II, mm. 5-8: 8-6 sequence of Klingsor motives 123

Example 4-9: Wagner, *Parsifal*, Act II, mm. 9-14: Unfolding of C#°7 124

Example 4-12: Wagner, *Parsifal*, Act II, mm. 71-82: Unfolding of EM (IV) triad

Example 4-14: Wagner, *Parsifal*, Act II, mm. 1125-1140: Dominant prolonged by sequence

Example 4-15: Wagner, *Parsifal*, Act II, mm. 1141-1156: Prolongation of different mediant keys of G minor

Example 4-16: Wagner, *Parsifal*, Act II, mm. 1159-1162: Prolongation of viio7 harmony

Example 4-17: Wagner, *Parsifal*, Act II, mm. 1177-1194: Chromatic upper neighbor in melodic descent and subsequent prolongation of BM/Bm

Example 4-18: Wagner, *Parsifal*, Act II, mm. 1239-1245: Dominant prolongation interrupted by unfolding of Bø7

Example 4-19: Wagner, *Parsifal*, Act II, mm. 1239-1245: Chromatic mediant key relationships among BM-Gm-EbM

Example 4-20: Wagner, *Parsifal*, Act II, mm. 1274-1277: Evaded cadence and G major harmonic support for ^1

Example 4-23: Wagner, *Parsifal*, Act III, mm. 620-628: Tonal motion through Ab major/f minor

Example 4-26: Wagner, *Parsifal*, Act III, a) mm. 935-936; b) mm. 957-958: Openings of Stollen I and Stollen II

LIST OF ANALYTICAL GRAPHS

Analytical Graph #1: Wagner, *Parsifal*, Act I, mm. 1-146
122

Analytical Graph #2: Wagner, *Parsifal*, Act II, mm. 1-132
129

Analytical Graph #3: Wagner, *Parsifal*, Act II, mm. 1125-1277
137

Analytical Graph #4: Wagner, *Parsifal*, Act III, mm. 570-673
143

Analytical Graph #5: Wagner, *Parsifal*, Act III, mm. 933-1057
150
ABSTRACT

This dissertation examines sections of Richard Wagner’s final opera, *Parsifal*, using both Neo-Riemannian theory and Schenkerian analysis. The Neo-Riemannian discussion is primarily concerned with the creation of an inclusive model capable of analyzing any parsimonious connection between two common practice sonorities. The construction of this model is achieved in four phases. First, Riemann’s *Tonnetz* is expanded to include transformations involving both augmented and diminished triads. Second, Douthett and Steinbach’s Power Towers graph is expanded to include all seventh chords, and new functional designations are applied to these transformations. Third, connections between sonorities that involve a change in cardinality are examined and compared to triadic transformations. Finally, the results of all three of these analytical discussions are combined to produce an inclusive analytical model. Four short passages from *Parsifal* are analyzed using the inclusive model.

The next section explores Heinrich Schenker’s ideas on chromaticism and posits that Wagner’s music still lies within Schenker’s definition of tonality; therefore his analytical system should be able to illuminate large sections of Wagner’s music. Attempts by previous scholars to apply Schenkerian reductive techniques to large sections of Wagner’s music are reviewed. Literature that suggests the existence of dissonant prolongation and multivalence (based in part on Schenker’s own graphs) is reviewed.

Five tonally-closed sections of *Parsifal* – the Act I Prelude, the Act II Prelude, the “Kiss” scene from Act II, the “Baptisms” scene from Act III, and the “Amfortas’
Prayer” scene from the end of the opera – are analyzed using the expanded
Schenkerian analytical techniques including prolongation of dissonant sonorities and
multivalence. The graphs reveal that the Schenkerian method is capable of
elucidating the deep foreground (tonal) musical structure in spite of the dense
foreground chromaticism that is constant throughout Wagner’s final musical drama.
CHAPTER ONE

In Part One of this introductory chapter I will explore the concept of the “Gesamtkunstwerk” and how it evolves throughout Wagner’s lifetime, focusing on the most significant influence on the compositional methods of Wagner’s later works – the writings of Schopenhauer. Part Two relates the story of *Parsifal* as a point of reference for the analytical discussions in Chapters Two and Four. Part Three will survey the separate legends from which Wagner wove the story of his music drama. Part Four will discuss the composition of *Parsifal*. Part Five will examine the premiere and review some of the more notable subsequent performances. In Part Six I will discuss the importance of dealing with the interrelation of dramatic, textual, and musical elements when analyzing an opera. This section also includes a discussion of leitmotifs, highlighting the difficulty in labeling leitmotifs in Wagner’s later operas. The importance of considering the visual aspects in an operatic analysis will also be addressed. Part Seven will give a brief overview of analytical techniques used in this study.

I. Wagner and the “Gesamtkunstwerk”

The idea of the “Gesamtkunstwerk” – or total artwork – as initially conceived by Wagner can be defined simply as a compositional approach that combines musical elements with textual, visual, and dramatic ones. Wagner considered his music dramas to have reached the pinnacle of human artistic achievement, as they were presumed (by Wagner) to be the first to successfully combine all the arts to produce an aggregate effect greater than would be possible with any one medium of expression. Consequently, Wagner viewed Beethoven as a one-dimensional composer who failed to fully communicate with the listener. In his 1851 treatise
Oper und Drama, while commenting on the ‘agony’ of absolute music’s inability to communicate, he claimed that the Ninth Symphony reached such a point of emotional intensity that it was forced to become verbal. His criticism of Beethoven and belief in the superiority of programmatic music over absolute music is further demonstrated in his 1852 letter to Theodor Uhlig where he claimed:

Even the pure musician, by which I mean the man who makes patterns with abstract music, could not understand Beethoven, because this pure musician is obsessed with the ‘how’ and not with the ‘what’. The layman, on the other hand, was bound to be utterly confused by these pictures in sound. At best he could derive pleasure only from that which to the composer was merely the material means of expression.

Two years later, while composing the music for Acts II and III of *Die Walküre*, Wagner read Schopenhauer’s *The World as Will and Representation* for the first time. This encounter with Schopenhauerian philosophy would be the most significant intellectual event of Wagner’s life and would drastically alter his creative vision. Wagner consequently would begin to see the creation of art not as an articulation of humanistic aims, but instead as an expression of spirituality. Schopenhauer assigned to music the highest position in the hierarchy of the art forms – a hierarchy that Wagner adopted. Wagner’s newfound philosophical approach to music led him to bestow upon music “an independence and leading role that quite contradict these earlier theories”. As Michael Tanner remarks: “Not only did his grateful, and one must feel, relieved acceptance of Schopenhauer’s theory of music enable him to exploit his musical powers more fully it also enabled him to realize his true aims, which he had never succeeded in making clear to himself or…. to anyone else.”

2 Ibid., *The Wagner Companion*: 117
3 Michael Tanner in *The Wagner Companion*: 150-151
This new perspective radically changed not only Wagner’s idea of the “Gesamtkunstwerk”, but also had a profound influence on the choice of dramatic material for all of his subsequent operas. Numerous critics of *Parsifal* openly accused Wagner of exploiting Christianity for material gain, while others accused him, in Nietzsche’s words, of, “slumping prostrate at the foot of the Cross.”

Neither allegation is accurate. As Bryan Magee states “Wagner’s faith was philosophical, not religious, a metaphysics of compassion and renunciation, deriving its essential elements from Schopenhauer’s *World and Will as Representation* and – via Schopenhauer – from Buddhism.” In fact, within a couple of years of his first encounter with Schopenhauer, he began sketching a Buddhist opera to be entitled *Die Sieger*. Although it was never completed, the themes of redemption, sacrifice, and denial of desire were expressed instead in *Parsifal*. Wagner, in his 1880 treatise *Religion and Art* (which he was writing simultaneously with *Parsifal*), explained his use of religion in his music dramas by saying:

One could say that when religion becomes artificial it is for art to salvage the essence of religion by construing the mythical symbols which religion wants us to believe to be literal truth in terms of their figurative value, so as to let us see their profound hidden truth through idealised representation.

These remarks indicate that Wagner’s motive for writing an opera based on a religious subject was neither for dubious theatrical reasons nor was it any sort of spiritual compromise with organized Christian theology.

The fundamental premise of Schopenhauierian philosophy is that the Will is an all-consuming need to survive and to obtain power and only through its subjugation can Man rise above suffering. Wagner expressed his belief in this ideology in an 1854 letter to Franz Liszt:

4 Ibid., *The Wagner Companion*: 205
6 Wagner’s *Religion and Art* cited in Magee, *The Philosophy of Schopenhauer*: 373.
His (Schopenhauer’s) chief idea, the final negation of the desire of life, is terribly serious, but it shows the only salvation possible…. If I think of the storm of my heart, the terrible tenacity with which, against my desire, it used to cling to the hope of life, and if even now I feel this hurricane within me, I have at least found a quietus which in wakeful nights helps me sleep. This is the genuine, ardent longing for death, for absolute unconsciousness, total non-existence. Freedom from all dreams is our only final salvation.7

In Parsifal, Wagner attempted to expose the Schopenhauerian themes of redemption and subjugation of Will as he found them in Christianity, though from a purely philosophical perspective. To this end, Wagner created not only the ultimate redeemer in the title character,8 but also several contrasting characters who require redemption including Amfortas (the fallen leader of the Knights who suffers because he gives in to his sexual desire), Kundry (the foul temptress responsible for Amfortas’ downfall), and Klingsor (the self-castrated magician who sent Kundry to seduce Amfortas). In the end these impure characters are redeemed or defeated, in the case of Klingsor, by the purity of Parsifal – the ultimate personification of the Schopenhauerian doctrine. These themes of redemption and rejection of the phenomenal world are obvious not only in Parsifal but also, as Warren Darcy points out,9 in Brünnhilde’s renunciation of the ring of power and ultimately her own life in Götterdämmerung.

7 Wagner in a letter to Franz Liszt cited in Magee, The Philosophy of Schopenhauer: 373.
II. The Story of Wagner’s *Parsifal*

Act I: Set in the Middle Ages, the story begins in the castle Montsalvat in the Spanish Pyrenees, home of the Brotherhood of the Grail. Gurnemanz, a knight, harshly awakens two squires who have fallen asleep during their guard duty. Two knights enter and we learn from their conversation with Gurnemanz that their leader, Amfortas, is ill and they are setting off to prepare him a bath in hopes of relieving his agony. A strange woman, Kundry, enters with a balsam for Amfortas, who appears and tells of his excruciating pain and the prophecy that he will be redeemed. After Gurnemanz gives Kundry’s balsam to Amfortas, the bath processional exits. The squires, who apparently suspect her of being evil, taunt Kundry by referring to her as an animal, and Gurnemanz rises to her defense.

Gurnemanz then tells the story of Amfortas’ fall. After succumbing to the temptation of a beautiful woman, the Spear was stolen from Amfortas by the evil sorcerer Klingsor, who gave Amfortas his terrible wound by piercing his side with the Spear. Gurnemanz also relays the history of the Brotherhood and how Titurel, and later his son, Amfortas, came to be the keepers of the Grail. Apparently Klingsor had been refused entrance into the pure-minded brotherhood by Titurel because of his lustful thoughts. Klingsor then castrated himself in order to become chaste. When he again attempted to join the Order again he was sent away by Titulel, who saw him as an abomination. He consequently swore revenge and plotted to steal the Spear and Grail from the Order. Gurnemanz’ lengthy narrative ends with him relaying the prophecy that the Brotherhood of the Grail will be redeemed by an “innocent fool.”

Suddenly, a disturbance is heard at the lake. Squires and knights begin to shout about a swan that has been shot and killed with an arrow. They bring in Parsifal. Gurnemanz asks if he committed this crime and the young boy indicates that he did. After Gurnemanz explains to him the nature of his crime, Parsifal is appalled and throws away his bow and arrows. Parsifal says he doesn’t know who he is or from whence he came, other than that he lived in the forest with his mother “Herzeleide”. Kundry tells the story of Parsifal’s origin and informs him that his mother is dead from grief of missing him. Parsifal lunges for her in anger but is
restrained by the Gurnemanz as Kundry slips into a trance. At this point Gurnemanz suspects that Parsifal may be the prophesied ‘innocent fool.’ The knights carry Amfortas back from the lake as Gurnemanz leads Parsifal to the Hall of the Grail.

When Gurnemanz and Parsifal arrive, the knights have already begun the celebration of the Last Supper in the Hall. Amfortas enters and his father, Titurel, entreats him to perform the ceremony. Amfortas hesitates and then refuses, crippled by remorse for his sin. The knights continue without him and uncover the Grail. At the completion of the ceremony, the knights exit with Amfortas, who did not receive communion. Gurnemanz becomes furious with Parsifal because Parsifal obviously understood nothing of what he just saw, dispelling Gurnemanz’ belief that Parsifal may be the prophesied Savior. Gurnemanz calls him a fool and sends him away as otherworldly voices reiterate the prophecy.

Act II: This scene takes place in a dark tower of the castle of the evil sorcerer, Klingsor. He is alone at first and then summons Kundry. We learn from their conversation that Kundry is in Klingsor’s power because he is the only man she cannot seduce. Klingsor repeats his story and reveals his plan for the destruction of the Brotherhood and the acquisition of the Grail.

Meanwhile, Parsifal is battling his way toward the rampart, killing all of Klingsor’s knights, who are actually previous members of the Brotherhood seduced by Kundry and consequently enslaved by Klingsor. As Parsifal reaches the garden, the flower maidens appear and beg him to stay with them since he killed all of their lovers. He resists and they disappear as Kundry, who has transformed herself into a beautiful maiden, approaches. She begins her seduction of Parsifal by telling him his name and using his guilt over his mother’s death to weaken his resolve. As he collapses in despair, she kisses him. He then understands his mission, as well as Amfortas’ torment. Kundry tries to appeal to Parsifal’s pity by telling him that she laughed at the dying Christ while he was on the cross and is cursed to wander the earth in misery. Parsifal still resists. In a final attempt to seduce the enlightened Parsifal, she explains that if a kiss revealed so much, an hour of love would raise him to Godhead.
Having failed, she curses Parsifal to wander the earth aimlessly in search of Montsalvat and the Brotherhood. Klingsor appears and hurls the Spear at Parsifal, who snatches it out of midair. Parsifal makes the sign of the cross in the air with the Spear causing the castle to collapse and the magic garden to turn to desert. Klingsor vanishes and Kundry collapses. Parsifal implores Kundry to find him at Montsalvat and be redeemed.

Act III: Many years have passed since the destruction of Klingsor's castle. Gurnemanz is now an elderly hermit. He hears a wretched moaning in the bushes outside his hut. Upon investigation, he discovers Kundry, who is almost dead from the cold. He revives her and gives her an account of the disarray of the Brotherhood. Then, a knight dressed in black armor approaches and Gurnemanz reproaches him for bearing arms on Good Friday. When the knight plants the spear in the ground and lays down his weapons and helm, Gurnemanz recognizes Parsifal and the Spear.

Parsifal tells Gurnemanz and Kundry tales of his many years of wandering in search of the knights. Gurnemanz removes Parsifal’s armor as Kundry washes Parsifal’s feet, drying them with her hair. Gurnemanz tells him of the turmoil that has befallen the knights and of Titurel’s death. Gurnemanz baptizes Parsifal, who in turn baptizes Kundry. Parsifal comments upon the beauty of the fields on this particular morning, and Gurnemanz replies that it is Good Friday. As Gurnemanz finishes his exegesis on the meaning of the sacred day, they hear distant bells, which herald the funeral of Titurel. They begin walking toward the castle.

When they arrive at the Hall of the Grail, the tables have been removed. A procession carrying Titurel’s coffin enters, followed by knights carrying Amfortas on a litter. As the coffin is opened, revealing their deceased former leader, the knights groan: partially in remorse for Titurel and partially in anger at Amfortas. Amfortas says a prayer to his father and begs for his own demise. As Amfortas calls for the knights to kill him and release him from his suffering, Parsifal steps forward and heals Amfortas’ wound with the Spear. Now acknowledged by the Brotherhood as their king, Parsifal uncovers the Grail. The knights, along with an unidentified choir, sing the words:
Höchsten Heiles Wunder!
Erlösung dem Erlöser!

Highest wonder of salvation!
Redemption to the Redeemer!

The redeemed Kundry dies as Gurnemanz, Parsifal, and knights kneel in reverence.

III. The Legends of the Grail and Parsifal

The legend of Parsifal and the Grail has not always been presented as in Richard Wagner’s opera. In fact, the Grail legends (of French origin) and the story of Parsifal, or Percival (which was included among the Arthurian legends of the Britons) were entirely separate until the turn of the thirteenth century. Walter Mapes, the Archdeacon of Oxford under Richard I, introduced the Grail legends into his version of the Arthurian romances for the purpose of affixing a Christian element into what were previously secular stories. For the first half of the thirteenth century the legend of the Grail would become a favorite subject of poets, including the German Wolfram von Eschenbach, whose “Parzival” was the original source of Wagner’s inspiration.

Though Wagner’s libretto for Parsifal is based on the aforementioned epic, Wagner fashioned the characters and the events of the story to suit his own dramatic purposes. One crucial difference is that Wolfram’s Grail is not associated with Christ. Based on the medieval “Wartburgkrieg” legend, his Grail is a stone that fell from Lucifer’s crown when he was defeated by the archangel, Michael. In a version by the thirteenth-century French poet, Chrétien de Troyes, the Grail is a magic dish of pagan origin. In a subsequent version of Chrétien’s epic, the Grail is said to be the chalice that was filled with the blood of Christ as he was dying on the cross. This

11 Ibid.: 453.
later interpretation also included a Spear, which pierced the side of the dying Savior. Wagner later read this amended version, which provided him with the impetus for the Christian element in his music drama. He felt the Gnostic element of the story to be an important one because it would, “…raise the suffering of Amfortas to a quite different level and give to his guardianship, his wound, and his inability to die a moral and religious value of which Wolfram had no conception.”

Though there are numerous differences in dramatic action between the thirteenth-century poem and the nineteenth-century opera, certain scenes remain unchanged. For instance, Wagner excerpted the episodes from the Hall of the Grail and the Good Friday meadow exactly as represented in Wolfram’s poem. Wagner borrows other details of the story – for example, the swan being shot by Parsifal – and alters them to accommodate his dramatic needs. In Wolfram’s poem, the hero is simply relaying a tale of a childhood incident where he killed a swan with an arrow and felt remorseful. Wagner transforms this briefly mentioned event into a major turning point in the narrative, using it to introduce Parsifal into the story.

Similarly, Wagner’s use of Wolfram’s characters varies in authenticity for reasons of dramatic intent. Parsifal and Titurel remain essentially unchanged, though Titurel is, in fact, Amfortas’ grandfather in Wolfram’s poem instead of his father. Amfortas (Anfortas in Wolfram) also remains quite similar, with the gruesome exception that in Wolfram, the wound from which he is dying is actually in his testicles rather than his side. Obviously this had to be changed in order to be staged in nineteenth-century Germany.

The character of Kundry, as she appears in Wagner’s drama, is an amalgam of four of Wolfram’s characters. The first, Cundrie, an evil sorceress who is only briefly mentioned in the poem, is the obvious inspiration for the name Kundry. The second is Sigune, a maiden in the forest who reveals to a wandering Parzival his name and origin. The third is the knight Trevrizant, who informs Parzival of his mother’s death and admonishes him for abandoning her. The fourth, and most prominent, is the Lady Orgeluse, who seduces Anfortas and attempts to seduce Parzival, but is resisted.

12 Beckett: 8.
She is said by Wolfram to be in the power of a sorcerer named Clinschor, a castrated magician living in a castle in the forest. This is the only mention of this character, who Wagner would later adopt as the antagonist of his drama. In like manner, Wagner unites four of Wolfram’s characters to create his narrator/knight Gurnemanz: Gurnemans, a knight who is mentioned once by Wolfram, a gray knight who rebukes Parzival for bearing arms on Good Friday, a squire who angrily sends him away from the castle, and the knight, Trevrizant, who relays the story of Anfortas’ fall from grace.

IV. The Composition of Parsifal

Twelve years after reading Wolfram’s epic poem, Wagner began sketching the music from the Good Friday scene from Act III. Another eight years passed before he returned to the project, completing a prose draft of the libretto in 1865. After yet another twelve years, Wagner turned his full attention to Parsifal.

Wagner completed Act I of the poem on March 29, Act II on April 13, and Act III on April 19 of 1877. He began the composition sketch in August of 1877 and finished the full sketch of the Prelude on September 26. The sketches for Acts I, II, and III were completed as follows:

Act I: January 31, 1878
Act II: October 13, 1878
Act III: April 26, 1879

Because of his failing health, Wagner was forced to abandon work on the project for approximately four months. On August 23, 1879, work began on the final orchestral score. His health declined further, forcing him to seek the warmer climate of Italy, where he was joined by Russian painter Paul von Joukowsky, who would provide the set and costume design for the premiere of Parsifal. Wagner’s selection of Joukowsky was based on his desire to find a collaborator who would focus on Wagner’s vision of the design instead of his own. On one notable excursion from Naples to ancient Ravello in May of 1880, Wagner and Joukowsky visited the
Moorish Palazzo Rufalo. Wagner wrote to King Ludwig of the experience: ‘Here we came upon some splendid suggestions for Klingsor’s magic garden: Joukowsky at once made some sketches for the second act of Parsifal.’

Wagner returned to Bayreuth in November of 1880 and immediately resumed the task of composing the full score. He completed Act I on April 25, 1881. Wagner scored Act II from June 6 to October 19. He began scoring Act III in Palermo on November 5, promising Cosima that he would present her with a completed score for her birthday on December 25. On that day he presented her with a final orchestrated page with a dedication to her, though in reality the score would secretly be completed on January 13, 1882.

V. Performance History

Rehearsals for Parsifal began on July 1, 1882. One hundred seven musicians, principally drawn from the Munich Theatre were contracted for the orchestra. The choir consisted of six primary and twenty-three secondary Flower Maidens, thirty-one Knights of the Grail, nineteen offstage voices from the temple, and fifty children’s voices from the dome. Joukowsky's costumes were incredibly simple compared to the costumes audiences had become accustomed to seeing in Wagnerian operas. Most of the characters wore simple belted robes or other plain garb, with the exception of Kundry’s ornate flowered dress, for the purpose of projecting the solemnity of the subject matter. The Hall of the Grail was based on the Siena cathedral, which Wagner had visited the previous summer. The backdrops for Klingsor's castle and the meadow for Act III were painted on strips of canvas and unwound on rollers to change the scene. When Carl Brandt, the scenographer, complained that the musical interlude was not long enough for the transformation to occur, Wagner retorted angrily that, ‘he was now being expected to write music by the yard’.

14 Bauer: 275.
Parsifal premiered in Bayreuth on July 26, 1882 conducted by Hermann Levi. Of the sixteen total performances in July and August of 1882, the first two were essentially private. On opening night, Wagner stormed from his box after the second act and implored the audience not to applaud during the performance and to refrain from making curtain calls in order not to secularize the hallowed nature of his music drama. In the final performance on August 29, Wagner himself conducted the third act from the Transformation scene to the end. This was the first and last time Wagner conducted in his own theater. After a quarter of an hour of wild applause after the end of the performance, Wagner addressed the adoring crowd with a few words of gratitude and concluded with the simple words ‘Until next year”. However, this would prove to be Wagner’s farewell to the Bayreuth festival, as his health continued to decline in the ensuing months. He passed away in Cosima’s arms on February 13, 1883.

Wagner greatly feared what would become of his ‘Stage Consecrating Festival Play” after his demise. He insisted that it only be performed in Bayreuth to prevent it from becoming ‘an amusement for the general public.”

Cosima, along with the Co-operative of German Composers and representatives from various Wagner societies appealed to the German Parliament to extend the normal posthumous copyright period past the standard thirty years but were denied. It was decreed that, against Wagner’s wishes, Parsifal would become available to other opera houses at the end of 1913.

However, only twenty years would pass until the first unauthorized performance – called by the Bayreuth faithful ‘Rape of the Grail” – in New York City on Christmas Eve of 1903. Four unauthorized performances took place in Amsterdam between 1905-1908. Because America and Holland had no international copyright agreements with Germany at that time, Cosima had no legal recourse to hinder the productions. While German law interpreted the thirty-year copyright period to expire thirty years after the year of the composer’s death, certain other European countries interpreted it to mean thirty years from the date of the composer’s death.

\[15\] Ibid.: 274.
death. This loophole allowed for legal productions of *Parsifal* in Monte Carlo and Zurich in 1913.

The majority of Europe, however, would wait until 1914 to see the opera. In fact, many opera houses throughout the continent scheduled performances to begin at the stroke of midnight on January 1, 1914. Because of the one-hour time difference between Germany and Spain, the Teatro del Liceo in Barcelona staged the first of these productions. In January of 1914 there were performances of *Parsifal* in over forty opera houses in Germany alone, and many more than that in opera houses throughout Europe.

As Wagner’s wish that *Parsifal* only be performed in Bayreuth has been ignored; his original concepts of staging, costumes, and set design have also been altered to accommodate the creative vision of the producers. The most notable version of the music drama was staged in Bayreuth in 1951 by Wagner’s grandson Wieland. Though Wieland’s interpretive ideas were often quite different than those of his grandfather, many critics claim the simplicity of staging manifested by his production created an even more solemn feeling than the original. Another version produced in Geneva in 1982 is set in a post-apocalyptic world replacing Klingsor’s castle with an atomic reactor and the Spear with an atomic bomb. Such interpretations, regardless of how they might diverge from Wagner’s intent, are a tribute to the timelessness of the story and the adaptability of Wagner’s message to a multitude of creative visions.

VI. The Analysis of Opera

In my analytical study of *Parsifal*, I will attempt to ascertain how the music in a particular section may have been composed to most strongly enhance the text, and consequently achieve the dramatic effect sought by the composer. As Abbate and Parker note: ‘Of course, any writer, who… chooses to regard opera as music alone is seeing only one of the three primary colors. ‘Analyzing opera’ should mean not only

16 For instance, Act III takes place on an empty stage with the characters in spotlight.
‘analyzing music’ but simultaneously engaging, with equal sophistication, the poetry and the drama.”¹⁷ Wagner’s strong emphasis on the interrelation of music with textual and dramatic aspects is evidenced by the fact that, unlike most opera composers, he created his own libretti. Since the text of Wagner’s operas predates the composition of the music, the effect the text and drama have on the musical aspects must be considered in any analytical procedure attempting to explain his compositional processes. In addition to text and drama, symbolism also has a deep influence on the outcome of certain compositional elements (perhaps more in Parsifal than any other opera) and will also be examined. Take, for example, Gurnemanz’ comments on the holiness of Good Friday in Act III. Wagner uses chromatic harmonies and a chromatic melody when Gurnemanz is pondering the pain of man and then abruptly switches to D major on the words “gentle tread shall spare”. As this example shows, text and drama had a profound effect on Wagner’s compositional choices and will be addressed accordingly in my analyses.

Wagner’s most notable means of expressing dramatic action through music is, of course, his use of leitmotif:

…a theme, or other coherent musical idea, clearly defined so as to retain its identity if modified on subsequent appearances, whose purpose is to symbolize a person, object, place, idea, state of mind, supernatural force or any other ingredient in a dramatic work.”¹⁸

Though the original use of this term is attributed to A.W. Ambrose in 1865, the concept, and consequently the use of leitmotifs in an analytical framework, was popularized by Hans von Wolzogen’s 1876 thematic guide to Wagner’s Ring cycle. Wagner first used the actual term ‘leitmotif’ in reference to his own music in Über

die Anwendung der Musik auf das Drama in 1879, though he had addressed the concept in earlier writings using terms such as “thematics Motiv”, “Grundthema”, and “Hauptmotiv”. The context of his use of the term ‘leitmotif’ is in a complaint about a friend (who is thought to be Wolzogen) who “has treated them more from the point of view of their dramatic import and effect than as elements of the musical structure”. As is evidenced by this statement, the complexity of Wagner’s use of leitmotifs is not adequately reflected by an analytical approach consisting of simple identification and labeling.

Carl Dahlhaus writes, concerning Tristan und Isolde, “…the practice of giving names to the ‘Leitmotive’ is helpful for analyzing the work, but also questionable. It seems unavoidable, but it is also inadequate… The motives are amorphous; they merge with each other, and their boundaries are not strictly defined.” This statement crystallizes the difficulty encountered in ‘leitmotivic’ analysis of any of Wagner’s later music dramas, as the motivic cells are constantly altered, and are combined with each other in order to fulfill the dramatic need. Also, many of the motives are what Ernst Kurth called “Entwicklungsmotives” or “developmental motifs” – “which achieve independence not only of such representational functions but also of the kind of clearcut shaping that makes a leitmotif easily identifiable”. Lists of leitmotifs for any of the late dramas differ greatly among various studies, due to the fact that it is often difficult to differentiate between a basic leitmotif and what can be considered an alteration. As an example of the variety of scholarly opinion, Windsperger lists forty separate leitmotifs for Parsifal while Henderson discusses only about fifteen.

19 Ibid., 527.
In spite of the discrepancy, there are a few leitmotifs in *Parsifal* on which all scholars seem to agree. Figure 1-1 lists ten commonly cited leitmotifs from *Parsifal*. The first four – Communion, Faith, Fool, and Sorcery – represent ideas that will be reiterated throughout the opera. The next two – Grail and Spear – represent specific objects while the remaining four – Amfortas, Kundry, Klingsor, and Parsifal – refer to characters. Wagner uses fragments and combinations of these basic themes constantly throughout the musical drama to unify the musical texture as well as to add psychological emphasis to the text. Though the analyses that appear in Chapter Four will point out the leitmotifs as they appear as a means for connecting the music to the drama, a discussion of how they relate to or define the overall musical structure will not be undertaken in this dissertation.

Though visual effects are undoubtedly of great importance in the production of any of Wagner’s operas, they play a reduced role in the compositional process for two reasons. First, they are generated after the music and text are complete. Second, Wagner hired set designers and costume designers to create these aspects and therefore (though Wagner certainly had strong ideas how it should all be done) they are not actually created solely by him. In fact, in his early operas (*Die Feen* through *Die Fliegende Holländer*) Wagner had much less control over the visual aspects as the producer would make the costumes and sets from used materials from other operas. There are numerous accounts of Wagner attending one of his operas and was disappointed or even angered by the visual representation (for instance the Vienna production of *Rienzi* in May 1872 where he was “appalled by the style of production and anachronistic sets”). Though he would gain greater control over his productions as he became wealthier and more prominent, Wagner would not have complete authority until the opening of Bayreuth. Consequently, the examination of how visual elements might affect the compositional process is not as germane as contemplating how text and drama affect it.

VII. Analytical Approaches

This study examines sections of *Parsifal* using two very different analytical methods. First, Chapter Two utilizes Neo-Riemannian theory to elucidate chord-to-chord information in short chromatic passages. Previous models by other analysts are expanded and combined for the purpose of allowing this transformational approach to include an increased number of sonorities. Second, Chapter Four uses Schenkerian analysis (with some extensions) to investigate the tonal middleground of five passages from different parts of the opera. By applying these two disparate methods to sections of the opera, this study illustrates that both are capable of producing enlightening analytical details about Wagner’s music on different hierarchical levels.

Chapter Summary

The initial chapter of this dissertation has provided background information on several aspects of the construction of *Parsifal*. Through the study of Wagner’s ever-changing attitude toward both the function and societal importance of art, we are better equipped to analyze how the music of the opera interrelates with the text, drama, and visual aspects to produce a ‘Gesamtkunstwerk’ as he defined the concept in his later years. The identification of the leitmotifs that constitute the representational building blocks of this particular music drama, as well as familiarity with the story of *Parsifal* – both as it appears in various ancient legends and as told by Wagner – are also essential to a deep understanding of how Wagner uses musical gestures to portray important dramatic concepts. The discussions of the compositional history and subsequent performances of the opera provide insight not only into the reverence with which Wagner regarded his final, and most sanctimonious composition, but also into the reverence that this timeless and monumental work has inspired in subsequent generations.
Figure 1-1: Selected *Parsifal* Leitmotifs
CHAPTER TWO

Part One of this chapter reviews several Neo-Riemannian models: Hyer’s update of Riemann’s *Tonnetz*[^24] (which examines relationships among major and minor triads), Douthett and Steinbach’s Chicken-Wire Torus and Cube Dance (which organize the triads into hexatonic systems), as well as their Towers Torus and Power Towers models (which provide functional designations for transformations with dominant, minor, and half-diminished seventh chords), and Callender’s split function (which addresses parsimonious transformations between triads and seventh chords).

Part Two begins by examining the range of possibilities of semitone motion between any two common-practice sonorities and developing referential tables that list all possible combinations. Then, the parsimonious transformations – those that exhibit a displacement of one or two semitones – are organized according to displacement and cardinality into separate collections with a specific functional designation assigned to each constituent member.

Part Three proposes the existence of both reverse and fuzzy *Tonnetz* functions. An analytical model for the examination of parsimonious relationships among all triads is produced.

Part Four will suggest that cardinality-changing transformations can be functionally compared to the traditional and extended *Tonnetz* functions based on the intervals held invariant in each transformation.

Part Five examines relationships among seventh chords. Again proposing the existence and usefulness of reverse and fuzzy Neo-Riemannian transformations, a new set of operations is established that is capable of expressing a functional connection between any two seventh chords. Using the new operators, Douthett and Steinbach’s Power Towers is altered to show the functional relationships among all seventh chords (including major seventh chords).

In Part Six I construct an inclusive model for the analysis of all parsimonious connections between triads and seventh chords by connecting the triad model produced in Part Three with the seventh chord model produced in Part Five.

In Part Seven I use the inclusive model to examine four short passages from Parsifal.

I. Review of Neo-Riemannian Models

Neo-Riemannian theory has made it possible for analysts to explore relationships between successive sonorities in a chromatical, non-functional texture. In order to extend the applicability of this approach to a greater number of possible chord-to-chord connections, I will combine existing graphs that are capable of analyzing connections between either triads or seventh chords and produce a unified model that is capable of also expressing functional relationships between triads and seventh chords. Before attempting to construct this unified model for the analysis of parsimonious voice leading, it will be instructive to define ‘parsimony’ as it will be used in this study. Though most authors use the term in a general sense to describe semitonal voice motion in a non-tonal musical context, in order to set the boundaries of applicability for my model, a more specific definition will be required. To establish my definition I will take, as a point of departure, Douthett and Steinbach’s graph of P (m, n)-related triads shown in Figure 2-1. The m variable represents number of voices that move one semitone while the n variable represents number of voices that move two semitones. Of these four examples, Douthett and Steinbach admit only the first three as examples of parsimonious relations. The three parsimonious examples (a, b, and c) have a total semitone displacement of 1, 2, and 2
semitones, respectively, and the excluded member of the example (d) has a total displacement of three semitones. Following this example, I will consider a connection between two sonorities that exhibits a total voice-leading displacement of one or two semitones to be parsimonious, while I will consider a connection with a total voice-leading displacement of three or more semitones to be non-parsimonious.

Figure 2-2 shows Brian Hyer’s modernization of Riemann’s *Tonnetz*. In this analytical model, designed to assign functional relations to parsimonious motion between two major or minor triads, each triangle represents a triad and a relation is established by “flipping” a triangle (in this figure C minor is referential) across one of its three axes, consequently establishing a functional relationship with the triad onto which it is mapped. Four functions result from these operations. First, the Parallel or ‘P’ function is achieved by flipping a triad across its P5 axis (C and G are retained as common tones) resulting, in this case, in a C major triad. C major and C minor triads are said, then, to be P-related. Flipping a triangle across its m3 axis, in this case mapping the c minor triad onto an A-flat major triad creates the *Leittonwechsel*, or L, function. The Relative function, designated as R, flips the triad across its M3 axis, here mapping onto an E-flat major triad. The fourth function, the Dominant or D relation, is not parsimonious according to Douthett and Steinbach.

Douthett and Steinbach’s Chicken-wire Torus, shown in Figure 2-3a, provides a slightly more accessible visual image of these relationships. Here, each letter represents a triad (capital for major, lower-case for minor). P-related pairs of triads are adjacent to each other across the solid lines, L-related pairs are adjacent across the dotted lines, and a dashed line connects R-related pairs.

Figure 2-3b shows Douthett and Steinbach’s Cube Dance, which organizes the twenty-four major and minor triads into four cubes. Each cube is produced by a PL-cycle and represents one of the four discrete hexatonic systems. Three of the six triads in each cube are connected to an augmented triad coupling, which in turn is

26 Douthett and Steinbach’s term for a sonority that serves as an intermediary between two hexatonic or octatonic systems.
connected to three triads of the adjacent cube. Each line between a major or minor triad and an augmented triad represents a displacement of one semitone.

Douthett and Steinbach’s Towers Torus, shown in Figure 2-4a, establishes relationships among dominant, minor, and half-diminished seventh chords. In this model, each node represents a particular seventh chord. Each is connected to another seventh chord by one of three types of lines (same as in the Chicken-wire Torus). This time a solid line represents a P1 or P2 relationship, depending on direction (directional guide is given below graph), dotted lines connect seventh chords that are L1 or L2-related, and R-related seventh chords are connected by dashed lines.

Derived from the Towers Torus, Douthett and Steinbach’s Power Towers model, shown in Figure 2-4b, provides a powerful visual model for understanding the parsimonious connections between seventh chords. It is comprised of three towers, each consisting of all the seventh chords within one of the octatonic modes. A line is drawn from each seventh chord to each of the other seventh chords with which it shares three common tones. These connections can be achieved by displacing one of the pcs in the chord by one semitone.

The Neo-Riemannian models examined thus far provide designations for relationships among major and minor triads, and dominant, minor, and half-diminished seventh chords, respectively. Each system is designed to deal with chord-to-chord connections between specific types of sonorities, and therefore excludes a number of verticalities that frequently occur in tonal music – specifically major seventh and diminished seventh chords, and augmented and diminished triads.

Changes in cardinality – namely, triad to seventh chord connections – also lie beyond the scope of these two models. Clifton Callender provides a preliminary analytical approach to resolving this dilemma. Figure 2-5 shows Callender’s analysis of four consecutive sonorities involving a change in cardinality between the second and third. He has shown the connection from G# major to g# minor to be P-related. He then labels the transformation from g# to E7 as an S-function (indicating that one voice has split into two) with a subscript D# (indicating that the D# has split into two voices, D and E, each a semitone away). The E7 to G7 connection has been left unanalyzed. Though this method is mostly descriptive, it will serve as an important
II. Exploration of Parsimony and Displacement Classes

These Neo-Riemannian models are an effective means of describing local harmonic motions in chromatic music because they allow the analyst to categorize the movement from one sonority to the next from a standpoint of total semitone displacement rather than one of functional connection. These theories are limited to the analysis of transformations in which the second sonority is either one or two semitones away from the first, though larger displacements are certainly possible. In order to extend analysis of parsimonious transformations to include a greater variety of sonorities, it is important to explore the range of possible voice-leading connections between two common-practice sonorities and to determine how many of these fall under the rubric of parsimony.

The Neo-Riemannian concept of semitone displacement can quite easily be extended to include sonorities outside of the major and minor triad and dominant, minor, and half-diminished seventh chord. Figure 2-6a borrows from David Lewin an extremely simple but effective means of establishing semitone displacement between two sonorities that he refers to as an arrow table. Here, we see a root position C major triad stacked beside an E minor triad with a line drawn between the changing pitch, illustrating that a displacement of one semitone has occurred. Figure 2-6b shows the other four possibilities of creating a common practice sonority by displacing one member of a C major triad by one semitone. This method of counting semitone displacement, though potentially useful, also proves to be time-consuming when attempting to analyze numerous sonorities in a long passage. A condensed model is certainly needed if this type of semitone analysis is to be used. Figure 2-7a shows graphically the five sonorities that are one semitone away from our referential triad. The transformation between C major and CM7 is made possible by doubling
the root and then moving one of the voices one semitone from C to B. I use the term *displacement class* to describe these relationships. It can be said that with C major as the referential triad, displacement class 1 (abbreviated DC1) encompasses the CM7 chord, as well as the cm, em, C+, and C° triads, and that these five sonorities are DC1-related to C major. For the sake of clarity, all calculations in this chapter will assume the referential sonority to be in root position, though it can appear in any inversion within an actual musical texture.

Figure 2-7b shows the same operation applied to a C major-minor 7th chord and the DC1-related triads are shown to be CM7, Am7, Cm7, and C#7. Figure 2-8a shows the C major triad and its DC2-related sonorities, consisting of eight triads and four seventh chords (shown in bold type). In Figure 2-8b the C major-minor 7th sonority is shown with its respective DC2 relations, including three triads and ten seventh chords. A similar model could be constructed for DC3 relations and beyond, though this task would prove to be cumbersome. Please refer to figure 2-9a, which shows the CM triad with its DC1-related sonorities. In order to generalize this operation and approach a useful analytical model, the root of each sonority can be expressed in algebraic relation to the root of the referential triad as shown in figure 2-9b. If we take the pitch C to be X, C major can now be expressed as X major. The DC1-related triads are now expressed as Xm, X+, XM7, (X+1)° (as C# is 1 semitone above C), and (X+4)m as E is 4 semitones above C). Figure 2-9c shows the operation using D major as the referential triad. If D is used as the unknown, Dm, D+, DM7, D#°, and F#m (which are DC1-related to D Major) will result, showing that the algebraic operation is constant under transposition.

Graphic illustrations could also be produced for the minor, augmented, and diminished triads, as well as the major, minor, half-diminished, and fully diminished seventh chords. This set of models would allow the analyst to examine the remainder of the common practice sonorities not covered by the Neo-Riemannian models as they relate to their DC1 and DC2 members. In the interest of expanding the

displacement theory to include any possible transformation, models could also be
constructed to show DC3, 4, 5, and even 6 relations to the referential sonorities
(though these would be far larger and more cumbersome than the ones for
displacement classes 1 and 2). This would create several pages of models, making it
difficult for the analyst to reference the correct sonority and displacement class
transformation. Figure 2-10 shows a slightly different approach to the categorization
of displacement classes. Beginning with C major and using Lewin’s method from
Figure 2-6, the displacement class relationships of all other major triads are calculated
(XM to X+1M or C#M = DC3, XM to X+2M or DM = DC6 and so forth...).

For the purpose of including every possible transformation from a major triad,
one would have to calculate the displacement class relation not only between the
referential major triad and the other eleven major triads, but also to all twelve
members of each of the eight other common-practice sonorities, yielding a total of
107 possible transformations. Likewise, each of the other eight sonority types, when
used as the referential sonority, will produce its own set of 107 displacement class
relationships. Figure 2-11 shows the final product of these calculations: the
displacement class tables. The results of the calculations from Figure 2-10 appear
conveniently in the left column of the major triads table (X to X+1 =3, X to X+2 =6,
etc...). Using these tables it is possible to quickly calculate the semitone displacement
between any two sonorities. For example, Figure 2-12a shows a transformation from
an E minor triad to a C#ø7 chord. The arrow table analysis reveals that the B in the
triad becomes the C# in the seventh chord. The total displacement is 2 semitones,
making these two sonorities DC2-related. Please refer to the minor triad table in
Figure 2-11. If we find the row for X+9, as C# is 9 semitones above E, and follow the
row across until we reach the ø7 column, we see that these sonorities are in fact DC2-
related. Similarly, Figure 2-12b shows the transformation of a DM7 chord to an
Edom7 chord. The arrow table analysis shows that the D is held as a common tone
while the F# moves 2 semitones to E, A moves 1 semitone to G#, and C# moves 2
semitones to B for a total of 5 semitones displaced. Again this type of analysis is
made extraneous by the appropriate displacement class table which, in fact, reveals
these two sonorities to be DC5-related. Here we have a case where a member of the

25
first sonority does not move to the closest possible pitch in the second sonority, as C# is closer to D than B. As shown in figure 2-12c, if it were to go to the D then the B would not have a corresponding member in the transformation. In order for the displacement class tables to function properly, each discrete member of a sonority must have a corresponding member in the other sonority. We therefore must accept Lewin’s upshift and downshift voice-leading principles (which satisfy this requirement) in lieu of his idea of maximally smooth voice leading (which does not, as this type of voice leading connects each pc in the first sonority to the nearest pc in the second and disregards any type of one-to-one relationship). An interesting discovery shown by the tables is that it is possible to transform any one of these sonorities into any other using a displacement of six semitones or less, with the exception of five transformations which require a displacement of seven.

As two passages with the same numbers written below each transformation could sound completely different, the analytical viability of such an approach is questionable. This tool serves as a descriptive measure of all conceivable parsimonious transformations. Table 1a is a list of the six possible transformations between two triads involving a displacement of one semitone, with corresponding functional designations 1α1 - 1α6. Each of these functional designations consists of three parts: the first number indicates the number of semitones displaced in the transformation, the symbol indicates the type(s) of sonorities involved (α=triad, β=seventh chord, and χ=change in cardinality), and the second number indicates the ordinal place of the function in its respective list.

Due to the enharmonic nature of augmented triads and fully-diminished seventh chords, some of the functional designations in this and subsequent lists (such as 1α5 and 1α6) will contain more than one algebraic transformation. The far right column shows the previous Neo-Riemannian (in this case Tonnetz) designation, revealing that two of the six possible functions have been previously named. Table 1b lists the eight possible transformations between two seventh chords involving a

displacement of one semitone. They have been organized into a table, as were the triads, assigning a functional designation to each. They are designated the same as triads except that the symbol β is used in the function to indicate the involvement of seventh chords. Again, the previous Neo-Riemannian designations (this time, the P1, P2, L1, and L2 functions from the Towers Torus) are shown in the right-hand column, where possible. Table 1c shows the two possibilities of a DC1 transformation between a triad and a seventh chord, designated $1\chi1$ and $1\chi2$, respectively. Tables 2a-c are similar exhaustive lists of possible transformations between triads and seventh chords involving a displacement of two semitones.

Thus far, I have done little more than examine the range of transformational possibilities and relegated the parsimonious ones to a series of lists that by themselves have little analytical application. Parts III-V of this chapter will be concerned with determining functional relations among the vast array of listed parsimonious transformations, and consequently developing analytical models that are capable of being applied to all of them.

III. Expansion of Triad Model

As shown in Table 1a, only two of the six conceivable DC1 transformations between triads has an assigned function on the Tonnetz, namely $1\alpha1$ (Parallel) and $1\alpha2$ (Leittonwechsel). The other four transformations cannot be represented because one of the constituent triads is either an augmented or a diminished triad, which form straight lines on the model instead of triangles. In order to explore functional relationships that include these sonorities, and consequently approach a unified model for triads, it will be instructive to more closely explore the P, L, and R functions.

All three of these functions are between triads that share two common tones, where the function type is defined by the interval between the invariant pcs. The P function, as shown in Figure 2-13a, holds the P5 invariant and displaces the remaining pc by one semitone. The L function, shown in Figure 2-13b, holds the m3 invariant and displaces the other voice by one semitone, while the R function (2-13c)
holds the M3 invariant and displaces the remaining voice by two semitones. All three of these functions are reciprocal.

As my $1\alpha_1$ and $1\alpha_2$ functions are represented by Tonnetz functions P and L, the first transformations from Table 1a without a functional designation is $1\alpha_3$ – the XM – $(X+1)^\circ$ transformation, or, more simply, the transformation of a major triad to a diminished triad whose root is one semitone higher. Figure 2-14a graphically illustrates $1\alpha_3$. The m3 is held invariant and the other voice is displaced by one semitone. This description perfectly matches the definition of the Leittonwechsel function. The $1\alpha_3$ function differs from L (pictured next to it) only by the direction in which the displaced tone moves. I propose that this function can be considered a reverse of the L function, abbreviated -L. Similarly, the $1\alpha_4$ (or Xm - X° transformation) shown in Figure 2-14b holds the m3 invariant and displaces the other voice by one semitone in the opposite direction of the L function. Therefore, this function can also be considered an -L.

Function $1\alpha_5$, or XM – X^+, shown in Figure 2-14c, holds the M3 invariant and displaces the remaining voice by one semitone. This description fits the definition of the Relative function, except that the displaced tone moves one semitone instead of two. Drawing upon recent ideas by Ian Quinn and Joseph Straus, I propose that this function can be viewed as “fuzzy” R, abbreviated R*, since the R function is exerted though the number of semitones displaced is not exact. Figure 2-14d shows that the final triadic transformation, $1\alpha_6$, is also a R* function, as the M3 is held invariant and the remaining voice is displaced by one semitone. Figure 2-14e demonstrates that, due to the symmetrical nature of augmented and diminished triads, the -L and R* functions are not reciprocal since an -L function exerted on a diminished triad or a R* function exerted on an augmented triad is capable of producing two discrete triads, depending on which m3 (or M3) is held invariant. Table 3 is an updated version of Table 1a, complete with all four simple Neo-

Riemannian functions, P, L, -L, and R*, which make it possible to assign a functional
designation to any DC1 transformation between two triads.

For the purpose of producing a new model that illustrates these new triadic
transformational functions, I have arranged the 24 major and minor triads into three
octagonal graphs, according to membership within the three discrete octatonic
systems (shown in Figure 2-16). These octagons are produced by PR-cycles in the
same manner that Cohn’s hexatonic systems are produced by PL-cycles. ³⁰ The
organization of the triads into octatonic systems, as opposed to the traditional
hexatonic alignment, is necessary in order to facilitate the connection between my
graphs for triads and seventh chords, respectively, as will become apparent in Part Six
of this chapter.

Figure 2-17a shows an arrangement of the triads within their respective
octatonic systems that I call the Octatonic Propeller graph. Each octatonic propeller
blade is, again, produced by a PR-cycle. Figure 2-17b maps the twelve possible
Leittonwechsel functions between the triads, illustrating that an L function effects a
move between adjacent octatonic systems.

In Figure 2-17c, the arrangement of the triads on each propeller has been
rotated to show diminished triad couplings between pairs of triads, each line
representing an -L transformation. In Figure 2-17d, four boxes have been
superimposed over the Propeller graph. Each box touches six triads, creating four
tiers. All six triads in a tier share an augmented triad coupling – in other words each
is R*-related to the same augmented triad. The inner tier triads are R*-related to the
C+ triad, the second tier to the C#+ triad, the third tier to the D+ triad, and the outer
tier to the Eb+ triad.

Functional relationships between two triads that are DC2-related can be
expressed (as they traditionally have been) by compound functions. Nine of the
twelve possible transformations can be achieved by displacing two voices by one

³⁰ Richard Cohn, “Maximally Smooth Cycles, Hexatonic Systems, and the
Analysis of Late-Romantic Triadic Progressions.” *Music Analysis* vol. 15, no.1, (Mar.
semitone each (Douthett and Steinbach’s P2,0). The other three -- 2α4 (R function), 2α6, and 2α10 displace one voice by two semitones (P0,1). When dealing only with major and minor triads, with one exception the transformation is unique, meaning that there is one and only one sonority (major or minor) that acts as an intermediate sonority and is DC1-related to both.31 With the admission of augmented and diminished triads, because of their intervallic similarity, it is possible to have two discrete triadic intermediaries between two DC2-related triads.

For example Figure 2-18 shows two possible intermediate sonorities between CM and EM triads. Figure 2-18a tracks the traditional PL relationship between the two while 2-18b illustrates that a C+ triad can also act as an intermediary, effecting an R*R* relationship. I suggest that when there are two possible intermediaries, then the functional designation that reflects the path through the more stable sonority (major or minor triad) be preferred to the less stable path (augmented or diminished triad).

Though six of the twelve functions can be considered as R*R*, as they can theoretically travel through an augmented triad, four have a more stable interpretation. The exceptions are 2α2 – which is connected by both an augmented and a diminished triad, making either analytical choice equally viable – and 2α3, which has R*R* as the only possible intermediary. Table 4 lists the possible transformations between two DC2-related triads with their respective compound functions.

IV. Integration of Split Functions

Split functions can also be expressed by their respective relationships to one of the various triadic Neo-Riemannian functions discussed in Part Three. Take for example both of the DC1 split possibilities -- 1χ1 and 1χ2 – shown in Figure 2-19. In both cases, one voice splits into two to form a seventh chord. One voice is held as a common tone while the other voice is displaced by one semitone. Splits such as these

31 2α3 or XM to (X+5)m is the exception, as it has an augmented triad as the only possible triadic intermediary.
that involve the movement of only one voice (either one or two semitones) will be referred to as a *simple split*.

In each transformation from a triad to a seventh chord, in addition to the voice that splits there will be an interval between the other two voices of the triad that is held invariant. In both of these cases, a m3 is held, causing the transformation to resemble a Leittonwechsel function between two triads, making each of the DC1 splits in Figure 2-19 functionally equivalent to each other, as well as any L transformation between two triads. I refer to both of these splits as *L splits*, abbreviated S L (following Callender’s notation). There are three other simple split possibilities in addition to S L that will be used in the ensuing investigation of split functions between DC2-related sonorities:

1. S R – M3 held invariant, other voice displaced by two semitones
2. S -L – m3 held invariant, other voice displaced by one semitone in opposite direction of S L
3. S L* – m3 held invariant, other voice displaced by two semitones in same direction as S L

The thirteen DC2-related split functions shown in Table 1c will conform to one of three possible paradigms:

1. *simple splits*: as described previously, one voice of a triad splits into two voices, one held as a common tone and the other displaced by two semitones (in DC2)
2. *compound splits*: one voice of a triad splits into two voices, each displaced by one semitone
3. *complex splits*: a simultaneous occurrence of a simple split and another Neoriemannian function

The remainder of this section will detail the derivations of the respective simple, compound, or complex functional designation of each of the thirteen DC2-related split transformations. The results are provided in Table 5.

Figure 2-20a-m provides an arrow table illustrating each transformation using triads built on pitch class C:
a) $2\chi_1$: a C major triad becomes a C7 chord. A m3 (E and G) is held invariant. The remaining voice (C) splits into two voices – one common tone and one two semitones away. The result is a simple split with an S_{L^*} relationship.

b) $2\chi_2$: a C major triad becomes an Am7 chord. A M3 (C and E) is held invariant. The remaining voice (G) splits into two voices – one common tone and one two semitones away. The result is a simple split with an S_R relationship.

c) $2\chi_3$: a C major triad becomes a C#ø7 chord. A m3 (E and G) is held invariant. The remaining voice (C) splits into two voices – each a semitone away. The result is a compound split with an $S_{L/\perp L}$ relationship.

d) $2\chi_4$: a C major triad becomes an AbM7 chord. A Parallel function is exerted, creating a C minor triad. A m3 (C and Eb) is held invariant. The remaining voice (G) splits into two voices – one common tone and one a semitone away. The result is a complex split with a PS_{L} relationship.

e) $2\chi_5$: a C minor triad becomes an Ab7 chord. A m3 (C and Eb) is held invariant. The remaining voice (G) splits into two voices – each a semitone away. The result is a compound split with an $S_{L/\perp L}$ relationship.

f) $2\chi_6$: a C minor triad becomes a Cm7 chord. A M3 (Eb and G) is held invariant. The remaining voice (C) splits into two voices – one common tone and one two semitones away. The result is a simple split with an S_R relationship.

g) $2\chi_7$: a C minor triad becomes an Aø7 chord. A m3 (C and Eb) is held invariant. The remaining voice (G) splits into two voices – one common tone and one two semitones away. The result is a simple split with an S_{L^*} relationship.

h) $2\chi_8$: a C minor triad becomes an CM7 chord. A Parallel function is exerted, creating a C major triad. A m3 (E and G) is held invariant. The remaining voice (C) splits into two voices – one common tone and one a semitone away. The result is a complex split with a PS_{L} relationship.

i) $2\chi_9$: a C° triad becomes an Ab7 chord. A m3 (C and Eb) is held invariant. The remaining voice (Gb) splits into two voices – one common tone and one two semitones away. The result is a simple split with an S_{L^*} relationship.
j) $2\chi_{10}$: A C° triad becomes a cø7 chord. A m3 (Eb and Gb) is held invariant. The remaining voice (C) splits into two voices – one common tone and one two semitones away. The result is a simple split with an Sl* relationship.

Due to the symmetrical nature of the augmented triad, it is easiest to express the remaining three transformations (which include an augmented triad) as complex functions containing an R* function (which converts the augmented triad to a major or minor triad) and a simple split.

k) $2\chi_{11}$: A C+ triad becomes C#m7 chord. An R* function is exerted, creating a C#m triad. A M3 (E and G#) is held invariant. The remaining voice (C#) splits into two voices – one common tone and one two semitones away. The result is a complex split with an R*S relationship.

l) $2\chi_{12}$: A C+ triad becomes CM7 chord. An R* function is exerted, creating a CM triad. A m3 (E and G) is held invariant. The remaining voice (C) splits into two voices – one common tone and one a semitone away. The result is a complex split with an R*Sl relationship.

m) $2\chi_{13}$: A C+ triad becomes C#M7 chord. An R* function is exerted, creating an e#m triad. A m3 (E# and G#) is held invariant. The remaining voice (B#) splits into two voices – one common tone and one a semitone away. The result is a complex split with an R*S* relationship.

An obvious analytical problem that results from these designations is that it is in some cases possible to arrive at the destination sonority by more than one equally viable path. I will show in Part Six of this chapter that of the numerous theoretical split possibilities explore in this section, only Sr and Sl, and compound splits using these two functions will be necessary in constructing the unified model.

V. Expansion of Seventh-Chord Model

There are several ways in which the eight possible seventh chord transformations can be effectively organized. One way would be to divide them into four pairs according to retention of intervals. Though this method would indeed be
consistent with the way triads and split functions were previously handled, this
arrangement would obscure the similarity between the octatonic organizations of
triads and seventh chords, respectively. In other words, a system would be produced
where an R triadic function would retain the octatonic mode, while an R-type seventh
chord function would not. If a unified system for the analysis of parsimonious triads
and seventh chords is to be constructed, as is the goal of this chapter, it is vital that a
seventh chord transformation that bears the same letter as a particular triadic
transformation have a functional, as well as aural, similarity. Corresponding letter
designations between triads and seventh chords must always either retain the
octatonic mode or map onto a coupling. These criteria will be met in the ensuing
discussion, though other criteria such as interval retention or similarity of motion may
be sacrificed. Figure 2-21 provides an arrow table for each transformation. The
functionality of each transformation, and its relevance to an established triadic
function, will be discussed individually:

1β1: Douthett and Steinbach’s P2 function. The third of a dominant seventh chord is
lowered by one semitone to create a minor seventh chord with the same root. This
transformation is similar to a P triadic function, as the outer voices are retained and an
inner voice is altered to effect a change in modality. This function will be referred to
as P2 (retaining its original designation)

1β2: Douthett and Steinbach’s L2 function. The seventh of a dominant seventh chord
is lowered by one semitone to create a minor seventh chord whose root is nine
semitones higher. This transformation is aurally similar to an R triadic function (as a
C7-Am7 transformation is unquestionably similar to a CM-Am transformation) and
will be referred to as R1.

1β3: The root of a dominant seventh chord is raised by one semitone to create a
diminished seventh chord one (or 4, 7, or 10) semitone(s) higher. This is
transformationally similar to a 1α3 function where the root of a major triad is raised
by semitone to create a diminished triad, making it an -L-type function. I will refer to
it as an –L1.
1β4: The seventh of a dominant seventh chord is raised by one semitone to create a major seventh chord with the same root. An outer voice is altered to effect a change in modality, similar to 1α5 (major triad to augmented triad). As this transformation closely resembles an R* triadic function, I will refer to this one as R*1.

1β5: Douthett and Steinbach’s P1 function. The fifth of a minor seventh chord is lowered by one semitone to create a half-diminished seventh chord with the same root. This transformation is similar to triadic function 1α1 (P), as the outer voices are retained and the movement of an inner voice causes a change in modality. I will therefore refer to this function as P1.

1β6: The seventh of a minor seventh chord is lowered by one semitone to create a half-diminished seventh chord whose root is nine semitones higher. Though the sonorities differ, the movement and aural effect of this transformation is similar to 1β2. I will refer to this function as R2.

1β7: The seventh of a half-diminished triad is lowered by one semitone to create a diminished seventh chord with the same root (or 3, 6, or 9 semitones higher depending on spelling). An outer voice is altered to effect a change in modality. This function will be referred to as R*2.

1β8: The root of a half-diminished seventh chord is lowered by one semitone to create a major seventh chord. This is the exact same relationship (though the sonorities differ) as 1β3, making this transformation an -L2. Table 6 provides an updated and complete version of Table 1b.

The construction of a new model to accommodate these designations will not be necessary, as the Power Towers, with a few minor adjustments, will be sufficient. Shown in Figure 2-22 a 3-D Power Towers model has been constructed to reflect both the °7 (represented by the dotted lines) and M7 (solid lines) pathways connecting the three octatowers. The key below the graph illustrates the placement of the constituent functions on the model. As with the triads on the Octatonic Propeller Graph, P and R designations retain the octatonic mode, while -L and R* map the triad onto a coupling, thereby at least temporarily exiting the previous octatonic space.
VI. Combination of Previous Models

Now that a model has been established for both triads and seventh chords, the final step in the construction of a unified parsimonious model will be to link the two together. The preliminary investigation of split functions between two DC1-related sonorities revealed that the two possibilities – XM to XM7 and Xm to (X+8)M7 – were both SL functions. This shows that each of the twelve major triads is SL-related to a major seventh chord, as is each of the twelve minor triads. The table that lists the split functions between two DC2-related sonorities reveals that each of the twelve major triads is SR-related to a minor seventh chord (2χ2 – XM to (X+9)m7), as is each minor triad (2χ6 – Xm to Xm7).

Using the four split functions (two SL and two SR), it will be possible to connect the Octatonic Propeller graph to the 3D Power Towers graph through split functions between major/minor triads and major/minor seventh chords. Figure 2-23, the Starburst graph, demonstrates the range of possible connections from the triads (again separated into their respective octatonic collections) to the seventh chords, through the SL and SR conduits. Figure 2-24 is a three-dimensional visual illustration of how the triad and seventh chord models can be connected, if the 3D Power Towers is visualized as hovering above the Octatonic Propellers graph. The parallelogram is taken from the bottom right octatower in the 3D Power Towers graph, along with the two adjacent M7 couplings out to the side. The line connecting the CM and cm triads is taken from the edge of the corresponding octatonic blade from the Propellers graph. Finally, the SL and SR connections, taken from the appropriate octatonic star are added to demonstrate four of the forty-eight possible connections from a major or minor triad to a major or minor seventh chord.

The end result of this is Figure 2-25, an inclusive graph capable of tracking any parsimonious transformation between two common practice sonorities. The 3D Power Towers graph (without the °7 couplings for reasons of graphic clarity) is shown and each of the triads from the three octatonic blades of the Propeller graph are placed beside, and connected to, the two seventh chords to which they are SL and
Sr-related. Again for reasons of graphic clarity the lines denoting the PR generation in each blade (in addition to the diminished and augmented triad couplings) are omitted, but can be easily visualized.

VII. Analysis

Now that the model has been constructed, I will demonstrate its usefulness by applying it to four brief passages from \textit{Parsifal}. I have included a transformational path graph – consisting of a section of the analytical model pertaining to the particular discussion (with certain sections omitted for clarity) – for each example. Example 2-1 shows the first of these to be examined. This ten measure excerpt, comprised of parsimonious voice leading between seventh chords, is from the “Kiss” scene in Act II (mm. 1032-1041) immediately after Kundry passionately kisses Parsifal and he is struggling with his desire. The predominance of R* and -L transformations indicate movement between octatonic systems and, consequently, a lack of stability that conforms to the text of the passage (“The longing, the terrible longing which seizes and grips all my senses”). The longing of the music for stability within a particular octatonic system echoes the longing expressed by Parsifal in his moment of temptation. Figure 2-26 illustrates the transformational path in this discussion. The first three transformations are labeled as R*2-L1, or its equivalent reciprocal, as the G7 chord (in the lower left octatower) moves, by way of a °7 coupling, to the Bø7 in the top octatower. This transformation is represented by arrow 1. The second transformation echoes that motion, except it returns to the Bb7 in the lower left octatower instead of the original G7. After a return to Bø7 (arrow 3), the music moves to Bø7 through an R*2 connection (arrow 4). This sonority, with two enharmonic respellings, is held for the next two measures culminating in the move to GM7 (arrow 5) on the word “Qual” (“Torment”). Again, this is a transformation involving an R* and an -L connection, though this time it occurs between two couplings instead of two members of adjacent octatowers. The subsequent move to Bbm7 (arrow 6) returns to the lower left octatower, though not parsimoniously, as
this move requires a displacement of three semitones. The R2 transformation (arrow 7), between the Bbm7 and Gø7 (on the word “Liebe” or ‘Love’), provides the only move within a particular octatonic system in the entire passage. This stability is short lived, as the progression moves to Gø7 (arrow 8) and then Gb7 (arrow 9). The arrival on Gb7, accompanying the words “Wie alles schauert” (“How everything trembles”), is the first time in the passage that the music has arrived in this particular octatonic system, as the previous nine measures traveled between the other two systems and their M7 and °7 couplings.

The second analysis, shown in Example 2-2, shows three measures (mm. 1076-1078) from later in the same scene, after Parsifal has fallen into a trance. The passage begins with a P transformation between the EM and Em triads – both of which are members of the lower left Propeller blade in Figure 2-27 (arrow 1). The subsequent transformation to the C#ø7 chord, an S\textsubscript{-L2} transformation, is achieved by mapping the Em triad onto the CM7 coupling (see Figure 2-25), and then performing an -L2 move to arrive at the C#ø7 (arrow 2). The next transformation – C#ø7 to Eø7 – involves an R2P2 motion within the lower left octatower (arrow 3). All sonorities encountered thus far have been constituents of the lower left octatower or lower left Propeller blade. This consistency is interrupted by the next transformation, which maps the Eø7 chord to an EbM triad – a member of the lower right octatower (arrow 4). As with the former transformation in which the cardinality changed, this connection is an S\textsubscript{-L2}. The ensuing P function, which maps the EbM triad to an Ebm triad (arrow 5), completes the palindromic Neo-Riemannian analysis.

The excerpt for the third analysis (Example 2-3), which involves only seventh chords, is taken from mm. 1102-1107 of the same scene when Parsifal recognizes Kundry as the foul temptress who caused Amfortas’ downfall. See Figure 2-28 for the transformational path graph relating to this discussion. The first transformation – A7 to Eb7 (arrow 1) – is accomplished by traveling through the E°7 coupling and returning to the original octatower. The second transformation (arrow 2) moves non-parsimoniously to an F#°7 chord – a coupling between the top and lower right octatowers. The motion to the top octatower, specifically to a B7 chord is then accomplished through an -L1 move (arrow 3). Two consecutive -L1R2 connections
(arrow 4/5) move from the B7 to an F#Ø7 chord and back to B7. The next three transformations (arrows 6-8) are a sequential repetition of the first three, resulting in an eventual move to the lower left octatower. The text in the first phrase of this excerpt depicts the sensuous look Kundry gave to Amfortas, while the repeat of the material a M2 higher (which is Wagner’s preferred transposition interval for sequences throughout this opera) accompanies Parsifal’s description of Kundry’s lips.

The fourth and final analytical example, shown in Example 2-4, is taken from the “Amfortas’ Prayer” scene in Act III (mm. 1012-1021). See Figure 2-29 for the transformational path graph relating to this discussion. The Bb+ triad is PR*-related to the F#m triad. Figure 2-29 illustrates that the Bb+ (or D+ enharmonically respelled) is R*-related to each of the triads in the third tier, including F#M. The compound transformation is completed by a P motion to the F#m triad (arrow 1). This sonority is in turn R*-related to the F+ triad (arrow 2). The third connection is achieved by an R* motion from the F+ triad, which is R*-related to each triad on the second tier, through the A major triad and a resulting P-transformation to Am (arrow 3). Thus far all four of the triads are either members of the lower right Propeller blade or one of its augmented triad couplings. In the dramatic action in the first six measures of the example, Amfortas again draws attention to his wound, and consequently, his sin, with the words “Hier bin ich – die offne Wunde hier! Das mich vergiftet, hier fliesst mein Blut” (“Here I am – the open wound! Here flows my blood, that poisons me”). Beginning with the Am triad in m. 1018, the next three connections effect a complete PL-cycle (Am-Fm-C#m-Am). As can be seen in Figure 2-29, this progression makes a full circle around the inside tier of the graph (arrow 4-6). This music, which is clearly hexatonic in nature (as L functions retain membership in hexatonic systems the same way R functions retain membership in octatonic ones), contrasts with the octatonic music of the preceding measures. This contrast, along with the orchestral crescendo, gives impetus to the change in character in Amfortas’ plea, as his mood changes from one of shame to one of suicide with the words, “Heraus die Waffe! Taucht eure Schwerter, tief – tief, bis ans Heft!” (“Draw your weapons! Plunge your swords in deep – deep, up to the hilt!”).
As shown in these examples, the creation of my unified model extends the scope of Neo-Riemannian theory to be applicable to sonorities, and consequently passages, that could not have previously been analyzed using the individual models. However, even with these extensions, there are still transformations that have no functional designation within my model (as shown with an X in the analyses). Since the majority of transformations between common-practice sonorities involve a displacement of more than two semitones, this approach is still applicable to only a fraction of the theoretical possibilities. Consequently, the selection of passages to illustrate the transformational relationships discussed in this chapter is difficult, as it is rare to find an uninterrupted progression of chords fitting my definition of parsimony that lasts for more than just a few measures.

Chapter Summary

In spite of its lack of applicability to every conceivable transformation, the model does prove to be effective in tracking harmonic motion within and between the discrete hexatonic and octatonic systems. I find this pursuit to be more interesting and more explanatory of Wagner's harmonic choices, particularly as they relate to the text and drama, than what is revealed by the specific chord-to-chord connections. I suggest that tracking chords in chromatic passages across and within these systems might ultimately be one of the most profitable uses of Neo-Riemannian theory.

Though the four analyses chosen for this chapter display non-tonal progressions, much of Parsifal is framed by large tonally-closed sections. As Neo-Riemannian theory does not account for tonal relationships, it will be necessary to employ other analytical means when encountering these structures. As a supplement to the previous discussion, which uses Neo-Riemannian theory to examine specific connections in non-tonal passages, Chapter Four explores long-range tonal spans using an extended Schenkerian model as defined in Chapter Three. The analyses in Chapter Four show that though much of the foreground in Parsifal is highly chromatic, and therefore best approached by a chord-to-chord transformational
method, many extended passages are controlled by tonal forces at the middleground level and are better examined by Schenkerian reduction.
Figure 2-1: Douthett and Steinbach’s Parsimonious Relations

Figure 2-2: Hyer’s Tonnetz
Figure 2-3a: Douthett and Steinbach’s Chicken-wire Torus

Figure 2-3b: Douthett and Steinbach’s Cube Dance
Figure 2-4a: Douthett and Steinbach’s Towers Torus

Figure 2-4b: Douthett and Steinbach’s Power Towers
Figure 2-5: Callender’s use of the split (S) function

a) G G
 E E
 C → B

b) G → G# G G G G G G
 E E E → Eb E E E E
 C C C C C C C → C#

Figure 2-6: Arrow tables demonstrating one-semitone displacement from C major triad.

CM7
 Cm
 C+ → CM → Em
 C#ø7

Figure 2-7: Graphic illustration of one-semitone displacement from a) CM triad and b) C7 chord

C#ø7 Eb+ Fm Am AbM7
 C#m
 CM
 EM
 Am7 E° AbM C° C7

Figure 2-8: DC2 relations
Figure 2-8: continued

Fig. 2-9: Algebraic model for major triad
CM – C#M: G → G#	CM – DM: G → A
(XM – X+1M) E → E#	(XM – X+2M) C → F#
C → C#	C → D
DC=3	DC=6

CM – EbM: G → Bb	CM – EM: G → B
(XM – X+3M) E → G	(XM – X+4M) E → G#
C → Eb	C → E
DC=3	DC=2

CM – FM: G → C	CM – F#M: G → C#
(XM – X+5M) E → A	(XM – X+6M) E → A#
C → F	C → F#
DC=3	DC=6

CM – GM: G → D	CM – AbM: G → Eb
(XM – X+7M) E → B	(XM – X+8M) E → C
C → G	C → Ab
DC=3	DC=2

CM – AM: G → E	CM – BbM: G → F
(XM – X+9M) E → C#	(XM – X+10M) E → D
C → A	C → Bb
DC=3	DC=6

| CM – BM: G → F# |
| (XM – X+11M) E → D# |
| C → B |
| DC=3 |

Figure 2-10: Complete arrow table transformations among major triads
Major triads

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>m</th>
<th>°</th>
<th>+</th>
<th>M7</th>
<th>dom7</th>
<th>m7</th>
<th>Ø7</th>
<th>°7</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>X+2</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>X+3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>X+4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>X+5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>X+6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+7</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>X+8</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>X+9</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>X+10</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>X+11</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Minor triads

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>m</th>
<th>°</th>
<th>+</th>
<th>M7</th>
<th>dom7</th>
<th>m7</th>
<th>Ø7</th>
<th>°7</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>X+1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+2</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>X+3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>X+4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>X+5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>X+6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>X+7</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>X+8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>X+9</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>X+10</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>X+11</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 2-11: Displacement class tables
Diminished triads

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>m</th>
<th>°</th>
<th>+</th>
<th>M7</th>
<th>dom7</th>
<th>m7</th>
<th>Ø7</th>
<th>°7</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>X+1</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>X+2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>X+3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>X+4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>X+5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>X+6</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>X+7</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>X+8</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>X+9</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>X+10</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>X+11</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Augmented triads

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>m</th>
<th>°</th>
<th>+</th>
<th>M7</th>
<th>dom7</th>
<th>m7</th>
<th>Ø7</th>
<th>°7</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>X+1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>X+4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>X+5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+7</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>X+8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>X+9</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+10</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+11</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 2-11: continued
Major seventh chords

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>m</th>
<th>°</th>
<th>+</th>
<th>M7</th>
<th>dom7</th>
<th>m7</th>
<th>∅7</th>
<th>°7</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+1</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>X+2</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>X+3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>X+4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>X+5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>X+6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+7</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>X+8</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>X+9</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+10</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>X+11</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 2-11: continued

Dominant Seventh Chords

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>°</th>
<th>+</th>
<th>M7</th>
<th>dom7</th>
<th>m7</th>
<th>∅7</th>
<th>°7</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>X+1</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>X+2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>X+3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>X+5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>X+6</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>X+7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>X+8</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>X+9</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>X+10</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>X+11</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 2-11: continued
Minor seventh chords

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>m</th>
<th>°</th>
<th>+</th>
<th>M7</th>
<th>dom7</th>
<th>m7</th>
<th>\varnothing7</th>
<th>$^\circ7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>X+1</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>X+2</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>X+3</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>X+4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>X+5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>X+6</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>X+7</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>X+8</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>X+9</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>X+10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>X+11</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Half-diminished seventh chords

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>m</th>
<th>°</th>
<th>+</th>
<th>M7</th>
<th>dom7</th>
<th>m7</th>
<th>\varnothing7</th>
<th>$^\circ7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>X+1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>X+2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>X+3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>X+4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>X+5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>X+6</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>X+7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>X+8</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>X+9</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>X+10</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>X+11</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 2-11: continued
Fully-diminished seventh chords

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>m</th>
<th>°</th>
<th>+</th>
<th>M7</th>
<th>dom7</th>
<th>m7</th>
<th>°7</th>
<th>°7</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X+1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>X+2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X+4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>X+5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+6</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X+7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>X+8</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X+9</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X+10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>X+11</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 2-11: continued

DC2-related

DC5-related

Figure 2-12: Arrow table transformations illustrating a) Xm – (X+9)ø7, b) XM7 – (X+2)dom7, and c) Lewin’s upshift and downshift voice-leading principles applied so that each member of the first sonority has a discrete corresponding member in the second.

Table 1a) Triad to Triad – Displacement of 1 semitone

<table>
<thead>
<tr>
<th>Algebraic transformation</th>
<th>Function</th>
<th>Neo-Riemannian function</th>
</tr>
</thead>
<tbody>
<tr>
<td>XM – Xm</td>
<td>1α1</td>
<td>P</td>
</tr>
<tr>
<td>XM – (X+4)m</td>
<td>1α2</td>
<td>L</td>
</tr>
<tr>
<td>XM – (X+1)°</td>
<td>1α3</td>
<td>–</td>
</tr>
<tr>
<td>Xm – X°</td>
<td>1α4</td>
<td>–</td>
</tr>
<tr>
<td>XM – (X+0, 4, 8)+</td>
<td>1α5</td>
<td>–</td>
</tr>
<tr>
<td>Xm – (X+3, 7, 11)+</td>
<td>1α6</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 1b) Seventh Chord to Seventh Chord – Displacement of 1 semitone

<table>
<thead>
<tr>
<th>Algebraic transformation</th>
<th>Function</th>
<th>Neo-Riemannian function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xdom7 – Xm7</td>
<td>1β1</td>
<td>P2</td>
</tr>
<tr>
<td>Xdom7 – (X+9) m7</td>
<td>1β2</td>
<td>L2</td>
</tr>
<tr>
<td>Xdom7 – (X+1, 4, 7, 10)°7</td>
<td>1β3</td>
<td>-</td>
</tr>
<tr>
<td>Xdom7 – XM7</td>
<td>1β4</td>
<td>-</td>
</tr>
<tr>
<td>Xm7 – Xø7</td>
<td>1β5</td>
<td>P1</td>
</tr>
<tr>
<td>Xm7 – (X+9)ø7</td>
<td>1β6</td>
<td>L1</td>
</tr>
<tr>
<td>Xø7 – (X+0, 3, 6, 9)°7</td>
<td>1β7</td>
<td>-</td>
</tr>
<tr>
<td>Xø7 – (X+11)M7</td>
<td>1β8</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1c) Triad to Seventh Chord – Displacement of 1 semitone

<table>
<thead>
<tr>
<th>Algebraic transformation</th>
<th>Function</th>
<th>Neo-Riemannian function</th>
</tr>
</thead>
<tbody>
<tr>
<td>XM – XM7</td>
<td>1χ1</td>
<td>-</td>
</tr>
<tr>
<td>Xm – (X+8)M7</td>
<td>1χ2</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2a) Triad to Triad – Displacement of 2 semitones

<table>
<thead>
<tr>
<th>Algebraic transformation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>XM – (X+4, 8)M</td>
<td>2α1</td>
</tr>
<tr>
<td>XM – (X+1)m</td>
<td>2α2</td>
</tr>
<tr>
<td>XM – (X+5)m</td>
<td>2α3</td>
</tr>
<tr>
<td>XM – (X+9)m</td>
<td>2α4</td>
</tr>
<tr>
<td>XM -- X°</td>
<td>2α5</td>
</tr>
<tr>
<td>XM – (X+4)°</td>
<td>2α6</td>
</tr>
<tr>
<td>XM – (X+3, 7, 11)+</td>
<td>2α7</td>
</tr>
<tr>
<td>Xm – (X+4, 8)m</td>
<td>2α8</td>
</tr>
<tr>
<td>Xm – (X+1)°</td>
<td>2α9</td>
</tr>
<tr>
<td>Xm – (X+9)°</td>
<td>2α10</td>
</tr>
<tr>
<td>Xm – (X+0, 4, 8)+</td>
<td>2α11</td>
</tr>
<tr>
<td>X° -- (X+3, 7, 11)+</td>
<td>2α12</td>
</tr>
</tbody>
</table>
Table 2b) Seventh Chord to Seventh Chord – Displacement of 2 semitones

<table>
<thead>
<tr>
<th>Algebraic transformation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xdom7 – (X+3, 6, 9)dom7</td>
<td>2β1</td>
</tr>
<tr>
<td>Xdom7 – Xø7</td>
<td>2β2</td>
</tr>
<tr>
<td>Xdom7 – (X+1, 4, 7, 10)ø7</td>
<td>2β3</td>
</tr>
<tr>
<td>Xdom7 – (X+6)ø7</td>
<td>2β4</td>
</tr>
<tr>
<td>Xdom7 – (X+9)ø7</td>
<td>2β5</td>
</tr>
<tr>
<td>Xm7 – (X+3, 9)m7</td>
<td>2β6</td>
</tr>
<tr>
<td>Xm7 – (X+0, 3, 6, 9)ø7</td>
<td>2β7</td>
</tr>
<tr>
<td>Xm7 – (X+1, 4, 7, 10)m7</td>
<td>2β8</td>
</tr>
<tr>
<td>Xm7 – XM7</td>
<td>2β9</td>
</tr>
<tr>
<td>Xm7 – (X+3)M7</td>
<td>2β10</td>
</tr>
<tr>
<td>Xm7 – (X+8)M7</td>
<td>2β11</td>
</tr>
<tr>
<td>Xm7 – (X+11)M7</td>
<td>2β12</td>
</tr>
<tr>
<td>Xø7 – (X+3, 6, 9)ø7</td>
<td>2β13</td>
</tr>
<tr>
<td>X°7 – (X+2, 5, 8, 11)M7</td>
<td>2β14</td>
</tr>
</tbody>
</table>

Table 2c) Triad to Seventh Chord – Displacement of 2 semitones

<table>
<thead>
<tr>
<th>Algebraic transformation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>XM – Xdom7</td>
<td>2χ1</td>
</tr>
<tr>
<td>XM – (X+8)m7</td>
<td>2χ2</td>
</tr>
<tr>
<td>XM – (X+1)ø7</td>
<td>2χ3</td>
</tr>
<tr>
<td>XM – (X+8)M7</td>
<td>2χ4</td>
</tr>
<tr>
<td>Xm – (X+8)dom7</td>
<td>2χ5</td>
</tr>
<tr>
<td>Xm – Xm7</td>
<td>2χ6</td>
</tr>
<tr>
<td>Xm – (X+9)ø7</td>
<td>2χ7</td>
</tr>
<tr>
<td>Xm – XM7</td>
<td>2χ8</td>
</tr>
<tr>
<td>X° – (X+8)dom7</td>
<td>2χ9</td>
</tr>
<tr>
<td>X° – Xø7</td>
<td>2χ10</td>
</tr>
<tr>
<td>X+ – (X+1, 5, 9)m7</td>
<td>2χ11</td>
</tr>
<tr>
<td>X+ – (X+0, 4, 8)M7</td>
<td>2χ12</td>
</tr>
<tr>
<td>X+ – (X+1, 5, 9)M7</td>
<td>2χ13</td>
</tr>
</tbody>
</table>
Figure 2-13: Tonnetz functions

a) G G G G
 E E E E
 C C C C

b) G G G G
 E E E E
 C C C C

Figure 2-14: -L and R* functions

da) G G G G
 Eb Eb Eb Eb
 C C C C

b) G G G G
 Eb Eb Eb Eb
 C C C C

c) G G G G
 C C C C

R*

R

d) G G G G
 Eb Eb Eb Eb
 C B C B

R*

R

e) G G G G
 E E E E
 C C C C

Gb Gb G
 Cb C C
Table 3: Triad to Triad – Displacement of 1 semitone

<table>
<thead>
<tr>
<th>Algebraic transformation</th>
<th>Function</th>
<th>Neo-Riemannian function</th>
</tr>
</thead>
<tbody>
<tr>
<td>XM – Xm</td>
<td>1α1</td>
<td>P</td>
</tr>
<tr>
<td>XM – (X+4)m</td>
<td>1α2</td>
<td>L</td>
</tr>
<tr>
<td>XM – (X+1)°</td>
<td>1α3</td>
<td>-L</td>
</tr>
<tr>
<td>Xm – X°</td>
<td>1α4</td>
<td>-L</td>
</tr>
<tr>
<td>XM – (X+0, 4, 8)+</td>
<td>1α5</td>
<td>R*</td>
</tr>
<tr>
<td>Xm – (X+3, 7, 11)+</td>
<td>1α6</td>
<td>R*</td>
</tr>
</tbody>
</table>

Figure 2-16: PR-cycle generated octagons
Figure 2-17a: Octatonic Propeller graph

Figure 2-17b: L-relations
Figure 2-17c: -L relations

Figure 2-17d: R* relations
Table 4: Triad to Triad – Displacement of 2 semitones

<table>
<thead>
<tr>
<th>Algebraic transformation</th>
<th>Function</th>
<th>Neo-Riemannian function</th>
</tr>
</thead>
<tbody>
<tr>
<td>XM – (X+4, 8)M</td>
<td>2α1</td>
<td>PL / RR</td>
</tr>
<tr>
<td>XM – (X+1)m</td>
<td>2α2</td>
<td>-L-L / RR</td>
</tr>
<tr>
<td>XM – (X+5)m</td>
<td>2α3</td>
<td>RR</td>
</tr>
<tr>
<td>XM – (X+9)m</td>
<td>2α4</td>
<td>R /RR</td>
</tr>
<tr>
<td>XM -- X°</td>
<td>2α5</td>
<td>P-L</td>
</tr>
<tr>
<td>XM – (X+4)°</td>
<td>2α6</td>
<td>L-L</td>
</tr>
<tr>
<td>XM – (X+3, 7, 11)+</td>
<td>2α7</td>
<td>PR* / LR*</td>
</tr>
<tr>
<td>Xm – (X+4, 8)m</td>
<td>2α8</td>
<td>PL / RR</td>
</tr>
<tr>
<td>Xm – (X+1)°</td>
<td>2α9</td>
<td>P-L</td>
</tr>
<tr>
<td>Xm – (X+9)°</td>
<td>2α10</td>
<td>L-L</td>
</tr>
<tr>
<td>Xm – (X+0, 4, 8)+</td>
<td>2α11</td>
<td>PR* / RR</td>
</tr>
<tr>
<td>X° -- (X+3, 7, 11)+</td>
<td>2α12</td>
<td>-LR*</td>
</tr>
</tbody>
</table>

Figure 2-18: Two possible intermediate sonorities between C major and E major

Figure 2-19: Arrow table demonstration of the two DC1 splits

Figure 2-20: Arrow tables demonstrating all thirteen DC2-related split functions
Table 5: Triad to Seventh Chord – Displacement of 2 semitones

<table>
<thead>
<tr>
<th>Algebraic transformation</th>
<th>Function</th>
<th>Neo-Riemannian function</th>
</tr>
</thead>
<tbody>
<tr>
<td>XM – Xdom7</td>
<td>2χ1</td>
<td>Sl*</td>
</tr>
<tr>
<td>XM – (X+8)m7</td>
<td>2χ2</td>
<td>Sr</td>
</tr>
<tr>
<td>XM – (X+1)ø7</td>
<td>2χ3</td>
<td>SL/-L</td>
</tr>
<tr>
<td>XM – (X+8)M7</td>
<td>2χ4</td>
<td>PSL</td>
</tr>
<tr>
<td>Xm – (X+8)dom7</td>
<td>2χ5</td>
<td>SL/-L</td>
</tr>
<tr>
<td>Xm – Xm7</td>
<td>2χ6</td>
<td>Sr</td>
</tr>
<tr>
<td>Xm – (X+9)ø7</td>
<td>2χ7</td>
<td>SL*</td>
</tr>
<tr>
<td>Xm – XM7</td>
<td>2χ8</td>
<td>PSL</td>
</tr>
<tr>
<td>X° -- (X+8)dom7</td>
<td>2χ9</td>
<td>SL*</td>
</tr>
<tr>
<td>X° -- Xø7</td>
<td>2χ10</td>
<td>SL*</td>
</tr>
</tbody>
</table>
Table 5: continued

<table>
<thead>
<tr>
<th>Algebraic transformation</th>
<th>Function</th>
<th>Neo-Riemannian function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X^+ \rightarrow (X+1, 5, 9)m7)</td>
<td>(2\chi_{11})</td>
<td>(R^*_{Sr})</td>
</tr>
<tr>
<td>(X^+ \rightarrow (X+0, 4, 8)M7)</td>
<td>(2\chi_{12})</td>
<td>(R^*_{Sl})</td>
</tr>
<tr>
<td>(X^+ \rightarrow (X+1, 5, 9)M7)</td>
<td>(2\chi_{13})</td>
<td>(R^*_{Sl})</td>
</tr>
</tbody>
</table>

a) Bb Bb \quad b) \text{Bb} \rightarrow \text{A} \quad c) \text{Bb} \rightarrow \text{Bb}
\begin{tabular}{llll}
G & G & G & G \\
E & Eb & E & E \\
C & C & C & C \\
\end{tabular}

1\(\beta \)1: P2 \quad 1\(\beta \)2: R1 \quad 1\(\beta \)3: -L1

d) Bb \rightarrow B \quad e) Bb Bb \quad f) Bb \rightarrow A
\begin{tabular}{llll}
G & G & G & G \\
E & E & Eb & Eb \\
C & C & C & C \\
\end{tabular}

1\(\beta \)4: R\(^*\)1 \quad 1\(\beta \)5: P1 \quad 1\(\beta \)6: R2

g) Bb \rightarrow Bbb \quad h) Bb Bb
\begin{tabular}{llll}
Gb & Gb & Gb & Gb \\
Eb & Eb & Eb & Eb \\
C & C & C & C \\
\end{tabular}

1\(\beta \)7: R\(^*\)2 \quad 1\(\beta \)8: -L2

Figure 2-21: Arrow tables demonstrating the eight DC1-related seventh-chord functions.

Table 6: Seventh Chord to Seventh Chord – Displacement of 1 semitone

<table>
<thead>
<tr>
<th>Algebraic transformation</th>
<th>Function</th>
<th>Neo-Riemannian function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Xdom7} \rightarrow \text{Xm7})</td>
<td>1(\beta)1</td>
<td>P2</td>
</tr>
<tr>
<td>(\text{Xdom7} \rightarrow (X+9) \text{m7})</td>
<td>1(\beta)2</td>
<td>R1</td>
</tr>
<tr>
<td>(\text{Xdom7} \rightarrow (X+1, 4, 7, 10)^\text{#7})</td>
<td>1(\beta)3</td>
<td>-L1</td>
</tr>
<tr>
<td>(\text{Xdom7} \rightarrow \text{XM7})</td>
<td>1(\beta)4</td>
<td>R(^*)1</td>
</tr>
<tr>
<td>(\text{Xm7} \rightarrow \text{X}\text{#7})</td>
<td>1(\beta)5</td>
<td>P1</td>
</tr>
</tbody>
</table>
Table 6: continued

<table>
<thead>
<tr>
<th>Algebraic transformation</th>
<th>Function</th>
<th>Neo-Riemannian function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Xm7 - (X+9)ø7$</td>
<td>$1\beta 6$</td>
<td>$R2$</td>
</tr>
<tr>
<td>$Xø7 - (X+0, 3, 6, 9)ø7$</td>
<td>$1\beta 7$</td>
<td>R^*2</td>
</tr>
<tr>
<td>$Xø7 - (X+11)M7$</td>
<td>$1\beta 8$</td>
<td>$-L2$</td>
</tr>
</tbody>
</table>

Figure 2-22: 3-D Power Towers
Figure 2-23: Starburst graph
Figure 2-24: Connection of triad and seventh chord models

Figure 2-25: Final graph

Figure 2-26: Transformational path of Example 2-1

Figure 2-27: Transformational path of Example 2-2
Figure 2-28: Transformational path of Example 2-3

Figure 2-29: Transformational path of Example 2-4
CHAPTER THREE

Heinrich Schenker, in a well-documented discourse against Wagner’s music, rails against his (Wagner’s) “overemphasis on the foreground due to theatrical requirements”\(^{32}\) and concludes that “Wagner is no background composer!”\(^{33}\) Though this edict from the great theorist would seemingly imply that his analytical method is not suited for what he perceived to be a lack of structural tonal organization in Wagner’s music, numerous studies have applied Schenker’s method (albeit with considerable liberties) to sections of Wagner’s compositions with profitable results. Several of these studies will be reviewed in this chapter for the purpose of 1) discerning precisely the extent to which Schenker’s theory is, in fact, applicable to Wagner’s music and 2) the adjustments to Schenker’s theory that are necessary to accommodate the dense chromatic texture inherent in the later Wagnerian music dramas. As McCreless points out, on a conceptual level Wagner’s compositional style and Schenker’s analytical method agree in two ways. First, the deeper tonal structure is invariably reflected at lower structural levels.\(^{34}\) This organic tendency in \textit{Parsifal} is evidenced by the tonal scheme of the entire drama (Ab-Cb-d) being reflected in the foreground by successive iterations of the Faith motive in the

\(^{33}\) Ibid.

Vorspiel. This example also illustrates McCreless’ second observation of similarity: both are concerned with unfolding of sonorities through time.

I suggest that during even the most chromatic and seemingly non-tonal passages of *Parsifal* – passages that Schoenberg and Dahlhaus would undoubtedly consider to exhibit “floating” or “roving” tonality – that the music is still governed by tonal linear forces. In fact, it is at these times when it is most linear, and consequently when I feel the ideas of Schenker become most applicable. As Patrick McCreless observes:

The advantages of his [Schenker’s] system, as opposed to other nineteenth- and twentieth-century theories that deal with chromaticism, are immediately apparent. His system establishes a background – both in the general sense, and in the specific sense of his concept of the *Ursatz* – in terms of which all chromatic motion can be heard and explained. Rather than hearing tonicizations of chromatic elements merely as distant modulations, somehow “expressive” or “programmatic,” but strangely detached and separated from the diatonic underpinnings of a piece, he subsumes all chromatic motion into an ultimate diatonic structure. The analytical power of such a point of view is clear, since the seemingly random and unmotivated modulations described by earlier theorists can now be heard as all directed toward a single goal and controlled by a single principle.

The remainder of this chapter will support the application of Schenkerian analysis to Wagner’s music by first exploring the extent to which chromaticism is allowed in Schenker’s system in Part One. Also in Part One, I will explore ideas by Robert

Bailey, Gregory Proctor, and others that more than one type of tonality exists in the late nineteenth-century repertoire, as well as survey previous attempts by Warren Darcy, William Mitchell, and others to apply Schenkerian linear reduction to long passages from Wagner's later works.

Part Two will explore the concept of prolongation as conceived by Schenker in order to determine the extent to which prolongation can be claimed in a chromatic texture. The question of what types of sonorities can be prolonged – the existence of so-called ‘dissonant prolongation’ – will also be addressed.

Part Three will investigate the question of whether or not sonorities, or even brief passages, can exist in more than one key simultaneously. I will discuss the ideas of the ‘double-tonic complex’ by Robert Bailey and review how recent scholars such as Harald Krebs and William Kinderman have applied this concept. I will also explore the possibility of prolongational overlap in graphs by Schenker and Felix Salzer, as well as in recent studies by William Benjamin and Naphtali Wagner.

I. Schenker and chromaticism

In order to determine whether or not Schenkerian theory is applicable to the highly chromatic music of Wagner’s late music dramas, it will be instructive to first explore the extent to which chromaticism can be handled by the Schenkerian paradigm, or, more specifically, the question of how far, if at all, the dense chromaticism that persists throughout Parsifal lies outside Schenker’s concept of tonality. For the purpose of addressing this question, this section will explore Schenker's views on chromaticism as well as a number of other views by recent scholars, each of whom presents a different view of whether the chromaticism of the late nineteenth century, as found in the music of Wagner and many of his contemporaries, is an extension of the established tonal language of Mozart and Beethoven (a view that would certainly support the application of Schenkerian analysis to highly chromatic music), or is instead a new and separate harmonic language.
On the issue of analyzing music that is seemingly dominated by chromaticism, Matthew Brown notes that “..theorists confront an awkward dilemma: either they must treat the works as mutations of diatonic structures, or they must place them outside the limits of normal tonal theory.” In the history of Wagnerian analysis, especially a number of the earlier efforts, the latter approach has most often been taken. In spite of Schenker’s less than favorable attitude toward Wagner’s music, it is his theory of Stufen that suggests a third, and possibly more suitable alternative.

Stufen are best described as harmonic states, each one defined by its position relative to the tonic. Although they are labeled by conventional Roman numerals, *Stufen* may be presented in many different ways: they may appear as root chords or in inversion, they may be expanded or “composed out” by passing, neighboring, or tonicizing chords and…they may occur in diatonic or chromatic form.

Brown goes on to explain Schenker’s genesis of all the possible *Stufen* from a given tonic. Shown in Figure 3-1 is Schenker’s Table 3 from *Harmonielehre*, resulting in a list of the seven *Stufe*, with both diatonic and chromatic roots in both major and minor forms. Figure 3-2 shows Brown’s graphic realization of these results. Stage three gives the complete inventory of all possible *Stufen* generated by a tonic C major triad. Brown clarifies the significance of the theory by saying “*Stufen*, then, are not mere triads; they are triads or transformations of triads within a given tonal system.” What Brown illustrates is that Schenker’s concept of tonality includes a total of twenty-two major and minor triads – one major and minor on each...
diatonic and chromatic scale degree (with the notable exception of #4/b5) – generated from a single tonic. The impact of this theoretical precept on the analysis of chromatic music is staggering, as it can easily be surmised that Schenker would have considered many of the long-range chromatic spans that have caused theorists to exclude late nineteenth-century repertoire from their definitions of tonality to be indeed tonal.

Brown, Dempster, and Headlam explore the exception of #IV/bV in attempt to establish a definitive boundary between tonal and post-tonal music by showing “that there are definite limits to what musical events or relationships Schenkerian theory will predict and explain as tonal pieces, and that there are some musical events or relationships which the theory will regard as non-tonal.” They conclude that this triad (the only one Schenker considered to be not directly generated by I) can still be generated (and, according to Schenker, be treated in a tonal context) by a secondary Stufen in one of three ways: as a tonicization of V, specifically as a IV with a raised root forming a vii°/V; as a modulatory motion of successive m3 key areas; and as a by-product of passing or neighboring motion between or around IV and V.

The example shown in Figure 3-3 from Der freie Satz illustrates the second condition in the third movement of Beethoven’s Piano Sonata, Op. 26.

...here we see that the key of Cb major that is reached in m.8 is reinterpreted [enharmonically] as B minor in m.9. In this context, the first thing that springs to mind is the need for convenience – since to notate it in Cb minor would really have been too cumbersome – but then we are taken by surprise when a full and self-sufficient consequence of the new B minor key follows in the form of the D major key into which B minor modulates in mm. 13-16.

45 Schenker, Der freie Satz, Fig. 40.6 cited by Brown, Dempster, and Headlam: 167.

46 Heinrich Schenker, Harmonielehre, par. 179: 443-444 cited by Brown, Dempster, and Headlam: 166.
The important distinction here is that the D major key is produced by the B minor key and not by the original key of Ab minor. Therefore, as the authors point out, D major does not function as #IV of Ab minor, rather it functions as a bIII of B/Cb minor. What is most striking about this analysis is that the background key relationship of Parsifal exhibits a similar three-key progression (Ab-b-D/d) further suggesting that Wagner’s music drama may indeed fall with the tonal oeuvre. There is certainly a difference in the degree, or, in Schenkerian terms, the depth of the chromatic relationship between Beethoven’s unfolding (which controls a span of seventeen measures) and Wagner’s (which exist at the background of an entire opera). However, Schenker did not make distinctions between tonal and non-tonal phenomena based on the length of the departure of a passage from stable diatonicism, as evidenced by the following statement from Kontrapunkt:

In its chromatic state, the Stufe proves itself to be the same spiritual and higher unity that we have already defined for the diatonic form; the obligation to return to the diatonic system does not apply any restrictions as far as the duration of the chromatic Stufe is concerned; its duration remains variable just like that of the diatonic Stufe and varies from a minimum to the greatest conceivable maximum.47

As discussed by Brown, a number of Schenker’s graphs from Der freie Satz illustrate his acceptance of an expanded harmonic vocabulary. Figure 3-4a shows the \(^3\) Kopfton in the Schubert Waltz replaced by \(^b3\), caused by mixture – specifically the introduction of a structural minor tonic.48 Figure 3-4b shows a similar substitution as Kopfton \(^5\), supported in m. 36 by a diatonic Ab major mediant triad, becomes \(^b5\) in m. 51 when supported by the chromatic mediant Ab minor triad.49 Brown makes an important distinction concerning the deep middleground chromatic

48 Schenker, Der freie Satz, Fig. 30b cited by Brown: 18.
49 Schenker, Der freie Satz, Fig. 154.4 cited by Brown: 20.
mixture in these two examples, explaining that ^b3 and ^b5 are not passing tones, but instead are modal inflections of the respective Kopftons.50

Other attempts by recent scholars to apply Schenkerian analysis to the music of Wagner have yielded similar prolongational spans controlled by mixture at the middleground level. One of the earliest and most influential of these graphs is William Mitchell’s exegesis of the Prelude to Tristan und Isolde, shown in Figure 3-5.51 Mitchell posits a long ascent to a ^3 (C#6) Kopfton that is supported by A major in m. 45. After an extended upper neighbor D6 from mm. 53-77, the Kopfton returns, this time as a C-natural. Mitchell says of this moment, “It is here that the delirious abandon of the music makes the case for A major momentarily dubious.”52 Throughout his analytical discourse, Mitchell seems to be consistently bothered by the pervasion of A minor, e.g. ‘the minor color of the opening bars’53 though he never relents in his choice to establish A major as the prevailing tonic sonority. The choice of mode is, of course, unnecessary, as Schenker would have considered A major to be an inherent part of the originating A minor sonority. Robert Bailey, in his study of the Prelude, attributes the fluctuation between A major and A minor to intrinsic properties of semitonal voice leading.54 Figure 3-6 is Bailey’s representation of three possible resolutions of an F7 chord – each equally acceptable to nineteenth-century composers. Figure 3-6a is a traditional resolution to a Bb major tonic triad; Figure 3-6b resolves to an A minor or A major triad;55 Figure 3-6c resolves to an E major triad.

Not all theorists share Schenker’s (and Brown’s) assertion of “one tonal system” present in the nineteenth century. Gregory Proctor distinguishes between

50 Ibid.: 19.
52 Ibid.: 167.
53 Ibid.: 166.
55 Bailey notes that this one is of particular interest as it can resolve to either the major or minor form of the triad.
two types of tonality: classical diatonic tonality and nineteenth-century chromatic tonality.56 He views the former as a privileged subset of the latter, which is generated by a chromatic scale instead of a diatonic one. An important discrepancy between Proctor’s approach and Schenker’s is that Proctor views the diatonic scale as a generative entity while Schenker considers it to be a purely ‘linear phenomenon’,57 and of secondary importance to the triad. Proctor’s idea of a tonality generated from a chromatic scale background seems more applicable to the music of the Second Viennese school than of the First, which is still controlled by a clear, albeit chromatically (through mixture) extreme, sense of tonality.

In his extended study of \textit{Siegfried},58 Patrick McCreless borrows from Robert Bailey the idea of four different types of tonality: ‘1) the traditional or classical, tonic-dominant tonality as defined by Schenker; 2) “associative tonality,” or the consistent association of particular dramatic symbols with specific tonalities…3) “expressive tonality,” or the progression of structural tonalities in ascending or descending half-steps or whole-steps; and 4) later nineteenth-century ‘directional tonality,’ or the construction of a formal unit not as a prolongation of a single key…but as a progression from one structural key at the beginning to another at the end.” Though these categories certainly describe the forces at work within certain passages of Wagner’s music, I argue that each of the three additions can be viewed as extensions of traditional tonality instead of separate entities.

The first of the three proposed extensions – “associative tonality” – is frequently encountered in Wagner’s music, but is often subsumed into the existing prolongation as either a passing or neighboring sonority at the middleground level.59 The same is true of “expressive tonality,” as the shift in key of a half-step invariably results in a chromatic neighbor at the middleground level while the whole-step shift

57 Matthew Brown: 12.
59 See my discussion of the appearance of the Communion motive in Ab major in Analytical Graph #3 in Chapter Four.
results in a diatonic one. 60 “Directional tonality,” or the occurrence of a piece or section that begins in one key and ends in another, is more precisely explained by Deborah Stein:

One key functions as an opening tonality; and after the first key is clearly established as a tonic, a transformation occurs whereby the initial tonic becomes a non-tonic function within a second tonality. The piece then concludes in the second key. The ultimate effect of directional tonality is twofold: first, the original loses its identity as a tonal focus in deference to the second tonality; and second, the piece is heard as beginning and ending in two different keys. 61

As Stein admits, a piece that ends in a different key can still be accounted for within Schenker’s methodology. Figure 3-7 shows a comparative analysis of Chopin’s Prelude Op. 28, No.2, using Schenker's graph of this piece from Der freie Satz 62 on top followed by Stein's directional reading. 63 Schenker analyzes the E minor opening as a v of the closing A minor key and the subsequent G major and b minor sections as middleground unfoldings of the initial E minor sonority. The E major sonority in m. 21 provides the modally corrected dominant of A minor, in which the piece concludes. Stein’s analysis on the other hand professes an ambiguity between E minor and G major in the opening measures and the B minor as a pivot chord between G major and a minor. Though Stein’s reading is certainly a viable way of hearing this brief, complicated work, Schenker's hearing is equally viable, and there is no evidence that directional tonality lies outside of what can be accounted for in Schenkerian terms.

60 See my discussion of the Db-for-D neighboring prolongation in Analytical Graph #5 in Chapter Four.
61 Deborah Stein, Hugo Wolf’s Lieder and Extensions of Tonality, Ann Arbor: UMI, 1985: 143.
62 Schenker, Free Composition, Fig. 100.3a, cited by Stein: 148.
63 Stein: 148.
My analytical graphs in Chapter Four will proceed under the assumption that Wagner is employing only one type of tonality – the same as his predecessors, as defined by Schenker. The main difference between the music of Wagner and earlier, more “tonal” music, is not one of inherent construction, but instead is a matter of the degree of chromaticism Wagner employed. What is anomalous in Beethoven and Schubert becomes commonplace in Wagner. Wagner’s harmonic procedures are perhaps best summarized by Arnold Whittall in what he refers to as the “expanded tonality” of Wagner: “In the passages of expanded tonality a tonic chord may be established and cadentially confirmed, but highly chromatic expansions will occur between the principal points of emphasis on that tonic.”64 In this sense, the comparison between the music of Wagner and that of earlier composers can be compared to different types of fences. Though each consists of sturdy tonal posts connected by wires of prolonged material, Wagner places his fence posts further apart and his wire is more barbed with chromaticism. As noted previously, Schenker presupposes no limits on the extent of chromatic departure. He states that “a truly well established tonality can guide even the greatest number of chromatic phenomena back to the basic triad.”65 In Chapter Four I will show that, in most cases, Wagner’s tonality in Parsifal does just that.

II. Prolongation

The attempt to define and delimit the concept of prolongation and to test the boundaries of repertoire to which it is applicable has been one of the most popular theoretical pursuits of the twentieth century. As theorists have attempted to apply this powerful concept, originally conceived by Schenker for tonal music, to both pre- and post-tonal repertoires, there is no consensus among scholars on the answers to questions such as ‘How are sonorities prolonged?’ and ‘Which sonorities can be prolonged, and at how deep a structural level?’ This section will review some of the

65 Heinrich Schenker, Der freie Satz: 5 cited by Brown: 14.
better-known viewpoints in order to distill the qualifying features by which I will assert prolongation, particularly of dissonant sonorities, in some of the more chromatic passages of *Parsifal*. As the scope of this study is restricted to the music of one opera in the later repertory of Richard Wagner, I will restrict my review of prolongational literature as it relates specifically to these particular musical dramas, or to similar chromatic works of the late nineteenth century that feature a tonal framework with extended chromatic departures.

As Robert Morgan states ‘Schenker conceived of prolongation solely in terms of a consonant, triadic background…The triad could then be projected in time – made horizontal, as it were – to form extended compositional spans.’\(^{66}\) Schenker’s exclamation, ‘Consonance-Dissonance-Consonance!’ from Book I of *Counterpoint*\(^{67}\) expresses, in a simple manner, his idea that all dissonance is inherently a product of a departure from and a consequent return to the consonant background of which Morgan is speaking. Steve Larson expands the idea of departure and return to include not only departures from a consonant background to a dissonant foreground but also, in a relativistic sense, departures from a ‘contextually more stable area’ to a ‘less contextually stable area.’\(^{68}\) This somewhat liberal use of Schenker’s idea allows an analyst to claim prolongation in a far greater number of instances than Schenker would have allowed, but compensates for the deviation from purity with vastly increased applicability to densely chromatic music. Joseph Dubiel beautifully surmises the process of departure and return in what he defines as the effect of being ‘passing’:

> The sense in which it ['passing’ effect] never goes away is that a consonant chord brought into existence to harmonize a dissonant passing tone takes on the dissonant passing nature of the tone, and retains it even under

subsequent transformations that change its voicing and produce more chords in elaboration of it; indeed ‘Schenker’s theory” as we know it can be construed as an enormous extension of just this claim.\(^{69}\)

He goes on to say that ‘because a dissonant passing tone, unable to express a harmony, cannot change the harmony against the cantus firmus tone, and so leaves the listener to hold the downbeat harmony in memory until another harmony comes along.’\(^{70}\) It is not a great analytical leap from Dubiel’s assertion to claim that a chromatic section of music that has departed from or anticipates a more consonant tonal area is capable of prolonging that area. It follows then that once tonality, or at the very least a sense of consonance, has been established, that prolongation from that point forward may always be present – either a prolongation of that sonority or of another more contextually stable sonority that replaces it. This is echoed by Larson’s statement that ‘prolongation – and only prolongation – always determines which notes are heard in a given context…To hear a note as unstable also means to hear it as embellishing a more stable pitch – that is, to hear it as embellishing a pitch at a more remote structural level.’\(^{71}\) This serves to greatly expand Schenker’s definition cited earlier to include not only major and minor triads that are established and consequently unfolded in a contrapuntal manner throughout time, but also to any departure and return to a (same or different) contextually more stable area.

Borrowing terms from William Benjamin,\(^{72}\) I will distinguish between two types of prolongation: linear prolongation, which involves the traceable unfolding of a sonority through time, and progressional prolongation, which involves departure and return without a specific linear connection.

Shown in Figure 3-8 are two examples from Der freie Satz in which Schenker

\(^{69}\) Dubiel: 317.
\(^{70}\) Ibid.: 318.
\(^{71}\) Larson: 112.
composes out a V7 harmony. This prolongational span is seemingly in direct contrast with his theory of Stufen, which can only be generated by major and minor triads. Robert Morgan notes that though Schenker indeed seems to prolong a seventh chord, it is “in motion between stable harmonic regions.” Morgan’s study uses this example as a point of departure to explore the possibility of other “dissonant prolongations” in late nineteenth-century music – namely sections that appear to be prolonging augmented triads or diminished seventh chords.

Morgan’s assertion that the extremely dissonant Prelude to Act III of Parsifal is controlled by a °7 sonority is one of the earliest Wagnerian analyses to attempt to establish a span that is controlled by dissonant prolongation. After recognizing several points of arrival on °7 sonorities (which for reasons of over-generalization is a designation that leaves much to be desired analytically), he deduces that the first forty-five measures (the entire Prelude) constitute a prolongation of ‘Chord I’ – the °7 sonority containing pitch classes E-G-B-Db that ‘dissolve – rather than resolve – into the D major triad that opens the third act proper.” Though Morgan convincingly establishes this dissonant chord as the controlling sonority through what Joseph Straus calls ‘contextual reinforcement,” whether or not prolongation is actually occurring in this passage is still controvertible. If we also consider the easily traceable bassbrechung that outlines the pitch classes of his Chord I along with the fact that Chord I is an enharmonically respelled vii°7 of D major – the first chord (and controlling key) of Act III – we can consider the Prelude to be a prolongation of vii°7 that is arrives on the more contextually stable tonic in m. 46. So, in Larson’s terms, to hear this section as unstable means to hear it as embellishing a more contextually stable section to which it is magnetically drawn. The contextual

74 Morgan: 54.
75 Morgan: 72.
77 Larson: 123.
reinforcement of Chord I, as well as its presence at certain points of arrival in the passage, establishes it as a foreground tonic for lack of interference from any other, more contextually stable sonority. If we also hear it on a deeper level as an extended anacrusis to the contextually more stable D major sonority as I have suggested, we can assert dissonant prolongation without violating either Larson’s contextual stability on the foreground level or Straus’ conditions on a deeper middleground level. To paraphrase Straus, we may keep our baby and our bath water.78

As in Morgan’s study, most Schenkerian explorations of Wagner’s music accept deviations from Schenker’s theory of \textit{Stufen} – which disallows sonorities other than major and minor triads. In addition to prolongations of dissonant sonorities such as augmented triads and fully-diminished seventh chords, many also feature lengthy prolongational spans of non-diatonic triads. Two examples are Warren Darcy’s mediant expansion by prolongation of V/III in \textit{Das Rheingold} (see Figure 3-9)79 and Patrick McCreless’ prolongation of V7/B in the music of the Third Norn from \textit{Götterdämmerung} (see Figure 3-10).80

\underline{III. Multivalence}

The third, and final, issue that I will review in this chapter is the proposed existence of multivalence in particular sections of music. Specifically, this section will first explore the possibility that brief stretches of music can be simultaneously controlled by more than one tonic, and then investigate the idea of overlapping prolongational spans. One of the earliest and best-known theories dealing with the

78 Ibid. This refers to Straus’ quote on p. 7, “This does not mean we should throw out the cherished baby of large-scale organization along with the prolongational bath water.”

79 Warren Darcy, “A Wagnerian \textit{Ursatz}; or, Was Wagner a Background Composer After All?” Integral 4 (1990): 29.

possibility of multivalence is Robert Bailey’s ‘double-tonic complex’ 81 first proposed in his analysis of the Prelude to Tristan und Isolde:

The new feature in Tristan with the most far-reaching consequences for large-scale organization is the pairing together of two tonalities a minor third apart in such a way as to form a “double-tonic complex.” The pairing of A and C for the whole of Act I may well have grown out of the traditional close relationship between A minor and C major, but the double-tonic idea goes well beyond merely beginning in a minor key and concluding in its relative major… In some ways, the new concept plays upon that very closeness, but we are now dealing with the “chromatic” mode of A and the “chromatic” mode of C. The two elements are linked together in such a way that either triad can serve as the local representative of the tonic complex. Within that complex itself, however, one of the two elements is at any moment in the primary position while the other remains subordinate to it. 82

William Kinderman’s concept of tonal pairing, which he defines as “the juxtaposition of two key areas which together comprise the tonal center for an extensive musical unit” and as “the basing of large sections…not on one stable sonority but on the tension between two tonal centers” 83 is similar to Bailey’s “double-tonic complex,” though Kinderman omits an important requirement – a key relationship a minor third apart – from his definition.

For the purpose of refining this somewhat abstract concept into a useful analytic application, it will be helpful to consider specific attributes of a work that is controlled by two tonics. In a discussion of Mahler’s Ninth Symphony, Christopher

82 Ibid.: 121-122.
Lewis proposes four examples of how tonal pairing manifests itself on the musical surface: (1) juxtaposition of musical fragments implying the two tonics in succession or alteration; (2) mixture of the two tonalities, exploiting ambiguous and common harmonic functions; (3) use of a tonic sonority created by conflation of the two tonic triads; and (4) superposition of lines or textures in one key on those of another. Lewis’ third manifestation echoes Bailey’s proposal that in a “double-tonic complex” there will exist a “double-triadic sonority…as the harmonic representative of the double-tonic complex at work throughout the structure.” Bailey represents this sonority as a triad with an added sixth – in the case of Tristan, a C major triad with an added A containing both the C major and A minor tonic triads.

A recent study that utilizes many of these concepts is Harald Krebs’ study of two songs by Franz Schubert: “Der Wanderer” (1816) and “Meeres Stille” (1815) – both of which predate Tristan by more than fifty years. In the former, he posits the existence of tonal pairing between C# minor and E major throughout the song. In his reductive graphs, shown in Figure 3-11, he relates the tonal ambiguity of the song by suggesting alternate hearings of two extended passages in each key of the tonal pair. He further substantiates his claim by discussing the alternating prolongations of C# minor and E major in other parts of the song – an assertion that invokes Lewis’ first manifestation of tonal pairing. Krebs also qualifies his analysis by giving numerous examples of the superimposition of a C# over an E major triad (a conflation of tonics according to Lewis’ third manifestation), as well as the presence of a seemingly structural c#ø7 sonority. Finally, Krebs mentions “the frequent use of ambiguous and common harmonic functions…namely F# minor and A minor [which] have potential functions within the keys of C# minor and E major.”

85 Bailey: 122.
86 Krebs: 21.
87 Ibid.: 19.
discusses the means by which Schubert exploits the “tonal crossroads” created by these two sonorities to create harmonic ambiguity. As three of Lewis’ manifestations of tonal pairing are invoked by Krebs analysis, the latter author creates a very convincing case for the existence of this phenomenon.

In Krebs’ second analysis, that of “Meeres Stille,” he proposes a tonal pairing of C Major and E major – a pairing that falls outside of Bailey’s definition because of the major third key relationship. Though Krebs again points out alternations between conflicting and alternating prolongational spans, this analysis is, by nature of the key relationship between the two tonics, less convincing than that of “Der Wanderer” as no conflation of the two controlling triads is present (in fact, not possible since C major contains a G-natural while E major contains a G#).

William Kinderman proposes the existence of a tonal pairing in the Prelude to Act I of Parsifal. He cites the tonal ambiguity between the first two iterations of the Communion motive, in Ab major and C minor, respectively. This ambiguity is easily perceived in the first iteration due to the metric emphasis on the leading-tone G instead of the tonic Ab. The second iteration, which begins with the ascending notes C-Eb-G-Ab, can easily be heard as Ab major until the delayed arrival of B-natural establishes C minor. Kinderman claims that the tonal pairing of these two controlling tonics foreshadows the close of Act I in C major.

Though I certainly agree with the foreground connection between the two keys in the beginning of the Prelude, I am skeptical as to whether the tonal pairing of Ab major and C minor actually controls all of Act I for two reasons. First, Ab major is also paired with Cb minor later in the Prelude with the successive entrances of the Faith motive. This pairing has far more structural consequence throughout the opera, as this is the key relationship between Acts I and II (interpreting Cb minor as B minor enharmonically respelled). Second, late in Act I, when Gurnemanz and Parsifal enter

88 Ibid.: 19.
the Hall of the Grail (the scene that Kinderman claims is controlled by C major) there is a repeating four-note ostinato throughout the scene that represents the ringing of bells. The ostinato consists of the pitches G-C-E-A positioned as two descending perfect fifths. This linear unfolding of a seventh chord can be viewed as a conflation of two triads harmonically in control of the scene; however the triads would be A minor (not Ab major) and C major, suggesting that Ab major has at least temporarily relinquished its harmonic influence. The conflict between the Cb minor and C major/C minor tonal areas throughout Act I works to undermine the association proposed by Kinderman. In summary, I do not deny that there is a connection; I would suggest, though, that it exists on a more shallow structural level than the Ab major – Cb minor –D major/D minor connection that controls the background of the entire music drama. I would also suggest that it is one of a multitude of equally viable pairings at work in the Prelude, and in the middleground of Act I.

Example 3-12 shows Warren Darcy's linear reduction of Act I Scene II Episode 6 of Das Rheingold – what Darcy perceives to be the first instance of a double-tonic complex in the Wagnerian canon. In Fasolt's Solo No.1, Darcy portrays the successive iterations of the Giants theme on descending thirds C-A-F with open noteheads, suggesting a middleground arpeggiation of an F major triad. He interprets the Valhalla theme beginning in m. 1001 as an expansion of Bb (closed notehead in graph) that suggests the Bb-A descending semitone motion sounds, on a more foreground level, like ^b6-^5 in d minor. He goes on to say that, “...although the tonal background clearly articulates F, the foreground contains latent hints of D.”

This example of a double-tonic complex exhibits the typical alternation of the two keys (in this case both are chromatic versions of the tonics as f minor immediately succeeds F major and D major is eventually subsumed by D minor) as addressed in Lewis’ first manifestation. Here Wagner uses the ambiguity of the Bb-A

91 Ibid.:142.
92 Ibid.: 143.
descending semitonal motion, which can be interpreted either as $^\flat 6-^\flat 5$ in D minor or $^4-^3$ in F major, as the same type of ‘tonal crossroads’ (to again borrow Krebs term) utilized by Schubert in ‘Der Wanderer,’ therefore satisfying Lewis’ second manifestation and making a convincing argument for this passage of *Das Rheingold* being controlled by more than one tonic.

Akin to the ideas of the double-tonic complex and tonal pairing, that propose the concept of a single passage of music being controlled by two competing tonics on different structural levels, is the idea that prolongational spans on the same level may at times overlap. Figure 3-13 (a-c) presents William Benjamin’s argument for the existence of this phenomenon. Figure 3-13a shows an alternation of an A4 and a Bb4. The dotted lines indicate that two prolongational hearings of this alternation are possible and raise the question: is the A4 being prolonged by an upper-neighbor Bb4 or is the Bb4 being prolonged by a lower-neighbor A4? Or, more pertinent to this discussion: can both prolongational spans exist simultaneously? Figure 3-13b shows this alternation of pitches harmonized by a typical cadential formula with competing prolongational spans indicated by slurs. Benjamin claims ‘here it makes as much sense to say that the second, third, and fourth chords anticipate the fifth, or tonic, chord as it does to say that they extend the first chord, a dominant.’ Figures 3-13c and 3-13d show the final measures of the Sarabande from Bach’s Bb Partita, along with Benjamin’s proposed prolongational overlap—tonic prolonged by anticipation in mm. 25-28 and a dominant prolonged by extension in mm. 24-27—occurring over the final five measures. Benjamin clearly surmises the circumstance of the collision, and consequent overlap, of two prolongational spans—one by anticipation and the other by extension:

The focal point of a prolongation, the crest of its wave, can therefore be heard as projecting sonic ripples in either direction or in both. With this in mind it is

94 Ibid: 43
easy to see how one might legitimately describe a passage of music between
two points of comparable harmonic focus as containing an overlap, a stretch
of music in which the receding ripples projected by the event at the first focal
point would interfere with the progressing (anticipatory) ripples retrojected by
the second.\footnote{Ibid 43}

Naphtali Wagner points out that the idea of alternate unfoldings, which
indicate the presence of prolongational overlap, are discussed and readily accepted by
Schenker in Der Tonwille and later in Free Composition.\footnote{Naphtali Wagner ‘No Crossing Branches? The Overlapping Technique in Schenkerian Analysis,” Theory and Practice 20 (1995): 159-162.} Figure 3-14 shows the
opening measures from Haydn’s Sonata in C Major, H. XVI/35. Wagner’s reduction
of this section reveals an alternate unfolding in mm. 5-6, and consequently a
prolongational overlap of the dominant prolonged by extension from the downbeat of
m.5 to the downbeat of m. 6 – thereby connecting F5 to D5 in the right hand and B3
to F4 in the left – and the tonic prolonged by anticipation from m. 5 beat 3 to m.6 beat
3 – connecting E5 to C5 in the right hand and C4 and E4 in the left.\footnote{Ibid.: 163.}

Though Wagner’s interpretation does follow one of Schenker’s patterns of alternate
unfolding, I do not accept both of these spans as equally prolongational. I would
propose that the latter hearing in this example might be preferable because of the
voice exchange, though the former hearing is, indeed, plausible. Example 3-15 offers
a more convincing example involving the opening bars of the second movement of
Mozart’s Piano Sonata in D major, K. 311. Shown beneath the music is Felix
Salzer’s graph, which includes a double voice exchange in m.3. In this instance, a
preference for one prolongational span over the other is not so easy to attain. As
Wagner asserts ‘two events that participate in the voice exchange belong to the same
prolongation. Thus a voice exchange among four pairs of tones does indeed create an
overlapping between prolongations or diminutions.’\footnote{Ibid.: 165.}
Though Edward Laufer\(^99\) disagrees with the existence of the alternate unfoldings and mandates that one hearing must be created by voice leading, and is therefore prolongational, while the other is simply associational, Wagner’s questioning rebuttal that “Does not the very fact that a choice is necessary indicate that the spurned option, too, contains some musical validity?”\(^100\) would seem to be answered in the affirmative by Schenker.\(^101\)

Chapter Summary

Many scholars have attempted to exclude Wagner’s late music dramas from the canon of tonal music, instead considering them, along with similar works by Liszt, Wolf, and other late nineteenth-century composers, to be a transition between the tonal language of Beethoven and the atonal language of Schoenberg. Though Schenker is among these scholars, recent attempts to apply his theory to Wagner’s music have proven to be enlightening. As Morgan states “it is one of the notable ironies of recent music history that…those prolongational procedures first pointed out by Schenker in his masterpieces of the eighteenth and nineteenth centuries have been among the most adaptable of the techniques associated with tonal music to the broader context of more recent non-functional tonality.”\(^102\)

Schenkerian graphs of chromatic passages of Wagner’s music can reveal much about how Wagner’s music is similar to that of the other German masters, as well as how it is different. In order to manage the differences it is necessary to extend Schenker’s approach to some degree, though as illustrated in this chapter, the extensions have analytical precedents within Schenker’s own writings and graphs.

\(^100\) Wagner: 154.

\(^101\) Also see Wagner 152-159 for discussions of Schenker’s analysis of apparent instances of overlapping spans in his graphs of Mozart 41, Beethoven 3, and Bach’s *Chorale St. Antoni*.

\(^102\) Morgan: 49.
The following chapter will apply Schenkerian analysis to five passages in *Parsifal*, observing the proposed extensions.
Table 3. *Harmonielehre*, par. 160, p. 395

\[C_{\text{dur moll}} \] (selbstverständlich),
\[\text{Des}_{\text{dur moll}} \] wenn die zweite phrygische Stufe als scheinbare Tonart chromatisch (also auch mit Zuhilfenahme anderer Stufen) präpariert wird,
\[* \text{Es}_{\text{dur moll}} \] entsprechend einer chromatischen Tonart auf der dritten Stufe,
\[\text{E}_{\text{dur moll}} \] dto. auf der dritten Stufe,
\[\text{F}_{\text{dur moll}} \] dto. auf der vierten Stufe,
\[\text{G}_{\text{dur moll}} \] dto. auf der fünften Stufe,
\[\text{As}_{\text{dur moll}} \] dto. auf der sechsten Stufe,
\[\text{A}_{\text{dur moll}} \] dto. auf der siebenten Stufe,
\[\text{B}_{\text{dur moll}} \] dto. auf der siebenten Stufe.

*should include \(\text{D}_{\text{dur moll}} \)

Figure 3-1: Schenker’s list of diatonic and chromatic *Stufe* from *Harmonielehre*.

Figure 3-2: Brown’s realization of Schenker’s list.
Figure 3-3: Schenker, *Der freie Satz*, Fig. 40.6: arpeggiation of minor thirds.

Figure 3-4a: Schenker, *Der freie Satz*, Fig. 30b: substitution of \(^3\) caused by mixture in tonic triad.

Figure 3-4b: Schenker, *Der freie Satz*, Fig. 154.4: substitution of \(^5\) caused by mixture in mediant triad.
Figure 3-5: Mitchell’s graph of *Tristan* Prelude.

![Figure 3-5: Mitchell’s graph of *Tristan* Prelude.](image)

Figure 3-6: Three possible resolutions of F7.

![Figure 3-6: Three possible resolutions of F7.](image)

Figure 3-7a: Schenker *Free Composition*, Fig. 100.3a: graph of Chopin Op. 28, no. 2.

![Figure 3-7a: Schenker *Free Composition*, Fig. 100.3a: graph of Chopin Op. 28, no. 2.](image)
Figure 3-7b: Stein’s Directional tonality reading of Chopin Op. 28, no. 2.

Figure 3-8: Schenker, *Der freie Satz*, 62.5 and 62.4: prolongations of V7.
Figure 3-9: Darcy's expansion of mediant in *Das Rheingold*.

Figure 3-10: McCreless' composing out of V7/B in *Götterdämmerung*.
Figure 3-11: Krebs’ dual analysis of ‘Der Wanderer’.

Figure 3-12: Darcy’s reduction of *Das Rheingold* – Act I, Scene 1, Episode 6.
Figure 3-13a) Alternation of m2 interval with alternate prolongational suggestions.

Figure 3-13b) Harmonization of 3-13a in cadential formula.

Figure 3-13c) Final measures of Bach, Partita in Bb, Sarabande.

Figure 3-13d) Benjamin’s overlapping prolongations.
Figure 3-14: Haydn, Piano Sonata in C Major, Hob. XVI/35, I, mm. 1-8 with Wagner’s reduction illustrating alternate unfolding.

Figure 3-15: Salzer, *Structural Hearing* Fig. 183: double voice exchange in Mozart, Piano Sonata in D Major, K. 311, II, mm. 1-4.
CHAPTER FOUR

This chapter focuses on five key scenes from Parsifal, each of which has been analyzed using Schenkerian analysis, as defined and extended in Chapter Three. These scenes were selected for analysis based on two criteria. First, they are pivotal moments in the dramatic action of the opera. Throughout each discussion I will explore how Wagner uses the key relationships, leitmotifs, and other salient musical features within the prolongational spans to enhance the dramatic effect of the scene. Second, they all establish a particular tonic harmony at the beginning, depart from it, and return to the same tonic harmony at the close of the scene. This paradigm obviously lends itself to investigation using Schenkerian techniques.

For each of the five scenes, I have included a middleground graph (referred to throughout as Analytical Graphs 1-5). For easier reference, I have drawn a box around each section of the graph that represents one of the musical examples I have chosen for closer examination. Important appearances of leitmotifs have also been labeled and enclosed in brackets.

Analytical Graph #1: Act I, mm. 1-146

Analytical Graph #1 encompasses the opening measures of Parsifal, including the Prelude and the first few measures of Act I proper. The Prelude (mm. 1-113) introduces several of the leitmotifs that will represent various events, objects, and affects throughout the course of the opera, and also the key relationships on which the tonal design is based. The reason that my graph extends beyond the Prelude is that the dominant prolongation in the final eight measures of the Prelude is resolved deceptively to an Fb major (bVI) harmony; the arrival of structural tonic harmony and melodic closure does not occur until m. 132. This section is also significant as it
establishes the 5 Kopfton and also contains the first middleground nesting of the Urlinie. As shown in Example 4-1, the Prelude begins with the Communion motive in Ab major, the main key of the opera. The third note of the motive (the Eb4) becomes the 5 Kopfton of the Urlinie. The second half of the motive, beginning with the Db4 in m. 4, is a nested foreground descent. Since the motive ends on C4, an implied Ab4 as 1 in m. 6 is necessary to complete the descent.

Shown in Example 4-2, a Communion motive in the key of C minor begins in m. 20. This time, the Eb 5 of the Urlinie is the second note of the motive. It is reiterated in m. 23 followed by a partial foreground descent involving 4(natural) to 3.

The key of Ab major returns in m. 39 with the Grail motive (shown in Example 4-3) which culminates in a false return of 5 in the Urlinie in m. 41. I hear this as a false return because though it is emphasized by register and dynamics, it occurs while 3 is already being prolonged. The extension to the Grail motive in mm. 42-43 tonicizes Eb major in m. 43 which provides the 2 for the foreground descent begun by the Communion motive in C minor in m. 20. This arrival is even more registrally emphasized than the one in m. 41 adding to the perception of that 5 as a false return. At this (tonicized) half cadence, the descent is interrupted.

In m. 44 the Faith motive returns in Ab major along with 5 (shown in Example 4-4). As recognized by David Lewin, the successive Faith motives in the keys of Cb minor and D major outline the key relationship of the entire opera, as Act I is primarily in Ab major, Act II in B minor, and Act III in D major/D minor. It also begins a 10-8 sequential repetition of Faith motives leading to the cadence in Eb major in m. 55.

In m. 56, there is a Grail motive in Cb major (shown in the box in Analytical Graph #1), again alluding to the tonic of Act II. Though this motive could indeed support the currently prolonged tone in the Urlinie (Eb), I have analyzed these

measures as an interpolation, as, due in part to its brevity, it seems to be functioning more as an allusion to a future key area than fitting in with the present one.

Another sequential repetition of the Faith motive begins in m. 60 – this time as a tonal sequence in Ab (Shown in Example 4-5). It begins with a borrowed Ab minor triad, which is prolonged by a 10-5-10-5-10-10 sequence. The supertonic triad of the key is prolonged by the subsequent 10-5-10-5-10-10 and 8-10 sequences. These lead finally to the dominant harmony in m. 69. The tonic Ab major triad later in m. 69 provides support for ^5. Mm. 69-78 complete the middleground descent with ^4 being supported by ii and ^3 and ^2 supported by a cadential 6/4. Though there is tonal as well as melodic closure in m. 78, it is an IAC as even though the ^1 is present, a C5 – the third of the tonic triad – is sounding above it. This lack of closure is reminiscent of the original appearance of the Communion motive, which ends on ^3 and requires an implied ^1 to achieve melodic closure at the foreground level.

The second section of the Prelude begins, as did the first: with the Communion motive in Ab major. However, as Example 4-6 shows, the second half of the motive is harmonized by a dissonant A°7 harmony. As chromaticism in Parsifal consistently represents evil and discord, the interjection of this dissonant harmony into the previously undisturbed diatonicism of the motive programmatically suggests that something is amiss with the Communion ceremony. We of course find out in Act I that Amfortas is unable to wholly perform the ceremony due to his sin and guilt. The fact this Communion motive is incomplete also foreshadows the incomplete ceremonies that take place in the opera before the sinners are redeemed by Parsifal. Two more partial Communion motives follow, in the keys of Cb major (shown in 4-6b) and D minor (4-6c), respectively – again alluding to the key relationships of the opera’s three acts, as these three motives form a 10-8 sequence and a composing out of the Ab° triad. The discordant harmonization of the first motive is echoed in the Cb as it is also accompanied by an A°7 sonority. An E° triad harmonizes the D minor motive, – still a dissonant harmony but a functional dissonance, as it is ii° in the key.

Beginning in m. 95, three successive Spear motives unfold another diminished triad – this time a G, Bb, Db (vii° in the home key Ab). The Db from the top of the
third Spear motive becomes the ^4 of another foreground nesting of the melodic
descent, though the tonal stability is undermined by the iv support of ^1 in m. 100.
Another nesting begins with ^5 in m. 103. Once again tones of the nested descent are
supported by unstable harmonies (^5 by a second inversion tonic triad and ^3 not
supported at all). The Prelude ends in m. 113 after ^2 is supported by V and held for
eight measures.

Act I begins in m. 114 not with the expected tonic resolution of the dominant
but instead with a deceptive resolution by way of a Communion motive uttered in Fb
major (bVI of Ab). As Gurnemanz begins to wake the Knights, a Grail motive in Ab
is sounded. As with the original Grail motive, a false return of ^5 occurs at the
completion of the actual motive with the expected ^2 occurring in the motivic
continuation with the subsequent tonicized half cadence in m. 123. As shown in
Example 4-7, the descent is again interrupted and ^5 is restored by the Faith motive
which moves in a 10-10 sequence from the root position tonic in m. 128 to the first
inversion tonic triad in m. 130. The deeper middleground descent reaches ^4 in m.
131 and is harmonized by a ii7. The remainder of the descent to ^1 follows
immediately, though once again the ^1 is accompanied by ^3 causing an IAC and
denying true harmonic closure. The next fourteen measures can be considered an
extension of this cadence.

Analytical Graph #2: Act II, mm. 1-132

Analytical Graph #2 encompasses the Prelude and opening measures of Act II.
As with the Prelude to Act I, the Act II prelude introduces leitmotifs and key
relationships that remain significant throughout the entire act. This scene is
analytically notable for several reasons. First, though the scene is framed by a B
minor tonal structure, it includes an extended dissonant prolongation of C#7 in the
Prelude that portrays the evil magic of Klingsor's castle. The chromaticism in this
passage is in stark contrast with the diatonicism of the Hall of the Grail at the end of
Act I. Second, Act II proper (beginning in m. 61) illustrates two typically Wagnerian
uses of chromaticism with an unfolding of IV from mm. 70-82 and the alternate harmonization of \(^3\) with D major and D minor in mm. 90 and 100, respectively.

Though the key signature contains two sharps and the opening sonority is, in fact, a root position B minor triad, the tonal stability is immediately disrupted by the G minor sonority in m. 6. As shown in Example 4-8, mm. 5-8 effect an 8-6 sequence beginning with the Klingsor motive in m. 5-6.

This sequence introduces the G minor and Eb minor sonorities, which, along with the opening B minor sonority, form a complete hexatonic rotation. Additionally, these are the three primary tonal areas of Act II, which is, as noted by Warren Darcy, primarily hexatonic in structure.\(^{104}\) The G4 at the top of the Klingsor motive also provides the Urlinie with a \(^6\) upper neighbor to the implied \(^5\) Kopfton in m. 1.

Shown in Example 4-9, mm. 9-14 are a 10-10 sequence that prolongs a C\(^\#\)°7 chord (enharmonic respelling of vii\(^\#\)7 of B minor) through unfolding and consequently supports the \(^6\) upper neighbor.

In m. 25, the tonic B minor briefly reappears but is again immediately destabilized by a hexatonic motion to G minor (which continues to support the \(^6\) of the Urlinie) and subsequently to Eb minor. A series of two-measure segments, consisting of a Kundry motive and a repeated triplet figure begins in m. 30. The first is harmonized by C\(^\#\)°7 which continues to be prolonged by unfolding (as shown in Analytical Graph #2) and by the 6-8 sequential repetition (with slight variation) of the Kundry motives. The two final appearances of the motive are shown in Example 4-10.

The latter is altered by a substitution of an F-natural for D-natural in the bass, thereby disrupting the sequence. This causes the F\#6 in m. 50 to sound as if it may be the long-awaited return of \(^5\). However, the fact that it is harmonized by a second-inversion tonic triad and followed immediately by a chromatic melodic descent undermines its structural importance, thereby making it a false return. The next four measures continue to unfold C\(^\#\)°7 with a chromatic descent in the melody/ascent in

the bass line, including a voice exchange between A# and E in mm. 51 and 55. The final structural ^6 occurs in m. 55 followed by a three-octave arpeggiation of the Kundry motive outlining a C#ø7 harmony.

Example 4-11 shows the end of the Prelude and beginning of Scene I in m. 61. The scene opens with a Sorcery motive harmonized by A#ø7 and unfolding an A#ø7 chord and is repeated as a 6-10 sequence, this time harmonized by G#ø7 and unfolding a G#ø7 harmony – a chromatic tonic substitute for b minor. The melodic descent finally returns to ^5 in the obligatory register in mm. 67-68 as the violas play the tail of the Sorcery motive (an arpeggiated B minor triad with an E# embellishment) ending the fifty-one measure prolongation of C#ø7 and the ^6 upper neighbor.

However, B minor and ^5 are supplanted by E major and ^4 in mm. 69-70 on Klingsor’s first words of the opera – ‘Die Zeit ist da’ (‘The time is come’) as he begins to summon Kundry to once again do his evil bidding. There is an interesting dramatic parallel among all three acts of Parsifal, as all begin with a sort of awakening. Klingsor’s attempt to awaken Kundry here is analogous to Gurnemanz’ waking the squires in Act I and his attempt to revive Kundry in Act III.

In mm. 71-82 (shown in Example 4-12), as Klingsor summons Kundry and notices that Parsifal is approaching the magic castle, E major and ^4 are prolonged by the unfolding of an E major triad. Though there is dense chromaticism present in the foreground, the E2 in the bass in mm. 70-72 is connected to the B2 in m. 76 to the G#2 in m. 78-80 (a first-inversion E major sonority in 78), and finally back to E2 in m 82. An interesting combination of leitmotifs occurs in this passage: the Sorcery motive beginning in m. 75 is fused with an iteration of the Kundry motive in m. 79. This is programmatically significant since during this passage Klingsor is using his sorcery to summon Kundry.

After further chromatic motion, ^3 arrives harmonized by D major (III) in m. 90 (shown in Example 4-13). An 8-6 sequence of an embellished Sorcery motive ascends by step from DM to EM to F#M (V). I hear this as the arrival on dominant, though I can still perceive a connection between the D major triad in m. 90/92 and the d minor triad in m. 100 (supporting the ^3 in m. 101). Consequently, ^2 does not
arrive until m. 104, harmonized by dominant. I believe this is an instance of prolongational overlap, as the prolongation of V and ^2 begins in the midst of the D major/D minor support of ^3.

Tonal and melodic closure in B minor arrives briefly in m. 108 with the arpeggiation of the tonic triad. The next few measures exhibit a further Bm-Gm-Ebm hexatonic rotation, including a brief appearance of Cb major before Ebm – the tonic key that will govern the upcoming section is finally firmly established in m. 132.

Analytical Graph #3: Act II, mm. 1121-1277

Analytical Graph #3 encompasses a span of some 150 measures near the end of Act II beginning at the change of key to G minor in m. 1121 at the conclusion of the kiss between Parsifal and Kundry, as he pushes her away. This entire section is an aria by Kundry – her final, impassioned attempt to seduce Parsifal, and to therefore ensure the destruction of the Knights of the Grail. Of the four possible mediant triads proposed by Schenker in *Harmonielehre* (iii, III, #iii, and #III), only iii does not appear in this scene, as Wagner uses Bb major, B major, and B minor at various times as either a local controlling tonic or as harmonic support for the melodic descent.

In addition to the extensive use of chromatic substitution at the middleground level, this passage contains several interesting foreground details. As shown in Example 4-14, ^5 of the melodic descent is supported by a cadential 6/4 harmony. After the cadence is evaded in m. 1126, dominant harmony is prolonged until m. 1134 by two linear intervallic patterns – first a 6-6-6 pattern and then, beginning in m. 1132, a 5-10 pattern. An 8-10 sequence beginning in m. 1134 anticipates tonic and is a prolongation to the first inversion tonic chord in m. 1139.

The music modulates to the relative major key of Bb major in m. 1140. Example 4-15 shows that Bb is the first of three different mediant keys of G minor that vie for control in this passage. The dominant prolongation of Bb major initiated in m. 1141 is supplanted by a prolongation of the dominant of B major/B minor beginning in m. 1151 with the B minor triad in second inversion. The root position B major triad in the following measure, juxtaposed with this structural B minor, aurally
obscures the quality of the tonic key to which this usurping dominant prolongation belongs. Measures 1159-1162, shown in Example 4-16, extend the dominant of B major/B minor with a prolongation of viiº4/3 by a 10-10-6-6 intervallic progression and a double neighbor motion around the E2 in the bass. The “confused” mediant in this passage poignantly portrays Kundry’s hysteria and desperation as she pleads with Parsifal that she has waited through eternities for him to end her horrible curse.

This is followed immediately by another dissonant prolongation (shown in the box in Analytical graph #3), beginning with the Dø7 sonority in m. 1163. There is a voice exchange between the D3 and F4 in this sonority and the D4 and F2 in the Dº7 in m. 1175. The presence of a prolongation (though whether it is of the Dø7 or of the Dº7 is not clear) is further substantiated by the 6-5 linear intervallic pattern. Regardless of which sonority is being prolonged, they are both capable of supporting the melodic ^5. I posit that the middleground melodic descent remains intact and therefore no breach of prolongation at the middleground level has occurred.

Shown in Example 4-17, a Communion motive in its original key of Ab major begins in m. 1177. Here, the motive signifies the crucified savior as Kundry describes seeing him on the cross. In this appearance, the third pitch of the motive (Eb4), which served as a ^5 Kopfton in the Prelude to Act I, provides a chromatic upper neighbor to the ^5 of the melodic descent, though ^5 returns almost immediately in m 1181 supported by the tonic B major in m. 1179. Over the next fifteen measures, as Kundry recalls her mockery of the dying Savior, the confused mediant returns as B major and b minor again contend for harmonic control, beginning with the cadential iiø7-V-i progression in b minor in mm. 1187-1188. B major regains temporary control at the culmination of the 10-10-10 linear intervallic pattern in m. 1194. As Kundry reveals that she has sought Parsifal, her Redeemer, from world to world, the music effects a 10-8-10 sequence followed by an extended 10-8 linear intervallic pattern that culminates in a V7 in Fm in m. 1206. A further iteration of the 10-8 pattern and subsequent chromatic parallel tenths briefly prolong the sonority. The descent reaches ^4 in m. 1216 supported by the aforementioned

105 This is a clear example of Bailey’s “associative tonality”.

107
prolongation of C7. The tonality shifts abruptly by chromatic mediant to Ab major in m 1217, and cadences with the tail of the ‘Grail’ motive in mm. 1219-1220 as Kundry sings ‘den Blick schon auf mir ruh’n’ (‘His [the Savior’s] gaze rest upon me’).

Shown in Example 4-18, a 6-8 linear intervallic pattern begins in m. 1230, followed by a large-scale sequence (labeled 5-6-8-10). The sequence is tonally altered in the second iteration in order to imply the home key of g minor with a cadential 6/4. The dominant prolongation continues (through a neighboring bø7 harmony) through the viiº 6/5 harmony in m. 1244. The prolongation is confirmed and emphasized by the ensuing voice exchange between F# and A in mm. 1244-1245.

The ^3 of the descent arrives in m. 1254 (see Example 4-19) supported by a tonic triad in Bb major. Kundry’s mood has now turned from one of desperate rage and remorse to one of subdued desire as the original mediant key returns with the words ‘Den ich ersehnt in Todesschmachten’ (‘One for whom I yearned in deathly longing’). A dissonant linear prolongation dº7 (viiº7 in the submediant key of Eb major) begins to unfold in m. 1256. This new tonic area is prolonged briefly by a 6-10 linear intervallic pattern in mm. 1259-1262. The 6-5 linear intervallic pattern in mm. 1263-1267 effects the final return to the home key of g minor as Kundry completes the phrase “nur eine Stunde mich dir vereinen” (‘for one hour only be united to you’). Tonic is prolonged by parallel sixths followed by a 10-6 linear intervallic pattern. The final dominant preparation begins in m. 1272 with the descending chromatic parallel sixths culminating in the viiº6 harmony in m. 1273. The ^3-^2-^1 descent occurs in mm. 1274-1275 as Kundry sings he final words of the passage: ‘und Erlöst’ (“and redeemed” – which is what she claims she would be if Parsifal will only love her for an hour). The ^1 is accompanied, however, by an evaded cadence – perhaps heralding that Parsifal’s imminent evasion of her seduction. Stable harmonic support arrives two measures later in m. 1277 with the implied G2 in the G major triad that accompanies the beginning of Parsifal’s final refusal.
Of the five scenes analyzed in this chapter, this one has the most traditional harmonic structure (excepting the #iv key area discussed below). I have included this example to illustrate that at times the music of Parsifal can be almost purely diatonic at the middleground level.

At this point in the opera, Gurnemanz has just baptized Parsifal, and Parsifal is requesting that Gurnemanz also pour the sacred water over his head so that he may be greeted by the Knights as their new King. At this moment a Parsifal motive in B major begins in m. 570 (shown in Example 4-21). The first note of the motive (D4) provides the ^3 of the ascent that is present in the opening measures of this section. B major and ^3 are prolonged until the arrival of ^4 and the E major harmony at the end of the Parsifal motive in m. 576 – the beginning of an unusually lengthy subdominant prolongation.

This span, as well as the ascent, seemingly ends in m. 593 with the arrival of F#5 and tonic harmony (shown in Example 4-22). However, as is often the case in this opera, a structural melodic pitch is harmonized by an unstable or chromatic harmony, which serves to undermine the importance of the pitch and, consequently, delay the expected arrival of a stable sonority. In this case, the F# is harmonized by a second-inversion tonic triad causing the delay of ^5 until the arrival of F#6 at the end of the (rhythmically augmented) Grail motive in m. 598. The obligatory register of ^5 is achieved by registral transfer in m. 602. It is interesting that the baptism of Parsifal concludes at the same time as the arrival of ^5; the completion of the ascent perhaps programmatically suggests that Parsifal’s spiritual ascent is also complete.

106 Warren J. Darcy, Wagner’s Das Rheingold, New York: Oxford University Press (1993): 30. This harmonic undermining is similar to one in the first act of Das Rheingold about which Darcy writes ‘in both the opening and closing frames, scale-degree ^1 is stressed melodically, but supported by the Rhinedaughters’ referential 6/4 sonority; this suggests the structural importance of scale-degree ^1 without emphasizing it harmonically. Wagner thus manages to prevent tonal closure by weakening the tonic emphasis…’
After a brief unfolding of v7 in mm. 602-607, Parsifal speaks the words ‘Die Taufe nimm und glaub an den Erlöser’ (‘Receive this baptism and believe in the Redeemer’) and proceeds to baptize Kundry while the orchestra plays a sequential repetition of the Faith motive. Shown in Example 4-23, this passage moves through the key of Ab major and finally to F minor (the minor tritone key of the current tonal structure) in m. 622. This is significant since according to Schenker, #iv is not an acceptable key area within the bounds of tonality. Seemingly there is no explanation of the presence of an F minor span in a B major context, unless possibly both local tonics can be considered as projections of the background Ab major tonic (then we can have B major as an enharmonically reinterpreted bIII and F minor as a diatonic vi). After cadencing in F minor in m. 625, the music moves by chromatic voice leading to a Cb major harmony in m. 626. This is reinterpreted in m. 628 as a B major tonic, which supports the return of ^5 in the melodic descent.

The remainder of the tonal structure is uncharacteristically (for Parsifal) diatonic. The arrival of ^4 in m. 630 is supported by V 4/3, followed by ^3 with root position tonic support in m. 631. Two measures later the descent reaches ^2, supported by V7. This prolongation lasts for twenty-five measures – comparatively much longer than the quarter-note duration of ^4 and the 2 ½ measure duration of ^3. Shown in Example 4-24 the tonic harmony arrives in m. 658 though the melody has returned to ^5. Though ^1 does appear in the melody in the following measure, the fact that it is not in the obligatory register coupled with the F#5 cover tone sounding above it prevents it from being convincing as the goal of the melodic descent in this section. After a long chromatic descent in the melody, B3 – the obligatory register ^1 appears though the first-inversion minor tonic triad that is its harmonic support again undermines a complete sense of closure.
My analysis begins, as does David Lewin’s famous analysis of this scene, in m. 933 of Act III – the beginning of Amfortas’ Prayer to Titurel – and continues to the iteration of the Parsifal motive in m. 1057 where tonal closure in D major is achieved. In addition to being one of the most chromatically rich scenes of the opera, it is also one of the most dramatically important, as the guilt-ridden Amfortas reaches a suicidal fervor during his father’s funeral service. As Amfortas’ agony reaches deep into the core of his soul, so does the chromaticism of the scene reach deep into the middleground, as is evidenced by the chromatic melodic descent. The scene is pivotal, as Amfortas’ wound is healed by Parsifal, thereby heralding the victory of purity over sin (and in a musical sense, diatonicism over chromaticism).

The Amfortas’ Prayer scene (mm. 933-993) is, as previously analyzed by Lewin, an AAB bar form divided into two Stollen and an Abgesang. Each Stollen is tonally closed – the first in d minor and the second in D-flat major. In the Abgesang, however, Wagner sets up tonal closure in D minor, but evades the cadence chromatically by moving to a dissonant Cø7 harmony on “Ruh”, the final word of the prayer, rather than the expected D minor tonic (Example 4-25). Though dramatic closure is achieved in this bar, convincing tonal closure does not occur for some sixty measures. This type of overlapping between dramatic scenes and tonally closed structures is the norm in Parsifal.

Stollen I begins in D minor with an iteration of the Angel motive. The last note (A in m. 935) is the Kopfton ^5 of this section. The subsequent Angel motive in m. 939 begins with an Eb minor harmony (bii). This sonority heralds not only the anguish of Amfortas, whose prayer for death begins in the next measure, but also the key of Db major, which serves as a chromatic lower neighbor for d minor throughout the scene. Lewin consistently refers to Db major and d# minor as tonic substitutes for

d minor. I instead interpret Db major as an enharmonically respelled #VII lower neighbor, and D# minor as a respelled bii upper neighbor. This reading is more consistent with Schenker’s chart in Harmonielehre (as discussed in Chapter Three) and gives impetus to the assertion of these two key areas prolonging d minor by neighboring motion.

The phrase “Hochgesegneter der Helden” (“Highest blessed among all heroes’) ends with a half cadence (V 4/3) in m. 945. In the large graph, I show that this sonority is prolonged by a 10-8 sequence, including two further iterations of the Angel motive, until m. 953. Lewin asserts a ‘D# minor for D minor’ chromatic substitution in this passage. Though the passage is saturated with pitches from the D# minor scale, I argue that this is only a passing tonicization and is serving the purpose of prolonging the dominant seventh (in D minor) sonority. Stollen I ends with a PAC in D minor on the word “Tod” (“Death”) in m. 956.

Stollen II begins exactly as did Stollen I, with an Angel motive in D minor. However, this time the A is replaced by Ab (see Example 4-26), effecting a modulation to Db major. This Ab also displaces the ^5 from m. 935, becoming the ^b5 of the chromatic melodic descent. The music in mm. 959-961 is immediately repeated a semitone higher in the key of D major, though Wagner disturbs the 8-6 sequence by altering the end of the second iteration in order to briefly establish F major as tonic. The sudden shift from D minor to the major keys is for textual reasons, as Amfortas momentarily turns from thoughts of his own demise to imagining his father in Heaven – “Der du jetzt in göttlichem Glanz den Erlöser selbst erschanst” (“…you who now in heavenly rapture do gaze upon our Lord”).

The secondary mixture that occurs in the last five measures of Stollen II (specifically the use of eø7 – the supertonic of d minor) harmonically supports the ^4 in the descent, while the PAC in Db major in m. 978 provides the ^b4 (as the seventh of the Ab7 chord) descending to ^3 at the moment of tonal closure.

The Abgesang begins in m. 978 as Amfortas sings the words “Einz’ge Gnade” (“unique mercy”). As shown in Example 4-28, the first phrase of the Abgesang, “Die schreckliche Wunde, das Gift, ersterbe” (“Take from me the hideous wound, the poison”) in D-flat major is followed by a second phrase with nearly the same
orchestral accompaniment in D major on the words “rufe du ihm es zu” (‘I call you! Plead for me!’). Quite possibly, by modulating to a major key one semitone higher Wagner simply wished to add emotional emphasis and urgency to the second phrase.

This tonal upshift from Db to D is reminiscent of the substitution that occurred in Stollen II and temporarily displaces ^3 in the descent with ^#3. Amfortas’ prayer ends in m. 993 with the chromatically evaded cadence discussed earlier.

Example 4-29 illustrates that the vii°4/3 in m.992 is prolonged by unfolding until m. 1007, as the Knights of the Grail implore Amfortas to uncover the Grail and he continues to refuse. The deceptive cadence in D minor in m.1007 restores ^3 to the melodic descent. Though tonal closure is somewhat achieved, the descent has only reached ^3 (coupled with the fact that Amfortas is in the middle of a sentence); it is therefore necessary to continue the analysis until both tonal and melodic closure can be achieved simultaneously.

Shown in Example 4-30, after an unfolding of vii°7 in F major in mm. 1008-1009, measure 1010 is a functional V7 chord in the key of F major followed by an 8-8-6-8 sequence, an extended arpeggiation of an F+ triad (which is an augmented tonic triad of the local tonal area), and, finally, an ascending sequential repetition of arpeggiated minor triads. Though the V7 harmony is not directly stated again at the end of the prolongational span, the resolution in measure 1026 on the D minor triad (the submediant of the key) sounds like a deceptive resolution, suggesting that the V7 harmony from sixteen measures earlier (the last tonally-functional sonority heard) retains harmonic control throughout. As there is no linear unfolding of the sonority being prolonged (C7), I consider this to be an example of a progressional prolongation.

The Grail motive in A major in m. 1029 heralds not only the appearance of Parsifal (and consequently the redemption of the Amfortas), but also ^2 of the melodic descent. Shown in Example 4-31, as Parsifal heals Amfortas’ wound with the Spear and anoints himself leader of the Knights, he sings “Sie heil, entsündigt und ensühnt! Denn ich verwalte nun dein Amt!” (‘Be whole, forgiven, and absolved! For I must now perform your charge!’). The music accompanying the words “Sie Heil”
effects a V-bVI+ deceptive cadence in A, and then prolongs the F+ (reinterpreted as a tonic substitute for FM perhaps to provide a sense of mystery and magic at the moment of Amfortas’ absolution) with a I+-ii7-V7-I+ cadential progression. As Parsifal blesses Amfortas’ suffering, the music returns to A major, and finally D major, as melodic and tonal closure (albeit in D major not D minor) is achieved in m. 1057 with the appearance of the Parsifal motive.

CONCLUSION

Though no single approach is capable of elucidating all of the musical information in a particular work, the application of Schenkerian analysis to certain extended passages in Parsifal has proven to be useful for considering the tonal structure at the middleground level. The addition of dissonant prolongations and multivalence – both logical extensions based on Schenker’s own graphs – greatly increases the applicability of his theory to the highly-chromatic music that pervades Wagner’s later music dramas.

Though Parsifal in its entirety contains several different types of musical constructions, all can be shown to function within a larger tonal context. For instance, Bailey’s different types of tonality are often present. An example of this is the appearance in Graph #3 of the Communion motive in the original key of Ab major within a G minor span. Though Wagner’s choice to introduce Ab major at that moment was indisputably “associative”, the Neapolitan key area provides a brief ^b6 upper chromatic neighbor to the ^5 which was previously being prolonged. The tonal upshift from Db major to D major in the Abgesang of Amfortas’ Prayer in Graph #5 is a clear example of “expressive” tonality, but can also be explained as an enharmonically respelled #VII lower middleground neighbor returning to the original tonic.

Wagner’s late compositional style is also remarkable in that he allows a chromatic sonority to control a far longer span than would earlier composers. While they may have used a borrowed IV in a minor key, they rarely would have allowed the chromatic sonority to control a twelve-measure span as Wagner does in Graph #2.
The fifty-one measure composing out of vii°7 in support of ^6 in the same Graph or the D#°7/D#ø7 span supporting ^5 in Graph #3 would also not likely be encountered in earlier music. The analyses provided in this chapter, as with many similar analyses by recent scholars, illustrate a number of important differences between the music of Wagner and the music of his predecessors. They also reveal that these differences are most often a matter of degree, rather than a matter of tonal structural design.

Example 4-4: continued

Example 4-5: continued
Example 4-6: Wagner, *Parsifal*, Act I, a) mm. 80-82; b) mm. 85-87; c) mm. 90-92: Communion motives supported by dissonances.
Example 4-6: continued

Analytical Graph #1: Wagner, *Parsifal*, Act I, mm. 1-146.
Example 4-8: Wagner, *Parsifal*, Act II, mm. 5-8: 8-6 sequence of Klingsor motives.

Example 4-10: continued

Example 4-13: continued
Example 4-14: Wagner, *Parsifal*, Act II, mm. 1125-1140: Dominant prolonged by sequence.
Example 4-14: continued

Example 4-15: continued

Example 4-16: Wagner, Parsifal, Act II, mm. 1159-1162: Prolongation of viio7 harmony.
Example 4-17: Wagner, *Parsifal*, Act II, mm. 1177-1194: Chromatic upper neighbor in melodic descent and subsequent prolongation of BM/Bm.
Example 4-17: continued

Example 4-19: Wagner, *Parsifal*, Act II, mm. 1252-1267: Chromatic mediant key relationships among BM-Gm-EbM.
Example 4-19: continued

Analytical Graph #3: Wagner, Parsifal, Act II, mm. 1125-1277.
Analytical Graph #3: continued
Example 4-21: Wagner, *Parsifal*, Act III, mm. 570-577: Initial ascent to \(^5\).
Example 4-24: continued

Analytical Graph #4: continued

Example 4-26: Wagner, *Parsifal*, Act III, a) mm. 935-936; b) mm. 957-958: Openings of Stollen I and Stollen II.

Example 4-28: continued

Example 4-29: continued
Example 4-30: continued

Analytical Graph #5: continued
CHAPTER FIVE

In the history of Western music, few composers have proven to be as enigmatic to scholars as has Richard Wagner. This is evidenced by the plurality of analytical methods with which analysts have tried to approach Wagner’s music and the inability of any single approach to accurately capture the complexity of his harmonic language. This document has applied two such approaches – Neo-Riemannian theory and Schenkerian theory – with proposed extensions to each method for the purpose of rendering each of these analytical tools more capable of analyzing chromatic passages in *Parsifal*.

My attempt to expand previous Neo-Riemannian models to include a more comprehensive selection of sonorities was born of frustration – specifically, frustration with the lack of success when attempting to apply any of the models to an actual passage of music. In most cases, the individual models proved unable to account for functional connections between more than two or three consecutive verticalities. The passages analyzed in Chapter Two are among the longest examples of consecutive parsimonious transformations in this opera. In all of *Parsifal*, there are only a handful of passages that contain textures parsimonious enough to be explained by a purely Neo-Riemannian approach, even with my proposed extensions; this certainly demonstrates the need for further expansion and validates the application of extended Schenkerian analysis to such excerpts.

As shown in Chapter Two, a transformation between any two common-practice sonorities involves a displacement of one to seven semitones. Consequently, the parsimonious transformations, or, transformations that are displaced by one or two semitones, comprise a small percentage of the transformational possibilities. As the number of possible non-parsimonious transformations greatly outnumber the parsimonious ones, as is illustrated by the displacement class tables in Chapter Two,
the restriction of analysis to this subset causes the theory to be applicable to rare passages of actual music. Further extension of Neo-Riemannian theory – specifically, finding a way to include the other non-parsimonious sonorities in a fixed, all-inclusive, model – is necessary if this type of analytical approach is to become capable of examining more than the occasional transformational relationship.

The reason that it is difficult to locate passages with extended parsimonious connections is that most are purely contrapuntal and are comprised of individual lines moving in what Arnold Whittall refers to as “chromatic flux”. If more than two lines (in say, a four-voice instrumental texture) move simultaneously, or if one of the two lines moves by M2, then a parsimonious connection is, by definition, impossible. The vertical sonorities created by these individual lines are frequently incidental to the counterpoint. This is not to say that the specific chord-to-chord connections (or, on a larger scale, tonal area to tonal area connections) cannot, at times, be enlightening. The presence of passages dominated by hexatonic, octatonic, or enneatonic collections, or the motion between the different modes of limited transposition inherent in these collections, can be easily traced using the Neo-Riemannian models. After applying my extended model to the passages in Chapter Two, I found that it was ultimately more useful as a tool for tracking harmonic activity between and within these discrete hexatonic and octatonic systems than as a comprehensive method for analyzing specific functional relationships between nontonal triads and seventh chords. The advantage of using the model in this manner is that its inability to apply functional designations to transformations with a total displacement of more than two semitones is negated. Regardless of the total semitonal displacement, general hexatonic and octatonic motion can still be traced

108 Whittall: 64.
and compared to vocal and dramatic changes to ascertain whether there is a correlation.

For future research, it would be interesting to compare and contrast the hexatonic and octatonic harmonic motion in parsimonious passages in *Parsifal* with that of non-parsimonious passages. I would like to determine whether Wagner uses parsimony in a “super leitmotivic”[110] manner, similar to how he uses diatonicism and chromaticism throughout the opera. I would also like to test its applicability to non-tonal music by later composers such as Scriabin, Bartok, and Stravinsky, as much of their music incorporates hexatonic and octatonic collections.

Most of the chromatic passages in Wagner’s late music dramas are linear and in flux between two tonally stable areas. It is for this reason that a linear approach such as Schenkerian analysis is so effective. The extended chromatic textures, regardless of which triads and/or seventh chords are present, can invariably be contrapuntally explained and therefore considered to have an overall passing effect between two contextually more stable structural sonorities. From this perspective, most of the specific transformational relationships between consecutive sonorities are subsumed as they are contained in a passing foreground contrapuntal motion. The aggregate effect of the passing chromaticism is more salient than the specific verticalities and their individual transformational relationships.

My plans for future research on *Parsifal* include applying Schenkerian analysis to several other scenes including the “Flower Maidens” scene from Act II and the “Good Friday” scene from Act III. In addition to these scenes (which, like the ones discussed in Chapter Four, are tonally closed at the middleground level) I would also like to explore some of the scenes that do not fit into this category. Though much of the opera is constructed with prolongational structures, there are also extended spans that do not seem to conform to a tonal framework, though I would argue that these long chromatic spans are prolongational, in a progressional sense, at a deeper structural level.

The sections that I selected for analysis in this study consist of approximately a hundred measures. I would like to explore larger spans and trace how these medium-sized structures fit tonally into the larger picture. For example, I hope to extend my graph of the Prelude to Act II (which currently covers the first 132 measures) to the tonal closure in B minor in m. 427. As B minor is established in the beginning of the scene and re-established over four hundred measures later, it would be interesting to consider the intervening prolongation that is seemingly controlled by hexatonic and octatonic key relationships.

I would also like to do a comparative study of the types of chromatic departure found in Parsifal with some of Wagner’s earlier operas. I am interested in surveying several scenes from Wagner’s middle period operas such as Tannhäuser and Lohengrin to consider the extent to which the chromaticism found in the later operas is present. I hypothesize that the dense chromaticism found in Tristan und Isolde and Parsifal can be found on a more surface level in the earlier works. I believe that much can be learned about Wagner’s development as a composer from a comparison of the Schenkerian graphs of scenes from several different works.

All analytical tools applied to a piece of music reveal select information about the music, to the necessary exclusion of other information. Neo-Riemannian theory and Schenkerian analysis are no exception, as the former is designed to investigate specific transformational qualities between successive verticalities while excluding information about tonal hierarchy, and the latter is designed to give information about long-range tonal connections and linear unfoldings with less emphasis on the more detailed chord-to-chord relationships. The combination of these two approaches allows the analyst to navigate Wagner’s “linear chromatic maze” using a Schenkerian lens to view the musical forest while seeing specific sections of trees through a Neo-Riemannian one.

Bibliography

Brown, Matthew. ‘From Hauptmotiv to Tonal Model,” in Carolyn Abbate and Roger Parker, eds. *Analyzing Opera: Verdi and Wagner*.

Scott Baker was born December 1, 1970 in Nashville, Tennessee. He earned the Bachelor of Music Education in Strings degree from Stetson University in 1995, the Master’s degree in Music Theory from Florida State University in 2000, and the Ph.D. in Music Theory from Florida State University in 2003. He has presented papers on Neo-Riemannian theory, the music of Alexander Scriabin, and Richard Wagner’s *Parsifal* at the Florida State Music Theory Forum, the GAMMA-UT Conference at the University of Texas at Austin, the Midwest Graduate Music Consortium at the University of Chicago, the Georgia Association of Music Theorists Conference, Music Theory Southeast, the South Central Society of Music Theory, the University of Buffalo Graduate Symposium, and the Rocky Mountain Society of Music Theory. In addition to his studies in music theory, he is also an active performer on double bass and has performed with the Pensacola Symphony Orchestra, the Tallahassee Symphony Orchestra, and the Albany (Ga.) Symphony Orchestra. In addition to being a teaching assistant in both double bass and music theory at Florida State University, he has also taught private double bass and cello lessons at Chipola Junior College and Darton College.